Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory
ilustraciones, gráficas, tablas
- Autores:
-
Rodríguez Durán, Juan David
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80517
- Palabra clave:
- 530 - Física
Photon
Exciton
Polariton
Bose-Einstein Condensate
Vortex
Superfluidity
Light-matter interaction
Hamiltonian
Density Operator
Fotón
Excitón
Polaritón
Condensado de Bose-Einstein
Vórtice
Superfluidez
Interacción radiación-materia
Hamiltoniano
Operador Densidad
Partículas elementales
Teoría cuántica
elementary particles
Quantum theory
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_c64d32fd2ebeaa704b9b44aeda866781 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80517 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory |
dc.title.translated.spa.fl_str_mv |
Estudio teórico de la dinámica de vórtices en un condensado de polaritones más allá de la teoría de campo medio |
title |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory |
spellingShingle |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory 530 - Física Photon Exciton Polariton Bose-Einstein Condensate Vortex Superfluidity Light-matter interaction Hamiltonian Density Operator Fotón Excitón Polaritón Condensado de Bose-Einstein Vórtice Superfluidez Interacción radiación-materia Hamiltoniano Operador Densidad Partículas elementales Teoría cuántica elementary particles Quantum theory |
title_short |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory |
title_full |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory |
title_fullStr |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory |
title_full_unstemmed |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory |
title_sort |
Theoretical study of the vortex dynamics in a polariton condensate beyond the mean field theory |
dc.creator.fl_str_mv |
Rodríguez Durán, Juan David |
dc.contributor.advisor.none.fl_str_mv |
Vinck Posada, Herbert |
dc.contributor.author.none.fl_str_mv |
Rodríguez Durán, Juan David |
dc.contributor.researcher.none.fl_str_mv |
Restrepo Cuartas Juan Pablo |
dc.contributor.researchgroup.spa.fl_str_mv |
GRUPO DE SUPERCONDUCTIVIDAD Y NUEVOS MATERIALES |
dc.subject.ddc.spa.fl_str_mv |
530 - Física |
topic |
530 - Física Photon Exciton Polariton Bose-Einstein Condensate Vortex Superfluidity Light-matter interaction Hamiltonian Density Operator Fotón Excitón Polaritón Condensado de Bose-Einstein Vórtice Superfluidez Interacción radiación-materia Hamiltoniano Operador Densidad Partículas elementales Teoría cuántica elementary particles Quantum theory |
dc.subject.proposal.eng.fl_str_mv |
Photon Exciton Polariton Bose-Einstein Condensate Vortex Superfluidity Light-matter interaction Hamiltonian Density Operator |
dc.subject.proposal.spa.fl_str_mv |
Fotón Excitón Polaritón Condensado de Bose-Einstein Vórtice Superfluidez Interacción radiación-materia Hamiltoniano Operador Densidad |
dc.subject.spines.spa.fl_str_mv |
Partículas elementales Teoría cuántica |
dc.subject.spines.eng.fl_str_mv |
elementary particles Quantum theory |
description |
ilustraciones, gráficas, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-10-12T17:37:18Z |
dc.date.available.none.fl_str_mv |
2021-10-12T17:37:18Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80517 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80517 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[Alaways, 1998] Alaways, L. (1998). Aerodynamics of the curve-ball: An investigation of the effects of angular velocity on baseball trajectories. [Allen, 2018] Allen, J. (2018). Dynamics of an exciton-polariton condensate. [Anderson et al., 1995] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995). Observation of bose-einstein condensation in a dilute atomic vapor. science, 269(5221):198–201. [Bagnato et al., 2008] Bagnato, V., Farias, K., Seman, J., Henn, E., and Ramos, E. (2008). Introduction to the basic-concepts of bose-einstein condensation. AIP Conference Proceedings, 994. [Bao and Cai, 2012] Bao, W. and Cai, Y. (2012). Mathematical theory and numerical methods for bose-einstein condensation. arXiv preprint arXiv:1212.5341. [Barenghi, 2008] Barenghi, C. F. (2008). Is the reynolds number infinite in superfluid turbulence? Physica D: Nonlinear Phenomena, 237(14-17):2195–2202. [Barenghi and Parker, 2016] Barenghi, C. F. and Parker, N. G. (2016). A primer on quantum fluids. Number arXiv: 1605.09580. Springer. [Barenghi et al., 2014] Barenghi, C. F., Skrbek, L., and Sreenivasan, K. R. (2014). Introduction to quantum turbulence. Proceedings of the National Academy of Sciences, 111(Supplement 1):4647–4652. [Baumberg et al., 2000] Baumberg, J., Savvidis, P., Stevenson, R., Tartakovskii, A., Skolnick, M., Whittaker, D., and Roberts, J. (2000). Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Physical Review B, 62(24):R16247. [Benedikter, 2015] Benedikter, N. (2015). Deriving the gross-pitaevskii equation. In Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference, pages 207–212. World Scientific. [Berne and Pecora, 1974] Berne, B. and Pecora, R. (1974). Laser light scattering from liquids. Annual review of physical chemistry, 25(1):233–253. [Bonesi et al., 2007] Bonesi, M., Churmakov, D., Ritchie, L., and Meglinski, I. (2007). Turbulence monitoring with doppler optical coherence tomography. Laser Physics Letters, 4(4):304–307. [Boulier et al., 2016] Boulier, T., Cancellieri, E., Sangouard, N. D., Hivet, R., Glorieux, Q., Giacobino, E., and Bramati, A. (2016). Lattices of quantized vortices in polariton super-fluids. Comptes Rendus Physique, 17(8):893–907. [Boyd, 2018] Boyd, J. P. (2018). Dynamics of the equatorial ocean. Springer. [Brown and Arnold, 2010] Brown, M. S. and Arnold, C. B. (2010). Fundamentals of laser material interaction and application to multiscale surface modification. In Laser precision microfabrication, pages 91–120. Springer. [Carusotto and Ciuti, 2013] Carusotto, I. and Ciuti, C. (2013). Quantum fluids of light. Reviews of Modern Physics, 85(1):299. [Chalker, 2013] Chalker, J. (2013). Quantum theory of condensed matter. Lecture Notes, Physics Department, Oxford University, page 2. [Ciuti et al., 2003] Ciuti, C., Schwendimann, P., and Quattropani, A. (2003). Theory of polariton parametric interactions in semiconductor microcavities. Semiconductor science and technology, 18(10):S279. [Davis et al., 1995] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D., and Ketterle, W. (1995). Bose-einstein condensation in a gas of sodium atoms. Physical review letters, 75(22):3969. [De La Peña, 2014] De La Peña, L. (2014). Introducción a la mecánica cuántica. Fondo de Cultura económica. [Delville et al., 2009] Delville, J.-P., de Saint Vincent, M. R., Schroll, R. D., Chraibi, H., Issenmann, B., Wunenburger, R., Lasseux, D., Zhang, W. W., and Brasselet, E. (2009). Laser microfluidics: fluid actuation by light. Journal of Optics A: Pure and Applied Optics, 11(3):034015. [Derksen, 2019] Derksen, A. (2019). Numerical simulation of a forced and freely-vibrating cylinder at supercritical Reynolds numbers. PhD thesis, Master’s thesis, TU Delft and Siemens. [Dominici et al., 2018] Dominici, L., Voronova, N., Colas, D., Gianfrate, A., Rahmani, A., Ardizzone, V., Ballarini, D., De Giorgi, M., Gigli, G., Laussy, F. P., et al. (2018). Realisation of full-bloch beams with ultrafast rabi-rotating vortices. arXiv preprint arXiv:1801.02580. [Echeverri-Arteaga et al., 2018] Echeverri-Arteaga, S., Vinck-Posada, H., and Gómez, E. A. (2018). Explanation of the quantum phenomenon of off-resonant cavity-mode emission. Physical Review A, 97(4):043815. [Ford et al., 2006] Ford, A. D., Morris, S. M., and Coles, H. J. (2006). Photonics and lasing in liquid crystals. Materials Today, 9(7-8):36–42. [Franz, 2015] Franz, T. (2015). Quantum fluids of light. [Ganapathy, 2016] Ganapathy, R. (2016). Basic concept of exciton. Technical report, SASTRA University. [Goldstein et al., 2002] Goldstein, H., Poole, C., and Safko, J. (2002). Classical mechanics. [Grynberg et al., 2010] Grynberg, G., Aspect, A., and Fabre, C. (2010). Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press. [Grynberg et al., 2010] Grynberg, G., Aspect, A., and Fabre, C. (2010). Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press. [Ha et al., 2017] Ha, D. T., Thuy, D. T., Hoa, V. T., Van, T. T. T., and Viet, N. (2017). On the theory of three types of polaritons (phonon, exciton and plasmon polaritons). In J. Phys. Conf. Ser, volume 865, page 012007. [Haegeman et al., 2017] Haegeman, J., Draxler, D., Stojevic, V., Cirac, J. I., Osborne, T. J., and Verstraete, F. (2017). Quantum gross-pitaevskii equation. Scipost Physics 3 (2017), Nr. 1, 3(1):6. [Hallanger et al., 2005] Hallanger, A., Brevik, I., Haaland, S., and Sollie, R. (2005). Nonli near deformations of liquid-liquid interfaces induced by electromagnetic radiation pressure. Physical Review E, 71(5):056601. [Hecht, 2002] Hecht, E. (2002). Optics-addison. [Hérard and Hurisse, 2005] H´erard, J.-M. and Hurisse, O. (2005). A simple method to compute standard two-fluid models. International Journal of Computational Fluid Dynamics, 19(7):475–482. [Hess and Fairbank, 1967] Hess, G. B. and Fairbank, W. (1967). Measurements of angular momentum in superfluid helium. Physical Review Letters, 19(5):216. [Holmén, 2012] Holmén, V. (2012). Methods for vortex identification. Master’s Theses in Mathematical Sciences. [Hopfield, 1958] Hopfield, J. (1958). Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review, 112(5):1555. [Jackson, 2007] Jackson, J. D. (2007). Classical electrodynamics. John Wiley & Sons. [Juggins et al., 2018] Juggins, R., Keeling, J., and Szymánska, M. (2018). Coherently driven microcavity-polaritons and the question of superfluidity. Nature communications, 9(1):1–8. [Kalt and Hetterich, 2011] Kalt, H. and Hetterich, M. (2011). Optical microcavities. Technical report, Karlsruhe Institute of Technology (KIT). [Kasprzak, 2006] Kasprzak, J. (2006). Condensation of exciton polaritons. PhD thesis. [Kasprzak et al., ] Kasprzak, J., Richard, M., André, R., and Dang, L. S. Introduction to boseeinstein condensation of microcavity polaritons. [Kavokin et al., 2017] Kavokin, A., Baumberg, J. J., Malpuech, G., and Laussy, F. P. (2017). Microcavities. Oxford university press. [Klaers et al., 2010] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. (2010). Bose– einstein condensation of photons in an optical microcavity. Nature, 468(7323):545–548. [Kumar, 2002] Kumar, N. (2002). Bosonic stimulation and the irreproducibility of condensate fragmentation. arXiv preprint cond-mat/0204443. [Lagoudakis and Berloff, 2017] Lagoudakis, P. G. and Berloff, N. G. (2017). A polariton graph simulator. New Journal of Physics, 19(12):125008. [Laikhtman, 2007] Laikhtman, B. (2007). Are excitons really bosons? Journal of Physics: Condensed Matter, 19(29):295214. [Liu et al., 2018] Liu, C., Gao, Y., Tian, S., and Dong, X. (2018). Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Physics of Fluids, 30(3):035103. [L’vov et al., 2014] L’vov, V. S., Skrbek, L., and Sreenivasan, K. R. (2014). Viscosity of liquid 4he and quantum of circulation: Are they related? Physics of Fluids, 26(4):041703. [Manni et al., 2013] Manni, F., Léger, Y., Rubo, Y. G., André, R., and Deveaud, B. (2013). Hyperbolic spin vortices and textures in exciton–polariton condensates. Nature communications, 4(1):1–7. [Manzano, 2020] Manzano, D. (2020). A short introduction to the lindblad master equation. AIP Advances, 10(2):025106. [Marcus, 1990] Marcus, P. S. (1990). Vortex dynamics in a shearing zonal flow. Journal of Fluid Mechanics, 215:393–430. [Moffatt, 2011] Moffatt, H. K. (2011). A brief introduction to vortex dynamics and turbulence. In Environmental Hazards: The Fluid Dynamics and Geophysics of Extreme Events, pages 1–27. World Scientific. [Myrvold, 2014] Myrvold, W. C. (2014). Probabilities in statistical mechanics. [Nagle et al., 1996] Nagle, R. K., Saff, E. B., Snider, A. D., and West, B. (1996). Fundamentals of differential equations and boundary value problems. Addison-Wesley Reading. [Ortega, 2007] Ortega, D. (2007). Bose-einstein condensation. National Tsing Hua University. [Padgett, 2014] Padgett, M. (2014). Light’s twist. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2172):20140633. [Padgett et al., 2004] Padgett, M., Courtial, J., and Allen, L. (2004). Light’s orbital angular momentum. Physics today, 57(5):35–40. [Pagano, 2009] Pagano, G. (2009). Bogoliubov-de gennes normal-modes analysis of a cylindrically symmetric bose-einstein condensate. Technical report, Universitá degli Studi di Milano. [Pieri and Strinati, 2003] Pieri, P. and Strinati, G. (2003). Derivation of the gross-pitaevskii equation for condensed bosons from the bogoliubov–de gennes equations for superfluid fermions. Physical review letters, 91(3):030401. [Pitaevskii and Stringari, 2016] Pitaevskii, L. and Stringari, S. (2016). Bose-Einstein condensation and superfluidity, volume 164. Oxford University Press. [Polonyi, 2012] Polonyi, J. (2012). Many-body theory. [Rahmani and Dominici, 2019] Rahmani, A. and Dominici, L. (2019). Detuning control of rabi vortex oscillations in light-matter coupling. Physical Review B, 100(9):094310. [Reeves et al., 2015] Reeves, M., Billam, T., Anderson, B. P., and Bradley, A. (2015). Identifying a superfluid reynolds number via dynamical similarity. Physical Review Letters, 114(15):155302. [Reeves et al., 2015] Reeves, M., Billam, T., Anderson, B. P., and Bradley, A. (2015). Identifying a superfluid reynolds number via dynamical similarity. Physical Review Letters, 114(15):155302. [Rogel-Salazar, 2013] Rogel-Salazar, J. (2013). The gross–pitaevskii equation and bose– einstein condensates. European Journal of Physics, 34(2):247. [Rogel-Salazar, 2013] Rogel-Salazar, J. (2013). The gross–pitaevskii equation and bose– einstein condensates. European Journal of Physics, 34(2):247. [Sakurai, 2014] Sakurai, J. (2014). Modern quantum mechanics 2nd edition. Pearson New International edition. [Salasnich, 2018] Salasnich, L. (2018). Self-consistent derivation of the modified gross– pitaevskii equation with lee–huang–yang correction. Applied Sciences, 8(10):1998. [Sarchi, 2007] Sarchi, D. (2007). Bose-einstein condensation of microcavity polaritons. Technical report, EPFL. [Sasaki, 2020] Sasaki, S. (2020). New energy form and some advice. [Sasaki and Hidenobu, 2008] Sasaki, S. and Hidenobu, H. (2008). Bose-Einstein Condensation and Superfluidity. JAIST repository. [Sauls, 2018] Sauls, J. A. (2018). Half-quantum vortices in superfluid helium. arXiv preprint arXiv:1806.09024. [Savona, 2007] Savona, V. (2007). Fifteen years of microcavity polaritons. The Physics of Semiconductor Microcavities. [Savona et al., 1999] Savona, V., Piermarocchi, C., Quattropani, A., Schwendimann, P., and Tassone, F. (1999). Optical properties of microcavity polaritons. Phase transitions, 68(1):169–279. [Schmitt, 2015] Schmitt, A. (2015). Introduction to superfluidity. Lect. Notes Phys, 888(1). [Schoepe, 2015] Schoepe, W. (2015). Superfluid reynolds number and the transition from potential flow to turbulence in superfluid 4 he at millikelvin temperatures. JETP letters, 102(2):105–107. [Stetina, 2014] Stetina, S. (2014). From field theory to the hydrodynamics of relativistic superfluids. [Sun et al., 2017] Sun, Y., Yoon, Y., Steger, M., Liu, G., Pfeiffer, L. N., West, K., Snoke, D. W., and Nelson, K. A. (2017). Direct measurement of polariton–polariton interaction strength. Nature Physics, 13(9):870–875. [Szriftgiser and Cheb-Terrab, 2016] Szriftgiser, P. and Cheb-Terrab, E. (2016). The gross pitaevskii equation and bogoliubov spectrum. [Tian et al., 2017] Tian, S., Gao, Y., Dong, X., and Liu, C. (2017). A definition of vortex vector and vortex. arXiv preprint arXiv:1712.03887. [Usami, 2015] Usami, K. (2015). Harmonic oscillators, coupled harmonic oscillators, and bosonic fields. [Vinen, 2004] Vinen, W. (2004). The physics of superfluid helium. [Von-Oppen, 2018] Von-Oppen, F. (2018). Many-body theory and quantum field theory. [Wilson, 2020] Wilson, A. (2020). Semi-classical or fully quantum: the fundamentals of modelling light-matter interaction [Wizza, 2010] Wizza, G. (2010). Quantum dot-cavity coupling with phonon-assisted cavity feeding. [Yongyong, 2011] Yongyong, C. (2011). Mathematical Theory and Numerical Methods for Gross-Pitaevskii Equations and Applications. PhD thesis. [Yoshitake et al., 2005] Yoshitake, Y., Mitani, S., Sakai, K., and Takagi, K. (2005). Measurement of high viscosity with laser induced surface deformation technique. Journal of applied physics, 97(2):024901. [Yue et al., 2019] Yue, Y., Huang, H., Ren, Y., Pan, Z., and Willner, A. E. (2019). Special issue on novel insights into orbital angular momentum beams: From fundamentals, devices to applications. [Yunus, 2006] Yunus, A. (2006). Cengel fluid mechanics. [Zayko, 2006] Zayko, Y. (2006). Application of two-fluid model for flow investigation in pipes of circle profile. [Zhang and Chang, 1988] Zhang, J.-Z. and Chang, R. K. (1988). Shape distortion of a single water droplet by laser-induced electrostriction. Optics letters, 13(10):916–918. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
XV, 96 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80517/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/80517/6/1019042231.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80517/7/1019042231.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 a095232ff44f4ca36139545b2378999d b36ac6482b38a62fc6dea254e84190af |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089547079745536 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vinck Posada, Herbertcb451c328e333b7d420c1effb3732257Rodríguez Durán, Juan Davidd09fb37877085ff0f4e27c8464cf0bebRestrepo Cuartas Juan PabloGRUPO DE SUPERCONDUCTIVIDAD Y NUEVOS MATERIALES2021-10-12T17:37:18Z2021-10-12T17:37:18Z2020https://repositorio.unal.edu.co/handle/unal/80517Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasThis work is pretended to carry out an extensive review of concepts regarding Bose-Einstein condensates, polaritonics and vortex identification methods in order to theoretically grasp on the fundamentals of vortex dynamics developed in a two-dimensional quantum well placed in an optical microresonator wherein strong coupling regime among light and matter is assumed to be present. Through the use of some techniques widely employed in quantum optics, the problem of understanding the vortex dynamics in a polariton condensate exhibiting superfluidity is studied starting from an idealized model that has already been proposed and which doesn’t include energy dissipation processes. However, as shown subsequently, mean-field treatment puts aside effects that are evidenced once a model of finite system is considered, generating new possible phenomenologies. Moreover, it is also shown that inclusion of dissipative processes is relevant when it comes to compare with experimental results.Este trabajo pretende llevar a cabo una revisión extensa de conceptos relacionados con los condensados de Bose-Einstein, polaritónica y métodos de identificación de vórtices con la finalidad de ahondar en las bases de la dinámica de vórtices que se encuentran en un pozo cuántico bidimensional ubicado a su vez en un micro-resonador óptico en el cual el régimen de interacción fuerte se asume presente. Mediante el uso de algunas técnicas ampliamente usadas en la óptica cuántica, se estudia el problema de entender la dinámica de vórtices en un condensado de polaritones que exhibe superfluidez partiendo de un modelo idealizado que ya ha sido propuesto, el cual no incluye procesos de disipación de energía. Sin embargo, como se muestra posteriormente, el tratamiento de campo medio deja de lado efectos que se evidencian una vez es considerado un modelo de sistema finito, generando posibilidades fenomenológicas nuevas. Asimismo, se muestra que la inclusión de los procesos disipativos es relevante a la hora de comparar con resultados experimentales. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - FísicaModelamiento teórico y simulación.Dinámica de vórtices y óptica cuántica.XV, 96 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaPhotonExcitonPolaritonBose-Einstein CondensateVortexSuperfluidityLight-matter interactionHamiltonianDensity OperatorFotónExcitónPolaritónCondensado de Bose-EinsteinVórticeSuperfluidezInteracción radiación-materiaHamiltonianoOperador DensidadPartículas elementalesTeoría cuánticaelementary particlesQuantum theoryTheoretical study of the vortex dynamics in a polariton condensate beyond the mean field theoryEstudio teórico de la dinámica de vórtices en un condensado de polaritones más allá de la teoría de campo medioTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[Alaways, 1998] Alaways, L. (1998). Aerodynamics of the curve-ball: An investigation of the effects of angular velocity on baseball trajectories.[Allen, 2018] Allen, J. (2018). Dynamics of an exciton-polariton condensate.[Anderson et al., 1995] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995). Observation of bose-einstein condensation in a dilute atomic vapor. science, 269(5221):198–201.[Bagnato et al., 2008] Bagnato, V., Farias, K., Seman, J., Henn, E., and Ramos, E. (2008). Introduction to the basic-concepts of bose-einstein condensation. AIP Conference Proceedings, 994.[Bao and Cai, 2012] Bao, W. and Cai, Y. (2012). Mathematical theory and numerical methods for bose-einstein condensation. arXiv preprint arXiv:1212.5341.[Barenghi, 2008] Barenghi, C. F. (2008). Is the reynolds number infinite in superfluid turbulence? Physica D: Nonlinear Phenomena, 237(14-17):2195–2202.[Barenghi and Parker, 2016] Barenghi, C. F. and Parker, N. G. (2016). A primer on quantum fluids. Number arXiv: 1605.09580. Springer.[Barenghi et al., 2014] Barenghi, C. F., Skrbek, L., and Sreenivasan, K. R. (2014). Introduction to quantum turbulence. Proceedings of the National Academy of Sciences, 111(Supplement 1):4647–4652.[Baumberg et al., 2000] Baumberg, J., Savvidis, P., Stevenson, R., Tartakovskii, A., Skolnick, M., Whittaker, D., and Roberts, J. (2000). Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Physical Review B, 62(24):R16247.[Benedikter, 2015] Benedikter, N. (2015). Deriving the gross-pitaevskii equation. In Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference, pages 207–212. World Scientific.[Berne and Pecora, 1974] Berne, B. and Pecora, R. (1974). Laser light scattering from liquids. Annual review of physical chemistry, 25(1):233–253.[Bonesi et al., 2007] Bonesi, M., Churmakov, D., Ritchie, L., and Meglinski, I. (2007). Turbulence monitoring with doppler optical coherence tomography. Laser Physics Letters, 4(4):304–307.[Boulier et al., 2016] Boulier, T., Cancellieri, E., Sangouard, N. D., Hivet, R., Glorieux, Q., Giacobino, E., and Bramati, A. (2016). Lattices of quantized vortices in polariton super-fluids. Comptes Rendus Physique, 17(8):893–907.[Boyd, 2018] Boyd, J. P. (2018). Dynamics of the equatorial ocean. Springer.[Brown and Arnold, 2010] Brown, M. S. and Arnold, C. B. (2010). Fundamentals of laser material interaction and application to multiscale surface modification. In Laser precision microfabrication, pages 91–120. Springer.[Carusotto and Ciuti, 2013] Carusotto, I. and Ciuti, C. (2013). Quantum fluids of light. Reviews of Modern Physics, 85(1):299.[Chalker, 2013] Chalker, J. (2013). Quantum theory of condensed matter. Lecture Notes, Physics Department, Oxford University, page 2.[Ciuti et al., 2003] Ciuti, C., Schwendimann, P., and Quattropani, A. (2003). Theory of polariton parametric interactions in semiconductor microcavities. Semiconductor science and technology, 18(10):S279.[Davis et al., 1995] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D., and Ketterle, W. (1995). Bose-einstein condensation in a gas of sodium atoms. Physical review letters, 75(22):3969.[De La Peña, 2014] De La Peña, L. (2014). Introducción a la mecánica cuántica. Fondo de Cultura económica.[Delville et al., 2009] Delville, J.-P., de Saint Vincent, M. R., Schroll, R. D., Chraibi, H., Issenmann, B., Wunenburger, R., Lasseux, D., Zhang, W. W., and Brasselet, E. (2009). Laser microfluidics: fluid actuation by light. Journal of Optics A: Pure and Applied Optics, 11(3):034015.[Derksen, 2019] Derksen, A. (2019). Numerical simulation of a forced and freely-vibrating cylinder at supercritical Reynolds numbers. PhD thesis, Master’s thesis, TU Delft and Siemens.[Dominici et al., 2018] Dominici, L., Voronova, N., Colas, D., Gianfrate, A., Rahmani, A., Ardizzone, V., Ballarini, D., De Giorgi, M., Gigli, G., Laussy, F. P., et al. (2018). Realisation of full-bloch beams with ultrafast rabi-rotating vortices. arXiv preprint arXiv:1801.02580.[Echeverri-Arteaga et al., 2018] Echeverri-Arteaga, S., Vinck-Posada, H., and Gómez, E. A. (2018). Explanation of the quantum phenomenon of off-resonant cavity-mode emission. Physical Review A, 97(4):043815.[Ford et al., 2006] Ford, A. D., Morris, S. M., and Coles, H. J. (2006). Photonics and lasing in liquid crystals. Materials Today, 9(7-8):36–42.[Franz, 2015] Franz, T. (2015). Quantum fluids of light.[Ganapathy, 2016] Ganapathy, R. (2016). Basic concept of exciton. Technical report, SASTRA University.[Goldstein et al., 2002] Goldstein, H., Poole, C., and Safko, J. (2002). Classical mechanics.[Grynberg et al., 2010] Grynberg, G., Aspect, A., and Fabre, C. (2010). Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press.[Grynberg et al., 2010] Grynberg, G., Aspect, A., and Fabre, C. (2010). Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press.[Ha et al., 2017] Ha, D. T., Thuy, D. T., Hoa, V. T., Van, T. T. T., and Viet, N. (2017). On the theory of three types of polaritons (phonon, exciton and plasmon polaritons). In J. Phys. Conf. Ser, volume 865, page 012007.[Haegeman et al., 2017] Haegeman, J., Draxler, D., Stojevic, V., Cirac, J. I., Osborne, T. J., and Verstraete, F. (2017). Quantum gross-pitaevskii equation. Scipost Physics 3 (2017), Nr. 1, 3(1):6.[Hallanger et al., 2005] Hallanger, A., Brevik, I., Haaland, S., and Sollie, R. (2005). Nonli near deformations of liquid-liquid interfaces induced by electromagnetic radiation pressure. Physical Review E, 71(5):056601.[Hecht, 2002] Hecht, E. (2002). Optics-addison.[Hérard and Hurisse, 2005] H´erard, J.-M. and Hurisse, O. (2005). A simple method to compute standard two-fluid models. International Journal of Computational Fluid Dynamics, 19(7):475–482.[Hess and Fairbank, 1967] Hess, G. B. and Fairbank, W. (1967). Measurements of angular momentum in superfluid helium. Physical Review Letters, 19(5):216.[Holmén, 2012] Holmén, V. (2012). Methods for vortex identification. Master’s Theses in Mathematical Sciences.[Hopfield, 1958] Hopfield, J. (1958). Theory of the contribution of excitons to the complex dielectric constant of crystals. Physical Review, 112(5):1555.[Jackson, 2007] Jackson, J. D. (2007). Classical electrodynamics. John Wiley & Sons.[Juggins et al., 2018] Juggins, R., Keeling, J., and Szymánska, M. (2018). Coherently driven microcavity-polaritons and the question of superfluidity. Nature communications, 9(1):1–8.[Kalt and Hetterich, 2011] Kalt, H. and Hetterich, M. (2011). Optical microcavities. Technical report, Karlsruhe Institute of Technology (KIT).[Kasprzak, 2006] Kasprzak, J. (2006). Condensation of exciton polaritons. PhD thesis.[Kasprzak et al., ] Kasprzak, J., Richard, M., André, R., and Dang, L. S. Introduction to boseeinstein condensation of microcavity polaritons.[Kavokin et al., 2017] Kavokin, A., Baumberg, J. J., Malpuech, G., and Laussy, F. P. (2017). Microcavities. Oxford university press.[Klaers et al., 2010] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. (2010). Bose– einstein condensation of photons in an optical microcavity. Nature, 468(7323):545–548.[Kumar, 2002] Kumar, N. (2002). Bosonic stimulation and the irreproducibility of condensate fragmentation. arXiv preprint cond-mat/0204443.[Lagoudakis and Berloff, 2017] Lagoudakis, P. G. and Berloff, N. G. (2017). A polariton graph simulator. New Journal of Physics, 19(12):125008.[Laikhtman, 2007] Laikhtman, B. (2007). Are excitons really bosons? Journal of Physics: Condensed Matter, 19(29):295214.[Liu et al., 2018] Liu, C., Gao, Y., Tian, S., and Dong, X. (2018). Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Physics of Fluids, 30(3):035103.[L’vov et al., 2014] L’vov, V. S., Skrbek, L., and Sreenivasan, K. R. (2014). Viscosity of liquid 4he and quantum of circulation: Are they related? Physics of Fluids, 26(4):041703.[Manni et al., 2013] Manni, F., Léger, Y., Rubo, Y. G., André, R., and Deveaud, B. (2013). Hyperbolic spin vortices and textures in exciton–polariton condensates. Nature communications, 4(1):1–7.[Manzano, 2020] Manzano, D. (2020). A short introduction to the lindblad master equation. AIP Advances, 10(2):025106.[Marcus, 1990] Marcus, P. S. (1990). Vortex dynamics in a shearing zonal flow. Journal of Fluid Mechanics, 215:393–430.[Moffatt, 2011] Moffatt, H. K. (2011). A brief introduction to vortex dynamics and turbulence. In Environmental Hazards: The Fluid Dynamics and Geophysics of Extreme Events, pages 1–27. World Scientific.[Myrvold, 2014] Myrvold, W. C. (2014). Probabilities in statistical mechanics.[Nagle et al., 1996] Nagle, R. K., Saff, E. B., Snider, A. D., and West, B. (1996). Fundamentals of differential equations and boundary value problems. Addison-Wesley Reading.[Ortega, 2007] Ortega, D. (2007). Bose-einstein condensation. National Tsing Hua University.[Padgett, 2014] Padgett, M. (2014). Light’s twist. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2172):20140633.[Padgett et al., 2004] Padgett, M., Courtial, J., and Allen, L. (2004). Light’s orbital angular momentum. Physics today, 57(5):35–40.[Pagano, 2009] Pagano, G. (2009). Bogoliubov-de gennes normal-modes analysis of a cylindrically symmetric bose-einstein condensate. Technical report, Universitá degli Studi di Milano.[Pieri and Strinati, 2003] Pieri, P. and Strinati, G. (2003). Derivation of the gross-pitaevskii equation for condensed bosons from the bogoliubov–de gennes equations for superfluid fermions. Physical review letters, 91(3):030401.[Pitaevskii and Stringari, 2016] Pitaevskii, L. and Stringari, S. (2016). Bose-Einstein condensation and superfluidity, volume 164. Oxford University Press.[Polonyi, 2012] Polonyi, J. (2012). Many-body theory.[Rahmani and Dominici, 2019] Rahmani, A. and Dominici, L. (2019). Detuning control of rabi vortex oscillations in light-matter coupling. Physical Review B, 100(9):094310.[Reeves et al., 2015] Reeves, M., Billam, T., Anderson, B. P., and Bradley, A. (2015). Identifying a superfluid reynolds number via dynamical similarity. Physical Review Letters, 114(15):155302.[Reeves et al., 2015] Reeves, M., Billam, T., Anderson, B. P., and Bradley, A. (2015). Identifying a superfluid reynolds number via dynamical similarity. Physical Review Letters, 114(15):155302.[Rogel-Salazar, 2013] Rogel-Salazar, J. (2013). The gross–pitaevskii equation and bose– einstein condensates. European Journal of Physics, 34(2):247.[Rogel-Salazar, 2013] Rogel-Salazar, J. (2013). The gross–pitaevskii equation and bose– einstein condensates. European Journal of Physics, 34(2):247.[Sakurai, 2014] Sakurai, J. (2014). Modern quantum mechanics 2nd edition. Pearson New International edition.[Salasnich, 2018] Salasnich, L. (2018). Self-consistent derivation of the modified gross– pitaevskii equation with lee–huang–yang correction. Applied Sciences, 8(10):1998.[Sarchi, 2007] Sarchi, D. (2007). Bose-einstein condensation of microcavity polaritons. Technical report, EPFL.[Sasaki, 2020] Sasaki, S. (2020). New energy form and some advice.[Sasaki and Hidenobu, 2008] Sasaki, S. and Hidenobu, H. (2008). Bose-Einstein Condensation and Superfluidity. JAIST repository.[Sauls, 2018] Sauls, J. A. (2018). Half-quantum vortices in superfluid helium. arXiv preprint arXiv:1806.09024.[Savona, 2007] Savona, V. (2007). Fifteen years of microcavity polaritons. The Physics of Semiconductor Microcavities.[Savona et al., 1999] Savona, V., Piermarocchi, C., Quattropani, A., Schwendimann, P., and Tassone, F. (1999). Optical properties of microcavity polaritons. Phase transitions, 68(1):169–279.[Schmitt, 2015] Schmitt, A. (2015). Introduction to superfluidity. Lect. Notes Phys, 888(1).[Schoepe, 2015] Schoepe, W. (2015). Superfluid reynolds number and the transition from potential flow to turbulence in superfluid 4 he at millikelvin temperatures. JETP letters, 102(2):105–107.[Stetina, 2014] Stetina, S. (2014). From field theory to the hydrodynamics of relativistic superfluids.[Sun et al., 2017] Sun, Y., Yoon, Y., Steger, M., Liu, G., Pfeiffer, L. N., West, K., Snoke, D. W., and Nelson, K. A. (2017). Direct measurement of polariton–polariton interaction strength. Nature Physics, 13(9):870–875.[Szriftgiser and Cheb-Terrab, 2016] Szriftgiser, P. and Cheb-Terrab, E. (2016). The gross pitaevskii equation and bogoliubov spectrum.[Tian et al., 2017] Tian, S., Gao, Y., Dong, X., and Liu, C. (2017). A definition of vortex vector and vortex. arXiv preprint arXiv:1712.03887.[Usami, 2015] Usami, K. (2015). Harmonic oscillators, coupled harmonic oscillators, and bosonic fields.[Vinen, 2004] Vinen, W. (2004). The physics of superfluid helium.[Von-Oppen, 2018] Von-Oppen, F. (2018). Many-body theory and quantum field theory.[Wilson, 2020] Wilson, A. (2020). Semi-classical or fully quantum: the fundamentals of modelling light-matter interaction[Wizza, 2010] Wizza, G. (2010). Quantum dot-cavity coupling with phonon-assisted cavity feeding.[Yongyong, 2011] Yongyong, C. (2011). Mathematical Theory and Numerical Methods for Gross-Pitaevskii Equations and Applications. PhD thesis.[Yoshitake et al., 2005] Yoshitake, Y., Mitani, S., Sakai, K., and Takagi, K. (2005). Measurement of high viscosity with laser induced surface deformation technique. Journal of applied physics, 97(2):024901.[Yue et al., 2019] Yue, Y., Huang, H., Ren, Y., Pan, Z., and Willner, A. E. (2019). Special issue on novel insights into orbital angular momentum beams: From fundamentals, devices to applications.[Yunus, 2006] Yunus, A. (2006). Cengel fluid mechanics.[Zayko, 2006] Zayko, Y. (2006). Application of two-fluid model for flow investigation in pipes of circle profile.[Zhang and Chang, 1988] Zhang, J.-Z. and Chang, R. K. (1988). Shape distortion of a single water droplet by laser-induced electrostriction. Optics letters, 13(10):916–918.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80517/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54ORIGINAL1019042231.2021.pdf1019042231.2021.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf6410179https://repositorio.unal.edu.co/bitstream/unal/80517/6/1019042231.2021.pdfa095232ff44f4ca36139545b2378999dMD56THUMBNAIL1019042231.2021.pdf.jpg1019042231.2021.pdf.jpgGenerated Thumbnailimage/jpeg5241https://repositorio.unal.edu.co/bitstream/unal/80517/7/1019042231.2021.pdf.jpgb36ac6482b38a62fc6dea254e84190afMD57unal/80517oai:repositorio.unal.edu.co:unal/805172023-07-29 23:03:35.7Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |