Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética

Ilustraciones

Autores:
Ramírez Sánchez, Juan David
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81945
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81945
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
Redes neuronales (Computadoers)
Aprendizaje automático (Inteligencia artificial)
Procesamiento de imágenes
Retinopatía Diabética
Redes Neuronales Convolucionales
Sobreajuste
Técnicas de regularización
Diabetic retinopathy
Convolutional Neural Networks
Overfitting
Transfer learning
Regularization techniques
Tensorflow
Keras
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_c5fefc5e8e7063222ff7f6f821c3e8a9
oai_identifier_str oai:repositorio.unal.edu.co:unal/81945
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
dc.title.translated.eng.fl_str_mv Regularization of artificial neural networks for image classification of diabetic retinopathy
title Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
spellingShingle Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
Redes neuronales (Computadoers)
Aprendizaje automático (Inteligencia artificial)
Procesamiento de imágenes
Retinopatía Diabética
Redes Neuronales Convolucionales
Sobreajuste
Técnicas de regularización
Diabetic retinopathy
Convolutional Neural Networks
Overfitting
Transfer learning
Regularization techniques
Tensorflow
Keras
title_short Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
title_full Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
title_fullStr Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
title_full_unstemmed Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
title_sort Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
dc.creator.fl_str_mv Ramírez Sánchez, Juan David
dc.contributor.advisor.none.fl_str_mv Villa Garzón, Fernán Alonso
dc.contributor.author.none.fl_str_mv Ramírez Sánchez, Juan David
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
topic 610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
Redes neuronales (Computadoers)
Aprendizaje automático (Inteligencia artificial)
Procesamiento de imágenes
Retinopatía Diabética
Redes Neuronales Convolucionales
Sobreajuste
Técnicas de regularización
Diabetic retinopathy
Convolutional Neural Networks
Overfitting
Transfer learning
Regularization techniques
Tensorflow
Keras
dc.subject.lemb.none.fl_str_mv Redes neuronales (Computadoers)
Aprendizaje automático (Inteligencia artificial)
Procesamiento de imágenes
dc.subject.proposal.spa.fl_str_mv Retinopatía Diabética
Redes Neuronales Convolucionales
Sobreajuste
Técnicas de regularización
dc.subject.proposal.eng.fl_str_mv Diabetic retinopathy
Convolutional Neural Networks
Overfitting
Transfer learning
Regularization techniques
Tensorflow
Keras
description Ilustraciones
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-17T21:54:35Z
dc.date.available.none.fl_str_mv 2022-08-17T21:54:35Z
dc.date.issued.none.fl_str_mv 2022-02-28
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81945
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81945
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelmaksoud, E., El-Sappagh, S., Barakat, S., Abuhmed, T., & Elmogy, M. (2021). Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. IEEE Access, 9, 15939-15960. https://doi.org/10.1109/ACCESS.2021.3052870
Agustin, T., & Sunyoto, A. (2020). Optimization Convolutional Neural Network for Classification Diabetic Retinopathy Severity. 2020 3rd International Conference on Information and Communications Technology (ICOIACT), 66-71. https://doi.org/10.1109/ICOIACT50329.2020.9332087
Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377. https://doi.org/10.1016/j.imu.2020.100377
APTOS 2019 Blindness Detection. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/c/aptos2019-blindness-detection
Barhate, N., Bhave, S., Bhise, R., Sutar, R. G., & Karia, D. C. (2020). Reducing Overfitting in Diabetic Retinopathy Detection using Transfer Learning. 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), 298-301. https://doi.org/10.1109/ICCCA49541.2020.9250772
Benzamin, A., & Chakraborty, C. (2018). Detection of Hard Exudates in Retinal Fundus Images Using Deep Learning. 2018 Joint 7th International Conference on Informatics, Electronics Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision Pattern Recognition (icIVPR), 465-469. https://doi.org/10.1109/ICIEV.2018.8641016
Chetoui, M., Akhloufi, M. A., & Kardouchi, M. (2018). Diabetic Retinopathy Detection Using Machine Learning and Texture Features. 2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE), 1-4. https://doi.org/10.1109/CCECE.2018.8447809
Chudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018). Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 158, 185-192. https://doi.org/10.1016/j.cmpb.2018.02.016
Das, S., Kharbanda, K., M, S., Raman, R., & D, E. D. (2021). Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomedical Signal Processing and Control, 68, 102600. https://doi.org/10.1016/j.bspc.2021.102600
Diabetic Retinopathy 224x224 Gaussian Filtered. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., Ferris, F. L., & Klein, R. (2004). Retinopathy in Diabetes. Diabetes Care, 27(suppl 1), s84-s87. https://doi.org/10.2337/diacare.27.2007.S84
Galdran, A., Dolz, J., Chakor, H., Lombaert, H., & Ayed, I. B. (2020). Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images. arXiv:2010.00291 [cs]. http://arxiv.org/abs/2010.00291
Hemanth, D. J., Deperlioglu, O., & Kose, U. (2020). An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 32(3), 707-721. https://doi.org/10.1007/s00521-018-03974-0
Keras: The Python deep learning API. (s. f.). Recuperado 14 de febrero de 2022, de https://keras.io/
Kumar, S., Adarsh, A., Kumar, B., & Singh, A. K. (2020). An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation. Optics & Laser Technology, 121, 105815. https://doi.org/10.1016/j.optlastec.2019.105815
Lahmiri, S. (2020). Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomedical Signal Processing and Control, 60, 101978. https://doi.org/10.1016/j.bspc.2020.101978
Lois, N., Cook, J. A., Wang, A., Aldington, S., Mistry, H., Maredza, M., McAuley, D., Aslam, T., Bailey, C., Chong, V., Ganchi, F., Scanlon, P., Sivaprasad, S., Steel, D. H., Styles, C., Azuara-Blanco, A., Prior, L., Waugh, N., Saad, A., … Chong, V. (2021). Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study. Ophthalmology, 128(4), 561-573. https://doi.org/10.1016/j.ophtha.2020.10.030
Lokuarachchi, D., Gunarathna, K., Muthumal, L., & Gamage, T. (2019). Automated Detection of Exudates in Retinal Images. 2019 IEEE 15th International Colloquium on Signal Processing Its Applications (CSPA), 43-47. https://doi.org/10.1109/CSPA.2019.8696052
Lyu, K., Li, Y., & Zhang, Z. (2020). Attention-Aware Multi-Task Convolutional Neural Networks. IEEE Transactions on Image Processing, 29, 1867-1878. https://doi.org/10.1109/TIP.2019.2944522
Majumder, S., & Kehtarnavaz, N. (2021). Multitasking Deep Learning Model for Detection of Five Stages of Diabetic Retinopathy. arXiv:2103.04207 [cs, eess]. http://arxiv.org/abs/2103.04207
Mathews, M. R., & Anzar, S. M. (s. f.). A comprehensive review on automated systems for severity grading of diabetic retinopathy and macular edema. International Journal of Imaging Systems and Technology, n/a(n/a). https://doi.org/10.1002/ima.22574
Pires, R., Avila, S., Wainer, J., Valle, E., Abramoff, M. D., & Rocha, A. (2019). A data-driven approach to referable diabetic retinopathy detection. Artificial Intelligence in Medicine, 96, 93-106. https://doi.org/10.1016/j.artmed.2019.03.009
Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200-205. https://doi.org/10.1016/j.procs.2016.07.014
Rao, M., Zhu, M., & Wang, T. (2020). Conversion and Implementation of State-of-the-Art Deep Learning Algorithms for the Classification of Diabetic Retinopathy. arXiv:2010.11692 [cs]. http://arxiv.org/abs/2010.11692
Reed, R., & MarksII, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. MIT Press
Shah, P., Mishra, D. K., Shanmugam, M. P., Doshi, B., Jayaraj, H., & Ramanjulu, R. (2020). Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy – Artificial intelligence versus clinician for screening. Indian Journal of Ophthalmology, 68(2), 398-405. https://doi.org/10.4103/ijo.IJO_966_19
Sri, R. M., Jyothirmai, J., & Swetha, D. (s. f.). Analysis of Retinal Blood Vessel Segmentation in different types of Diabetic Retinopathy. 8(2), 4.
Zhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 175, 12-25. https://doi.org/10.1016/j.knosys.2019.03.016
Zhu, J., Zhang, E., & Rio-Tsonis, K. D. (2012). Eye Anatomy. En ELS. American Cancer Society. https://doi.org/10.1002/9780470015902.a0000108.pub2
jdramirezs. (2022). Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia [Jupyter Notebook]. https://github.com/jdramirezs/Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia (Original work published 2022)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 95 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Analítica
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81945/3/1128430332.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81945/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81945/5/1128430332.2021.pdf.jpg
bitstream.checksum.fl_str_mv 7cfa141aada8a3c4a29458d9ef866e9a
8153f7789df02f0a4c9e079953658ab2
168b762158ec342b45266c4f925c19dd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089282909896704
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Villa Garzón, Fernán Alonso9c83ea56495b8f17a79c27fd0001bb81600Ramírez Sánchez, Juan David61657d2e64822ec0a064f9ae1b9f36952022-08-17T21:54:35Z2022-08-17T21:54:35Z2022-02-28https://repositorio.unal.edu.co/handle/unal/81945Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLa retinopatía diabética (RD) es una patología retiniana causada por la diabetes, y es una de las principales causas de ceguera en todo el mundo; su detección temprana es primordial con el fin de prevenir su avance en el paciente. Existen diversos métodos para el diagnóstico temprano, entre estos, se ha evidenciado que las redes neuronales convolucionales (CNN – Convolucional Neural Networks) son adecuadas para el análisis de este fenómeno, contribuyendo con el diagnóstico temprano de esta enfermedad. Además, se han empleado técnicas de aprendizaje profundo (DL – Deep Learning), los modelos planteados en la literatura se centran en las etapas de preprocesamiento, extracción y selección de características de la imagen; sin embargo, estos modelos pueden adolecer de sobreajuste (Overfitting) y no se ha considerado el uso de técnicas de regularización para controlarlo. Entonces, en el presente trabajo, se ha propuesto desde un punto de vista conceptual y experimental, la selección de cinco técnicas de regularización sobre cinco modelos de aprendizaje profundo preentrenados y mediante el análisis de métricas (precisión, Recall, F1 score) se determina una técnica de regularización de redes neuronales artificiales que mejora la capacidad de generalización para la clasificación de imágenes de retinopatía diabética. (Texto tomado de la fuente)Diabetic retinopathy (DR) is a retinal pathology caused by diabetes, and is one of the main causes of blindness worldwide; Its early detection is essential in order to prevent its progression in the patient. There are various methods for early diagnosis, among these, it has been shown that convolutional neural networks (CNN) are suitable for the analysis of this phenomenon, contributing to the early diagnosis of this disease. In addition, deep learning techniques (DL – Deep Learning) have been used, the models proposed in the literature focus on the stages of preprocessing, extraction and selection of image features; however, these models may suffer from overfitting and the use of regularization techniques to control it has not been considered. So, in the present work, it has been proposed from a conceptual and experimental point of view, the selection of five regularization techniques on five pretrained deep learning models and through the analysis of metrics (precision, Recall, F1 score) a Artificial neural network regularization technique that improves the generalization capacity for the classification of diabetic retinopathy images. it is an abbreviated presentation. A maximum length of 250 words should be used. It is recommended that this summary be analytical, that is, that it be complete, with quantitative and qualitative information, generally including the following aspects: objectives, design, place and circumstances, patients (or objective of the study), intervention, measurements and main results, and conclusions. At the end of the summary, keywords taken from the text should be used, which allow the retrieval of informationMaestríaMagíster en Ingeniería - AnalíticaInteligencia ArtificialÁrea Curricular de Ingeniería de Sistemas e Informáticaxviii, 95 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaDepartamento de la Computación y la DecisiónFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín610 - Medicina y salud000 - Ciencias de la computación, información y obras generales::003 - SistemasRedes neuronales (Computadoers)Aprendizaje automático (Inteligencia artificial)Procesamiento de imágenesRetinopatía DiabéticaRedes Neuronales ConvolucionalesSobreajusteTécnicas de regularizaciónDiabetic retinopathyConvolutional Neural NetworksOverfittingTransfer learningRegularization techniquesTensorflowKerasRegularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabéticaRegularization of artificial neural networks for image classification of diabetic retinopathyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdelmaksoud, E., El-Sappagh, S., Barakat, S., Abuhmed, T., & Elmogy, M. (2021). Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. IEEE Access, 9, 15939-15960. https://doi.org/10.1109/ACCESS.2021.3052870Agustin, T., & Sunyoto, A. (2020). Optimization Convolutional Neural Network for Classification Diabetic Retinopathy Severity. 2020 3rd International Conference on Information and Communications Technology (ICOIACT), 66-71. https://doi.org/10.1109/ICOIACT50329.2020.9332087Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377. https://doi.org/10.1016/j.imu.2020.100377APTOS 2019 Blindness Detection. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/c/aptos2019-blindness-detectionBarhate, N., Bhave, S., Bhise, R., Sutar, R. G., & Karia, D. C. (2020). Reducing Overfitting in Diabetic Retinopathy Detection using Transfer Learning. 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), 298-301. https://doi.org/10.1109/ICCCA49541.2020.9250772Benzamin, A., & Chakraborty, C. (2018). Detection of Hard Exudates in Retinal Fundus Images Using Deep Learning. 2018 Joint 7th International Conference on Informatics, Electronics Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision Pattern Recognition (icIVPR), 465-469. https://doi.org/10.1109/ICIEV.2018.8641016Chetoui, M., Akhloufi, M. A., & Kardouchi, M. (2018). Diabetic Retinopathy Detection Using Machine Learning and Texture Features. 2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE), 1-4. https://doi.org/10.1109/CCECE.2018.8447809Chudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018). Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 158, 185-192. https://doi.org/10.1016/j.cmpb.2018.02.016Das, S., Kharbanda, K., M, S., Raman, R., & D, E. D. (2021). Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomedical Signal Processing and Control, 68, 102600. https://doi.org/10.1016/j.bspc.2021.102600Diabetic Retinopathy 224x224 Gaussian Filtered. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filteredFong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., Ferris, F. L., & Klein, R. (2004). Retinopathy in Diabetes. Diabetes Care, 27(suppl 1), s84-s87. https://doi.org/10.2337/diacare.27.2007.S84Galdran, A., Dolz, J., Chakor, H., Lombaert, H., & Ayed, I. B. (2020). Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images. arXiv:2010.00291 [cs]. http://arxiv.org/abs/2010.00291Hemanth, D. J., Deperlioglu, O., & Kose, U. (2020). An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 32(3), 707-721. https://doi.org/10.1007/s00521-018-03974-0Keras: The Python deep learning API. (s. f.). Recuperado 14 de febrero de 2022, de https://keras.io/Kumar, S., Adarsh, A., Kumar, B., & Singh, A. K. (2020). An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation. Optics & Laser Technology, 121, 105815. https://doi.org/10.1016/j.optlastec.2019.105815Lahmiri, S. (2020). Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomedical Signal Processing and Control, 60, 101978. https://doi.org/10.1016/j.bspc.2020.101978Lois, N., Cook, J. A., Wang, A., Aldington, S., Mistry, H., Maredza, M., McAuley, D., Aslam, T., Bailey, C., Chong, V., Ganchi, F., Scanlon, P., Sivaprasad, S., Steel, D. H., Styles, C., Azuara-Blanco, A., Prior, L., Waugh, N., Saad, A., … Chong, V. (2021). Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study. Ophthalmology, 128(4), 561-573. https://doi.org/10.1016/j.ophtha.2020.10.030Lokuarachchi, D., Gunarathna, K., Muthumal, L., & Gamage, T. (2019). Automated Detection of Exudates in Retinal Images. 2019 IEEE 15th International Colloquium on Signal Processing Its Applications (CSPA), 43-47. https://doi.org/10.1109/CSPA.2019.8696052Lyu, K., Li, Y., & Zhang, Z. (2020). Attention-Aware Multi-Task Convolutional Neural Networks. IEEE Transactions on Image Processing, 29, 1867-1878. https://doi.org/10.1109/TIP.2019.2944522Majumder, S., & Kehtarnavaz, N. (2021). Multitasking Deep Learning Model for Detection of Five Stages of Diabetic Retinopathy. arXiv:2103.04207 [cs, eess]. http://arxiv.org/abs/2103.04207Mathews, M. R., & Anzar, S. M. (s. f.). A comprehensive review on automated systems for severity grading of diabetic retinopathy and macular edema. International Journal of Imaging Systems and Technology, n/a(n/a). https://doi.org/10.1002/ima.22574Pires, R., Avila, S., Wainer, J., Valle, E., Abramoff, M. D., & Rocha, A. (2019). A data-driven approach to referable diabetic retinopathy detection. Artificial Intelligence in Medicine, 96, 93-106. https://doi.org/10.1016/j.artmed.2019.03.009Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200-205. https://doi.org/10.1016/j.procs.2016.07.014Rao, M., Zhu, M., & Wang, T. (2020). Conversion and Implementation of State-of-the-Art Deep Learning Algorithms for the Classification of Diabetic Retinopathy. arXiv:2010.11692 [cs]. http://arxiv.org/abs/2010.11692Reed, R., & MarksII, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. MIT PressShah, P., Mishra, D. K., Shanmugam, M. P., Doshi, B., Jayaraj, H., & Ramanjulu, R. (2020). Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy – Artificial intelligence versus clinician for screening. Indian Journal of Ophthalmology, 68(2), 398-405. https://doi.org/10.4103/ijo.IJO_966_19Sri, R. M., Jyothirmai, J., & Swetha, D. (s. f.). Analysis of Retinal Blood Vessel Segmentation in different types of Diabetic Retinopathy. 8(2), 4.Zhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 175, 12-25. https://doi.org/10.1016/j.knosys.2019.03.016Zhu, J., Zhang, E., & Rio-Tsonis, K. D. (2012). Eye Anatomy. En ELS. American Cancer Society. https://doi.org/10.1002/9780470015902.a0000108.pub2jdramirezs. (2022). Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia [Jupyter Notebook]. https://github.com/jdramirezs/Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia (Original work published 2022)EstudiantesORIGINAL1128430332.2021.pdf1128430332.2021.pdfTesis Maestría en Ingeniería - Analíticaapplication/pdf1795130https://repositorio.unal.edu.co/bitstream/unal/81945/3/1128430332.2021.pdf7cfa141aada8a3c4a29458d9ef866e9aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81945/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1128430332.2021.pdf.jpg1128430332.2021.pdf.jpgGenerated Thumbnailimage/jpeg5112https://repositorio.unal.edu.co/bitstream/unal/81945/5/1128430332.2021.pdf.jpg168b762158ec342b45266c4f925c19ddMD55unal/81945oai:repositorio.unal.edu.co:unal/819452023-10-06 17:20:39.901Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK