Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi
ilustraciones, fotografías, graficas
- Autores:
-
Chacón Gómez, Miguel Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81733
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Parásitos
Parasites
Proteínas recombinantes
Anticuerpos
Bioinformática
Membrana
Intracelular
Ensayos de complementación
Recombinant protein
Bioinformatics
Antibodies
Membrane
Intracellular
Complementation assays
Tripanosomiasis
Biotechnology
Biotecnología
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_c5dc06d92a9f1db09e795752d8cc82db |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81733 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi |
dc.title.translated.spa.fl_str_mv |
Evaluation of a NAD+ carrier candidate in the protozoan parasite Trypanosoma cruzi |
title |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi |
spellingShingle |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi 570 - Biología::572 - Bioquímica Parásitos Parasites Proteínas recombinantes Anticuerpos Bioinformática Membrana Intracelular Ensayos de complementación Recombinant protein Bioinformatics Antibodies Membrane Intracellular Complementation assays Tripanosomiasis Biotechnology Biotecnología |
title_short |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi |
title_full |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi |
title_fullStr |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi |
title_full_unstemmed |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi |
title_sort |
Evaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruzi |
dc.creator.fl_str_mv |
Chacón Gómez, Miguel Esteban |
dc.contributor.advisor.none.fl_str_mv |
Ramírez Hernández, Maria Helena |
dc.contributor.author.none.fl_str_mv |
Chacón Gómez, Miguel Esteban |
dc.contributor.researchgroup.spa.fl_str_mv |
Libbiq Un |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Parásitos Parasites Proteínas recombinantes Anticuerpos Bioinformática Membrana Intracelular Ensayos de complementación Recombinant protein Bioinformatics Antibodies Membrane Intracellular Complementation assays Tripanosomiasis Biotechnology Biotecnología |
dc.subject.other.spa.fl_str_mv |
Parásitos |
dc.subject.other.eng.fl_str_mv |
Parasites |
dc.subject.proposal.spa.fl_str_mv |
Proteínas recombinantes Anticuerpos Bioinformática Membrana Intracelular Ensayos de complementación |
dc.subject.proposal.eng.fl_str_mv |
Recombinant protein Bioinformatics Antibodies Membrane Intracellular Complementation assays |
dc.subject.unesco.eng.fl_str_mv |
Tripanosomiasis Biotechnology |
dc.subject.unesco.spa.fl_str_mv |
Biotecnología |
description |
ilustraciones, fotografías, graficas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-07-25T12:33:44Z |
dc.date.available.none.fl_str_mv |
2022-07-25T12:33:44Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81733 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81733 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
(1) Coura, J. R.; Viñas, P. A. Chagas Disease: A New Worldwide Challenge. Nature 2010, 465 (7301), S6-7. https://doi.org/10.1038/nature09221. (2) Dias, J. C. P.; Schofield, C. J. 3 - Social and Medical Aspects on Chagas Disease Management and Control. In American Trypanosomiasis Chagas Disease (Second Edition); Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, 2017; pp 47–57. https://doi.org/10.1016/B978-0-12-801029-7.00003-4. (3) Rassi, A.; Rassi, A.; Marcondes de Rezende, J. American Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. North Am. 2012, 26 (2), 275–291. https://doi.org/10.1016/j.idc.2012.03.002. (4) Rassi, A.; de Rezende, J. M.; Luquetti, A. O.; Rassi, A. 28 - Clinical Phases and Forms of Chagas Disease. In American Trypanosomiasis Chagas Disease (Second Edition); Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, 2017; pp 653–686. https://doi.org/10.1016/B978-0-12-801029-7.00029-0 (5) Luquetti, A. O.; Schmuñis, G. A. Diagnosis of Trypanosoma Cruzi Infection. In American Trypanosomiasis Chagas Disease: One Hundred Years of Research: Second Edition; 2017; pp 687–730. https://doi.org/10.1016/B978-0-12-801029- 7.00030-7. (6) Bern, C.; Montgomery, S. P.; Herwaldt, B. L.; Rassi, A.; Marin-Neto, J. A.; Dantas, R. O.; Maguire, J. H.; Acquatella, H.; Morillo, C.; Kirchhoff, L. V.; Gilman, R. H.; Reyes, P. A.; Salvatella, R.; Moore, A. C. Evaluation and Treatment of Chagas Disease in the United States: A Systematic Review. JAMA 2007, 298 (18), 2171– 2181. https://doi.org/10.1001/jama.298.18.2171. (7) A Higher Level Classification of All Living Organisms https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119248 (accessed 2018 -09 -08). (8) Sacks, D.; Sher, A. Evasion of Innate Immunity by Parasitic Protozoa. Nat. Immunol. 2002, 3 (11), 1041–1047. https://doi.org/10.1038/ni1102-1041. (9) Mansfield, J. M.; Olivier, M. Immune Evasion by Parasites. Immune Response Infect. 2011, 453–469. https://doi.org/10.1128/9781555816872.ch36. (10) Sibley, L. D. Invasion and Intracellular Survival by Protozoan Parasites. Immunol. Rev. 2011, 240 (1), 72–91. https://doi.org/10.1111/j.1600-065X.2010.00990.x. (11) Cavalier-Smith, T. Higher Classification and Phylogeny of Euglenozoa. Eur. J. Protistol. 2016, 56, 250–276. https://doi.org/10.1016/j.ejop.2016.09.003. (12) Hannaert, V.; Bringaud, F.; Opperdoes, F. R.; Michels, P. A. Evolution of Energy Metabolism and Its Compartmentation in Kinetoplastida. Kinetoplastid Biol. Dis. 2003, 2, 11. https://doi.org/10.1186/1475-9292-2-11. (13) El-Sayed, N. M.; Myler, P. J.; Bartholomeu, D. C.; Nilsson, D.; Aggarwal, G.; Tran, A.-N.; Ghedin, E.; Worthey, E. A.; Delcher, A. L.; Blandin, G.; Westenberger, S. J.; Caler, E.; Cerqueira, G. C.; Branche, C.; Haas, B.; Anupama, A.; Arner, E.; Aslund, L.; Attipoe, P.; Bontempi, E.; Bringaud, F.; Burton, P.; Cadag, E.; Campbell, D. A.; Carrington, M.; Crabtree, J.; Darban, H.; da Silveira, J. F.; de Jong, P.; Edwards, K.; Englund, P. T.; Fazelina, G.; Feldblyum, T.; Ferella, M.; Frasch, A. C.; Gull, K.; Horn, D.; Hou, L.; Huang, Y.; Kindlund, E.; Klingbeil, M.; Kluge, S.; Koo, H.; Lacerda, D.; Levin, M. J.; Lorenzi, H.; Louie, T.; Machado, C. R.; McCulloch, R.; McKenna, A.; Mizuno, Y.; Mottram, J. C.; Nelson, S.; Ochaya, S.; Osoegawa, K.; Pai, G.; Parsons, M.; Pentony, M.; Pettersson, U.; Pop, M.; Ramirez, J. L.; Rinta, J.; Robertson, L.; Salzberg, S. L.; Sanchez, D. O.; Seyler, A.; Sharma, R.; Shetty, J.; Simpson, A. J.; Sisk, E.; Tammi, M. T.; Tarleton, R.; Teixeira, S.; Van Aken, S.; Vogt, C.; Ward, P. N.; Wickstead, B.; Wortman, J.; White, O.; Fraser, C. M.; Stuart, K. D.; Andersson, B. The Genome Sequence of Trypanosoma Cruzi, Etiologic Agent of Chagas Disease. Science 2005, 309 (5733), 409–415. https://doi.org/10.1126/science.1112631. (14) Weatherly, D. B.; Boehlke, C.; Tarleton, R. L. Chromosome Level Assembly of the Hybrid Trypanosoma Cruzi Genome. BMC Genomics 2009, 10, 255. https://doi.org/10.1186/1471-2164-10-255. (15) Callejas-Hernández, F.; Gironès, N.; Fresno, M. Genome Sequence of Trypanosoma Cruzi Strain Bug2148. Genome Announc. 2018, 6 (3). https://doi.org/10.1128/genomeA.01497-17. (16) Minning, T. A.; Weatherly, D. B.; Atwood, J.; Orlando, R.; Tarleton, R. L. The Steady-State Transcriptome of the Four Major Life-Cycle Stages of Trypanosoma Cruzi. BMC Genomics 2009, 10, 370. https://doi.org/10.1186/1471-2164-10-370. (17) de Souza, W.; de Carvalho, T. U.; Barrias, E. S. 18 - Ultrastructure of Trypanosoma Cruzi and Its Interaction with Host Cells. In American Trypanosomiasis Chagas Disease (Second Edition); Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, 2017; pp 401–427. https://doi.org/10.1016/B978-0-12-801029-7.00018-6. (18) De Souza, W. Basic Cell Biology of Trypanosoma Cruzi. Curr. Pharm. Des. 2002, 8 (4), 269–285. (19) Michels, P. A. M.; Bringaud, F.; Herman, M.; Hannaert, V. Metabolic Functions of Glycosomes in Trypanosomatids. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2006, 1763 (12), 1463–1477. https://doi.org/10.1016/j.bbamcr.2006.08.019. (20) Gaunt, M. W.; Yeo, M.; Frame, I. A.; Stothard, J. R.; Carrasco, H. J.; Taylor, M. C.; Mena, S. S.; Veazey, P.; Miles, G. A. J.; Acosta, N.; de Arias, A. R.; Miles, M. A. Mechanism of Genetic Exchange in American Trypanosomes. Nature 2003, 421 (6926), 936–939. https://doi.org/10.1038/nature01438. (21) Cuervo, P.; Domont, G. B.; De Jesus, J. B. Proteomics of Trypanosomatids of Human Medical Importance. J. Proteomics 2010, 73 (5), 845–867. https://doi.org/10.1016/j.jprot.2009.12.012. (22) Nikiforov, A.; Dölle, C.; Niere, M.; Ziegler, M. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells FROM ENTRY OF EXTRACELLULAR PRECURSORS TO MITOCHONDRIAL NAD GENERATION. J. Biol. Chem. 2011, 286 (24), 21767–21778. https://doi.org/10.1074/jbc.M110.213298. (23) Nikiforov, A.; Kulikova, V.; Ziegler, M. The Human NAD Metabolome: Functions, Metabolism and Compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015, 50 (4), 284–297. https://doi.org/10.3109/10409238.2015.1028612. (24) Zhang, N.; Sauve, A. A. Regulatory Effects of NAD + Metabolic Pathways on Sirtuin Activity. In Progress in Molecular Biology and Translational Science; Elsevier, 2018; Vol. 154, pp 71–104. https://doi.org/10.1016/bs.pmbts.2017.11.012. (25) Dean, P.; Major, P.; Nakjang, S.; Hirt, R. P.; Embley, T. M. Transport Proteins of Parasitic Protists and Their Role in Nutrient Salvage. Front. Plant Sci. 2014, 5. https://doi.org/10.3389/fpls.2014.00153. (26) Acimovic, Y.; Coe, I. R. Molecular Evolution of the Equilibrative Nucleoside Transporter Family: Identification of Novel Family Members in Prokaryotes and Eukaryotes. Mol. Biol. Evol. 2002, 19 (12), 2199–2210. https://doi.org/10.1093/oxfordjournals.molbev.a004044. (27) Molina-Arcas, M.; Casado, F. J.; Pastor-Anglada, M. Nucleoside Transporter Proteins. Curr. Vasc. Pharmacol. 2009, 7 (4), 426–434. (28) Landfear, S. M. Nutrient Transport and Pathogenesis in Selected Parasitic Protozoa▿. Eukaryot. Cell 2011, 10 (4), 483–493. https://doi.org/10.1128/EC.00287-10. (29) Parker, J. L.; Newstead, S. Structural Basis of Nucleotide Sugar Transport across the Golgi Membrane. Nature 2017, 551 (7681), 521–524. https://doi.org/10.1038/nature24464. (30) Haferkamp, I.; Schmitz-Esser, S.; Wagner, M.; Neigel, N.; Horn, M.; Neuhaus, H. E. Tapping the Nucleotide Pool of the Host: Novel Nucleotide Carrier Proteins of Protochlamydia Amoebophila. Mol. Microbiol. 2006, 60 (6), 1534–1545. https://doi.org/10.1111/j.1365-2958.2006.05193.x. (31) Fisher, D. J.; Fernández, R. E.; Maurelli, A. T. Chlamydia Trachomatis Transports NAD via the Npt1 ATP/ADP Translocase. J. Bacteriol. 2013, 195 (15), 3381–3386. https://doi.org/10.1128/JB.00433-13. (32) Ruprecht, J. J.; Kunji, E. R. S. The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem. Sci. 2020, 45 (3), 244–258. https://doi.org/10.1016/j.tibs.2019.11.001. (33) Agrimi, G.; Russo, A.; Scarcia, P.; Palmieri, F. The Human Gene SLC25A17 Encodes a Peroxisomal Transporter of Coenzyme A, FAD and NAD+. Biochem. J. 2012, 443 (1), 241–247. https://doi.org/10.1042/BJ20111420. (34) Zhou, Y.; Wang, L.; Yang, F.; Lin, X.; Zhang, S.; Zhao, Z. K. Determining the Extremes of the Cellular NAD(H) Level by Using an Escherichia Coli NAD+- Auxotrophic Mutant ▿. Appl. Environ. Microbiol. 2011, 77 (17), 6133–6140. https://doi.org/10.1128/AEM.00630-11. (35) Haferkamp, I.; Schmitz-Esser, S. The Plant Mitochondrial Carrier Family: Functional and Evolutionary Aspects. Front. Plant Sci. 2012, 3. https://doi.org/10.3389/fpls.2012.00002. (36) Palmieri, F.; Pierri, C. L.; De Grassi, A.; Nunes-Nesi, A.; Fernie, A. R. Evolution, Structure and Function of Mitochondrial Carriers: A Review with New Insights. Plant J. Cell Mol. Biol. 2011, 66 (1), 161–181. https://doi.org/10.1111/j.1365- 313X.2011.04516.x. (37) Palmieri, F. The Mitochondrial Transporter Family SLC25: Identification, Properties and Physiopathology. Mol. Aspects Med. 2013, 34 (2–3), 465–484. https://doi.org/10.1016/j.mam.2012.05.005. (38) Ogunbona, O. B.; Claypool, S. M. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front. Cell Dev. Biol. 2019, 7. https://doi.org/10.3389/fcell.2019.00003. (39) King, M. S.; Kerr, M.; Crichton, P. G.; Springett, R.; Kunji, E. R. S. Formation of a Cytoplasmic Salt Bridge Network in the Matrix State Is a Fundamental Step in the Transport Mechanism of the Mitochondrial ADP/ATP Carrier. Biochim. Biophys. Acta 2016, 1857 (1), 14–22. https://doi.org/10.1016/j.bbabio.2015.09.013. (40) Nury, H.; Blesneac, I.; Ravaud, S.; Pebay-Peyroula, E. Structural Approaches of the Mitochondrial Carrier Family. In Membrane Protein Structure Determination; Lacapère, J.-J., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2010; Vol. 654, pp 105–117. https://doi.org/10.1007/978-1-60761-762-4_6. (41) Ruprecht, J. J.; King, M. S.; Zögg, T.; Aleksandrova, A. A.; Pardon, E.; Crichton, P. G.; Steyaert, J.; Kunji, E. R. S. The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell 2019, 176 (3), 435-447.e15. https://doi.org/10.1016/j.cell.2018.11.025. (42) Kunji, E. R. S.; Robinson, A. J. The Conserved Substrate Binding Site of Mitochondrial Carriers. Biochim. Biophys. Acta 2006, 1757 (9–10), 1237–1248. https://doi.org/10.1016/j.bbabio.2006.03.021. (43) Czuba, L. C.; Hillgren, K. M.; Swaan, P. W. Post-Translational Modifications of Transporters. Pharmacol. Ther. 2018, 192, 88–99. https://doi.org/10.1016/j.pharmthera.2018.06.013. (44) Marquez, J.; Lee, S. R.; Kim, N.; Han, J. Post-Translational Modifications of Cardiac Mitochondrial Proteins in Cardiovascular Disease: Not Lost in Translation. Korean Circ. J. 2016, 46 (1), 1–12. https://doi.org/10.4070/kcj.2016.46.1.1. (45) Burnham-Marusich, A. R.; Berninsone, P. M. Multiple Proteins with Essential Mitochondrial Functions Have Glycosylated Isoforms. Mitochondrion 2012, 12 (4), 423–427. https://doi.org/10.1016/j.mito.2012.04.004. (46) Morales Herrera, D. S.; Contreras Rodríguez, L. E.; Rubiano Castellanos, C. C.; Ramírez Hernández, M. H. Identification and Sub-Cellular Localization of a NAD Transporter in Leishmania Braziliensis (LbNDT1). Heliyon 2020, 6 (7), e04331. https://doi.org/10.1016/j.heliyon.2020.e04331. (47) Lambrechts, R. A.; Schepers, H.; Yu, Y.; van der Zwaag, M.; Autio, K. J.; VieiraLara, M. A.; Bakker, B. M.; Tijssen, M. A.; Hayflick, S. J.; Grzeschik, N. A.; Sibon, O. C. CoA-Dependent Activation of Mitochondrial Acyl Carrier Protein Links Four Neurodegenerative Diseases. EMBO Mol. Med. 2019, 11 (12), e10488. https://doi.org/10.15252/emmm.201910488. (48) Luongo, T. S.; Eller, J. M.; Lu, M.-J.; Niere, M.; Raith, F.; Perry, C.; Bornstein, M. R.; Oliphint, P.; Wang, L.; McReynolds, M. R.; Migaud, M. E.; Rabinowitz, J. D.; Johnson, F. B.; Johnsson, K.; Ziegler, M.; Cambronne, X. A.; Baur, J. A. SLC25A51 Is a Mammalian Mitochondrial NAD+ Transporter. Nature 2020, 588 (7836), 174– 179. https://doi.org/10.1038/s41586-020-2741-7. (49) Palmieri, F.; Rieder, B.; Ventrella, A.; Blanco, E.; Do, P. T.; Nunes-Nesi, A.; Trauth, A. U.; Fiermonte, G.; Tjaden, J.; Agrimi, G.; Kirchberger, S.; Paradies, E.; Fernie, A. R.; Neuhaus, H. E. Molecular Identification and Functional Characterization of Arabidopsis Thaliana Mitochondrial and Chloroplastic NAD+ Carrier Proteins. J. Biol. Chem. 2009, 284 (45), 31249–31259. https://doi.org/10.1074/jbc.M109.041830. (50) Bernhardt, K.; Wilkinson, S.; Weber, A. P. M.; Linka, N. A Peroxisomal Carrier Delivers NAD+ and Contributes to Optimal Fatty Acid Degradation during Storage Oil Mobilization. Plant J. Cell Mol. Biol. 2012, 69 (1), 1–13. https://doi.org/10.1111/j.1365-313X.2011.04775.x. (51) Todisco, S.; Agrimi, G.; Castegna, A.; Palmieri, F. Identification of the Mitochondrial NAD+ Transporter in Saccharomyces Cerevisiae. J. Biol. Chem. 2006, 281 (3), 1524–1531. https://doi.org/10.1074/jbc.M510425200. (52) Balico, L. de L. de L.; de Souza Santos, E.; Suzuki-Hatano, S.; Sousa, L. O.; Azzolini, A. E. C. S.; Lucisano-Valim, Y. M.; Dinamarco, T. M.; Kannen, V.; Uyemura, S. A. Heterologous Expression of Mitochondrial Nicotinamide Adenine Dinucleotide Transporter (Ndt1) from Aspergillus Fumigatus Rescues Impaired Growth in Δndt1Δndt2 Saccharomyces Cerevisiae Strain. J. Bioenerg. Biomembr. 2017, 49 (6), 423–435. https://doi.org/10.1007/s10863-017-9732-x. (53) Agrimi, G.; Brambilla, L.; Frascotti, G.; Pisano, I.; Porro, D.; Vai, M.; Palmieri, L. Deletion or Overexpression of Mitochondrial NAD+ Carriers in Saccharomyces Cerevisiae Alters Cellular NAD and ATP Contents and Affects Mitochondrial Metabolism and the Rate of Glycolysis. Appl. Environ. Microbiol. 2011, 77 (7), 2239–2246. https://doi.org/10.1128/AEM.01703-10. (54) Orlandi, I.; Stamerra, G.; Vai, M. Altered Expression of Mitochondrial NAD+ Carriers Influences Yeast Chronological Lifespan by Modulating Cytosolic and Mitochondrial Metabolism. Front. Genet. 2018, 9. https://doi.org/10.3389/fgene.2018.00676. (55) Gakière, B.; Hao, J.; Bont, L. de; Pétriacq, P.; Nunes-Nesi, A.; Fernie, A. R. NAD+ Biosynthesis and Signaling in Plants. Crit. Rev. Plant Sci. 2018, 37 (4), 259–307. https://doi.org/10.1080/07352689.2018.1505591. (56) Feitosa-Araujo, E.; Chaves, I. de S.; Florian, A.; da Fonseca-Pereira, P.; Apfata, J. A. C.; Heyneke, E.; Medeiros, D. B.; Pires, M. V.; Mettler-Altmann, T.; Neuhaus, H. E.; Palmieri, F.; Araújo, W. L.; Obata, T.; Weber, A. P. M.; Linka, N.; Fernie, A. R.; Nunes-Nesi, A. Down-Regulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcaa017. (57) Girardi, E.; Agrimi, G.; Goldmann, U.; Fiume, G.; Lindinger, S.; Sedlyarov, V.; Srndic, I.; Gürtl, B.; Agerer, B.; Kartnig, F.; Scarcia, P.; Di Noia, M. A.; Liñeiro, E.; Rebsamen, M.; Wiedmer, T.; Bergthaler, A.; Palmieri, L.; Superti-Furga, G. Epistasis-Driven Identification of SLC25A51 as a Regulator of Human Mitochondrial NAD Import. Nat. Commun. 2020, 11 (1), 6145. https://doi.org/10.1038/s41467- 020-19871-x. (58) Kory, N.; Bos, J. uit de; Rijt, S. van der; Jankovic, N.; Güra, M.; Arp, N.; Pena, I. A.; Prakash, G.; Chan, S. H.; Kunchok, T.; Lewis, C. A.; Sabatini, D. M. MCART1/SLC25A51 Is Required for Mitochondrial NAD Transport. Sci. Adv. 2020, 6 (43), eabe5310. https://doi.org/10.1126/sciadv.abe5310. (59) Vögtle, F.-N.; Wortelkamp, S.; Zahedi, R. P.; Becker, D.; Leidhold, C.; Gevaert, K.; Kellermann, J.; Voos, W.; Sickmann, A.; Pfanner, N.; Meisinger, C. Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability. Cell 2009, 139 (2), 428–439. https://doi.org/10.1016/j.cell.2009.07.045. (60) Harsman, A.; Schneider, A. Mitochondrial Protein Import in Trypanosomes: Expect the Unexpected. Traffic 2017, 18 (2), 96–109. https://doi.org/10.1111/tra.12463. (61) Jores, T.; Klinger, A.; Groß, L. E.; Kawano, S.; Flinner, N.; Duchardt-Ferner, E.; Wöhnert, J.; Kalbacher, H.; Endo, T.; Schleiff, E.; Rapaport, D. Characterization of the Targeting Signal in Mitochondrial β-Barrel Proteins. Nat. Commun. 2016, 7. https://doi.org/10.1038/ncomms12036. (62) Ferramosca, A.; Zara, V. Biogenesis of Mitochondrial Carrier Proteins: Molecular Mechanisms of Import into Mitochondria. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2013, 1833 (3), 494–502. https://doi.org/10.1016/j.bbamcr.2012.11.014. (63) Dyer, J. M.; McNew, J. A.; Goodman, J. M. The Sorting Sequence of the Peroxisomal Integral Membrane Protein PMP47 Is Contained within a Short Hydrophilic Loop. J. Cell Biol. 1996, 133 (2), 269–280. https://doi.org/10.1083/jcb.133.2.269. (64) Kim, P. K.; Hettema, E. H. Multiple Pathways for Protein Transport to Peroxisomes. J. Mol. Biol. 2015, 427 (6), 1176–1190. https://doi.org/10.1016/j.jmb.2015.02.005. (65) Mayerhofer, P. U. Targeting and Insertion of Peroxisomal Membrane Proteins: ER Trafficking versus Direct Delivery to Peroxisomes. Biochim. Biophys. Acta BBA -Mol. Cell Res. 2016, 1863 (5), 870–880. https://doi.org/10.1016/j.bbamcr.2015.09.021. (66) Zara, V.; Ferramosca, A.; Robitaille-Foucher, P.; Palmieri, F.; Young, J. C. Mitochondrial Carrier Protein Biogenesis: Role of the Chaperones Hsc70 and Hsp90. Biochem. J. 2009, 419 (2), 369–375. https://doi.org/10.1042/BJ20082270. (67) Endo, T.; Yamamoto, H.; Esaki, M. Functional Cooperation and Separation of Translocators in Protein Import into Mitochondria, the Double-Membrane Bounded Organelles. J. Cell Sci. 2003, 116 (Pt 16), 3259–3267. https://doi.org/10.1242/jcs.00667. (68) Jansen, R. L. M.; van der Klei, I. J. The Peroxisome Biogenesis Factors Pex3 and Pex19: Multitasking Proteins with Disputed Functions. FEBS Lett. 2019, 593 (5), 457–474. https://doi.org/10.1002/1873-3468.13340. (69) Colasante, C.; Peña Diaz, P.; Clayton, C.; Voncken, F. Mitochondrial Carrier Family Inventory of Trypanosoma Brucei Brucei: Identification, Expression and Subcellular Localisation. Mol. Biochem. Parasitol. 2009, 167 (2), 104–117. https://doi.org/10.1016/j.molbiopara.2009.05.004. (70) Fiermonte, G.; Palmieri, L.; Todisco, S.; Agrimi, G.; Palmieri, F.; Walker, J. E. Identification of the Mitochondrial Glutamate Transporter BACTERIAL EXPRESSION, RECONSTITUTION, FUNCTIONAL CHARACTERIZATION, AND TISSUE DISTRIBUTION OF TWO HUMAN ISOFORMS. J. Biol. Chem. 2002, 277 (22), 19289–19294. https://doi.org/10.1074/jbc.M201572200. (71) Roosild, T. P.; Greenwald, J.; Vega, M.; Castronovo, S.; Riek, R.; Choe, S. NMR Structure of Mistic, a Membrane-Integrating Protein for Membrane Protein Expression. Science 2005, 307 (5713), 1317–1321. https://doi.org/10.1126/science.1106392. (72) Roosild, T. P.; Vega, M.; Castronovo, S.; Choe, S. Characterization of the Family of Mistic Homologues. BMC Struct. Biol. 2006, 6 (1), 10. https://doi.org/10.1186/1472- 6807-6-10. (73) Deniaud, A.; Bernaudat, F.; Frelet-Barrand, A.; Juillan-Binard, C.; Vernet, T.; Rolland, N.; Pebay-Peyroula, E. Expression of a Chloroplast ATP/ADP Transporter in E. Coli Membranes: Behind the Mistic Strategy. Biochim. Biophys. Acta 2011, 1808 (8), 2059–2066. https://doi.org/10.1016/j.bbamem.2011.04.011. (74) Colasante, C.; Alibu, V. P.; Kirchberger, S.; Tjaden, J.; Clayton, C.; Voncken, F. Characterization and Developmentally Regulated Localization of the Mitochondrial Carrier Protein Homologue MCP6 from Trypanosoma Brucei. Eukaryot. Cell 2006, 5 (8), 1194–1205. https://doi.org/10.1128/EC.00096-06. (75) Pena-Diaz, P.; Pelosi, L.; Ebikeme, C.; Colasante, C.; Gao, F.; Bringaud, F.; Voncken, F. Functional Characterisation of TbMCP5, a Conserved and Essential ADP/ATP Carrier Present in the Mitochondrion of the Human Pathogen Trypanosoma Brucei. J. Biol. Chem. 2012, jbc.M112.404699. https://doi.org/10.1074/jbc.M112.404699. (76) Macêdo, J. P. de; Burkard, G. S.; Niemann, M.; Barrett, M. P.; Vial, H.; Mäser, P.; Roditi, I.; Schneider, A.; Bütikofer, P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma Brucei. PLOS Pathog. 2015, 11 (5), e1004875. https://doi.org/10.1371/journal.ppat.1004875. (77) Zheng, F.; Colasante, C.; Voncken, F. Characterisation of a Mitochondrial Iron Transporter of the Pathogen Trypanosoma Brucei. Mol. Biochem. Parasitol. 2019, 233, 111221. https://doi.org/10.1016/j.molbiopara.2019.111221. (78) Colasante, C.; Zheng, F.; Kemp, C.; Voncken, F. A Plant-like Mitochondrial Carrier Family Protein Facilitates Mitochondrial Transport of Di- and Tricarboxylates in Trypanosoma Brucei. Mol. Biochem. Parasitol. 2018, 221, 36–51. https://doi.org/10.1016/j.molbiopara.2018.03.003. (79) Mittra, B.; Laranjeira-Silva, M. F.; Menezes, J. P. B. de; Jensen, J.; Michailowsky, V.; Andrews, N. W. A Trypanosomatid Iron Transporter That Regulates Mitochondrial Function Is Required for Leishmania Amazonensis Virulence. PLOS Pathog. 2016, 12 (1), e1005340. https://doi.org/10.1371/journal.ppat.1005340. (80) Sánchez-Lancheros, D. M.; Ospina-Giraldo, L. F.; Ramírez-Hernández, M. H. Nicotinamide Mononucleotide Adenylyltransferase of Trypanosoma Cruzi (TcNMNAT): A Cytosol Protein Target for Serine Kinases. Mem. Inst. Oswaldo Cruz 2016, 111 (11), 670–675. https://doi.org/10.1590/0074-02760160103. (81) Niño, C. H.; Forero-Baena, N.; Contreras, L. E.; Sánchez-Lancheros, D.; Figarella, K.; Ramírez, M. H.; Niño, C. H.; Forero-Baena, N.; Contreras, L. E.; SánchezLancheros, D.; Figarella, K.; Ramírez, M. H. Identification of the Nicotinamide Mononucleotide Adenylyltransferase of Trypanosoma Cruzi. Mem. Inst. Oswaldo Cruz 2015, 110 (7), 890–897. https://doi.org/10.1590/0074-02760150175. (82) Velasco-Villa, A.; Mauldin, M. R.; Shi, M.; Escobar, L. E.; Gallardo-Romero, N. F.; Damon, I.; Olson, V. A.; Streicker, D. G.; Emerson, G. The History of Rabies in the Western Hemisphere. Antiviral Res. 2017, 146, 221–232. https://doi.org/10.1016/j.antiviral.2017.03.013. (83) Fooks, A. R.; Cliquet, F.; Finke, S.; Freuling, C.; Hemachudha, T.; Mani, R. S.; Müller, T.; Nadin-Davis, S.; Picard-Meyer, E.; Wilde, H.; Banyard, A. C. Rabies. Nat. Rev. Dis. Primer 2017, 3 (1), 1–19. https://doi.org/10.1038/nrdp.2017.91. (84) Cherian, S.; Singh, R.; Anjaneya; Kp, S. Rabies Glycoprotein: A Benefit to the Virus, Us or Both? Res. Rev. J. Veternary Sci. 2015, 1 (1), 1–9. (85) Giesen, A.; Gniel, D.; Malerczyk, C. 30 Years of Rabies Vaccination with Rabipur: A Summary of Clinical Data and Global Experience. Expert Rev. Vaccines 2015, 14 (3), 351–367. https://doi.org/10.1586/14760584.2015.1011134. (86) Hemachudha, T.; Ugolini, G.; Wacharapluesadee, S.; Sungkarat, W.; Shuangshoti, S.; Laothamatas, J. Human Rabies: Neuropathogenesis, Diagnosis, and Management. Lancet Neurol. 2013, 12 (5), 498–513. https://doi.org/10.1016/S1474-4422(13)70038-3. (87) INS. Boletín Epidemiológico - Semana 38, 2019 https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/Forms/AllItems.aspx (accessed 2020 -05 -19). (88) MinSalud. MinSalud promueve jornada nacional de vacunación para prevenir la rabia https://www.minsalud.gov.co/Paginas/MinSalud-promueve-jornada-nacionalde-vacunacion-para-prevenir-la-rabia-.aspx (accessed 2020 -05 -19). (89) VECOL. RABICÁN https://www.vecol.com.co/productos/mascotas/biologicos/rabican (accessed 2020 - 05 -20). (90) Yelverton, E.; Norton, S.; Obijeski, J. F.; Goeddel, D. V. Rabies Virus Glycoprotein Analogs: Biosynthesis in Escherichia Coli. Science 1983, 219 (4585), 614–620. https://doi.org/10.1126/science.6297004. (91) Fernando, B.-G.; Yersin, C.-T.; José, C.-B.; Paola, Z.-S. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer https://www.hindawi.com/journals/bmri/2016/1674580/ (accessed 2020 -05 -30). https://doi.org/10.1155/2016/1674580. (92) Gomes, A. R.; Byregowda, S. M.; Veeregowda, B. M.; Balamurugan, V. An Overview of Heterologous Expression Host Systems for the Production of Recombinant Proteins. 2016. https://doi.org/10.14737/journal.aavs/2016/4.7.346.356. (93) Robinson, A. J.; Kunji, E. R. S. Mitochondrial Carriers in the Cytoplasmic State Have a Common Substrate Binding Site. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (8), 2617–2622. https://doi.org/10.1073/pnas.0509994103. (94) Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096. (95) Finn, R. D.; Attwood, T. K.; Babbitt, P. C.; Bateman, A.; Bork, P.; Bridge, A. J.; Chang, H.-Y.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.; Gough, J.; Haft, D.; Holliday, G. L.; Huang, H.; Huang, X.; Letunic, I.; Lopez, R.; Lu, S.; Marchler-Bauer, A.; Mi, H.; Mistry, J.; Natale, D. A.; Necci, M.; Nuka, G.; Orengo, C. A.; Park, Y.; Pesseat, S.; Piovesan, D.; Potter, S. C.; Rawlings, N. D.; Redaschi, N.; Richardson, L.; Rivoire, C.; Sangrador-Vegas, A.; Sigrist, C.; Sillitoe, I.; Smithers, B.; Squizzato, S.; Sutton, G.; Thanki, N.; Thomas, P. D.; Tosatto, S. C. E.; Wu, C. H.; Xenarios, I.; Yeh, L.-S.; Young, S.-Y.; Mitchell, A. L. InterPro in 2017—beyond Protein Family and Domain Annotations. Nucleic Acids Res. 2017, 45 (Database issue), D190–D199. https://doi.org/10.1093/nar/gkw1107. (96) Finn, R. D.; Clements, J.; Eddy, S. R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucleic Acids Res. 2011, 39 (Web Server issue), W29–W37. https://doi.org/10.1093/nar/gkr367. (97) Chou, K.-C.; Shen, H.-B. Euk-MPLoc: A Fusion Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction by Incorporating Multiple Sites. J. Proteome Res. 2007, 6 (5), 1728–1734. https://doi.org/10.1021/pr060635i. (98) Chou, K.-C.; Shen, H.-B. Cell-PLoc: A Package of Web Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Nat. Protoc. 2008, 3 (2), 153–162. https://doi.org/10.1038/nprot.2007.494. (99) Lin, W.-Z.; Fang, J.-A.; Xiao, X.; Chou, K.-C. ILoc-Animal: A Multi-Label Learning Classifier for Predicting Subcellular Localization of Animal Proteins. Mol. Biosyst. 2013, 9 (4), 634–644. https://doi.org/10.1039/c3mb25466f. (100) Blum, T.; Briesemeister, S.; Kohlbacher, O. MultiLoc2: Integrating Phylogeny and Gene Ontology Terms Improves Subcellular Protein Localization Prediction. BMC Bioinformatics 2009, 10, 274. https://doi.org/10.1186/1471-2105-10-274. (101) Almagro Armenteros, J. J.; Sønderby, C. K.; Sønderby, S. K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of Protein Subcellular Localization Using Deep Learning. Bioinformatics 2017, 33 (21), 3387–3395. https://doi.org/10.1093/bioinformatics/btx431. (102) Kelley, L. A.; Mezulis, S.; Yates, C. M.; Wass, M. N.; Sternberg, M. J. E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10 (6), 845–858. https://doi.org/10.1038/nprot.2015.053. (103) Kim, D. E.; Chivian, D.; Baker, D. Protein Structure Prediction and Analysis Using the Robetta Server. Nucleic Acids Res. 2004, 32 (Web Server issue), W526–W531. https://doi.org/10.1093/nar/gkh468. (104) Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G. R.; Wang, J.; Cong, Q.; Kinch, L. N.; Schaeffer, R. D.; Millán, C.; Park, H.; Adams, C.; Glassman, C. R.; DeGiovanni, A.; Pereira, J. H.; Rodrigues, A. V.; van Dijk, A. A.; Ebrecht, A. C.; Opperman, D. J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M. K.; Dalwadi, U.; Yip, C. K.; Burke, J. E.; Garcia, K. C.; Grishin, N. V.; Adams, P. D.; Read, R. J.; Baker, D. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373 (6557), 871–876. https://doi.org/10.1126/science.abj8754. (105) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Meng, E. C.; Couch, G. S.; Croll, T. I.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. Publ. Protein Soc. 2021, 30 (1), 70–82. https://doi.org/10.1002/pro.3943. (106) Pontius, J.; Richelle, J.; Wodak, S. J. Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures. J. Mol. Biol. 1996, 264 (1), 121– 136. https://doi.org/10.1006/jmbi.1996.0628. (107) Sanner, M. F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17 (1), 57–61. (108) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31 (2), 455–461. https://doi.org/10.1002/jcc.21334. (109) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA | Nucleic Acids Research | Oxford Academic https://academic.oup.com/nar/article/49/W1/W530/6266421 (accessed 2021 -09 - 29). (110) Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and Structure-Based Prediction of Eukaryotic Protein Phosphorylation Sites. J. Mol. Biol. 1999, 294 (5), 1351–1362. https://doi.org/10.1006/jmbi.1999.3310. (111) Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of Post-Translational Glycosylation and Phosphorylation of Proteins from the Amino Acid Sequence. Proteomics 2004, 4 (6), 1633–1649. https://doi.org/10.1002/pmic.200300771. (112) Kiemer, L.; Bendtsen, J. D.; Blom, N. NetAcet: Prediction of N-Terminal Acetylation Sites. Bioinforma. Oxf. Engl. 2005, 21 (7), 1269–1270. https://doi.org/10.1093/bioinformatics/bti130. (113) Steentoft, C.; Vakhrushev, S. Y.; Joshi, H. J.; Kong, Y.; Vester-Christensen, M. B.; Schjoldager, K. T.-B. G.; Lavrsen, K.; Dabelsteen, S.; Pedersen, N. B.; MarcosSilva, L.; Gupta, R.; Bennett, E. P.; Mandel, U.; Brunak, S.; Wandall, H. H.; Levery, S. B.; Clausen, H. Precision Mapping of the Human O-GalNAc Glycoproteome through SimpleCell Technology. EMBO J. 2013, 32 (10), 1478–1488. https://doi.org/10.1038/emboj.2013.79. (114) Gupta, R.; Brunak, S. Prediction of Glycosylation across the Human Proteome and the Correlation to Protein Function. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 2002, 310–322. (115) Apte, A.; Daniel, S. PCR Primer Design. Cold Spring Harb. Protoc. 2009, 2009 (3), pdb.ip65. https://doi.org/10.1101/pdb.ip65. (116) Sutherland, J. C.; Lin, B.; Monteleone, D. C.; Mugavero, J.; Sutherland, B. M.; Trunk, J. Electronic Imaging System for Direct and Rapid Quantitation of Fluorescence from Electrophoretic Gels: Application to Ethidium Bromide-Stained DNA. Anal. Biochem. 1987, 163 (2), 446–457. https://doi.org/10.1016/0003- 2697(87)90247-8. (117) Wizard® SV Gel and PCR Clean-Up System Protocol https://www.promega.com/resources/protocols/technical-bulletins/101/wizard-svgel-and-pcr-cleanup-system-protocol/ (accessed 2019 -09 -22). (118) pGEM®-T Vector Systems https://worldwide.promega.com/products/pcr/pcrcloning/pgem-t-vector-systems/ (accessed 2018 -11 -08). (119) Sambrook, J.; Russell, D. W. Molecular Cloning: A Laboratory Manual; CSHL Press, 2001. (120) Poxon, S. W.; Hughes, J. A. The Effect of Lyophilization on Plasmid DNA Activity. Pharm. Dev. Technol. 2000, 5 (1), 115–122. https://doi.org/10.1081/PDT100100526. (121) Eco32I (EcoRV) (10 U/L) - Thermo Fisher Scientific https://www.thermofisher.com/order/catalog/product/ER0301 (accessed 2018 -10 - 25). (122) User Guide: NheI 2500 U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0013185_NheI_2500U_UG.pdf&title=VXNlci BHdWlkZTogTmhlSSAyNTAwIFU= (accessed 2020 -06 -14). (123) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method | Nature Protocols https://www.nature.com/articles/nprot.2007.13?draft=collection (accessed 2020 -03 -17). (124) Duennwald, M. L. Growth Assays to Assess Polyglutamine Toxicity in Yeast. JoVE J. Vis. Exp. 2012, No. 61, e3461. https://doi.org/10.3791/3461. (125) Schägger, H. Tricine–SDS-PAGE. Nat. Protoc. 2006, 1 (1), 16–22. https://doi.org/10.1038/nprot.2006.4. (126) Yang, P.-C.; Mahmood, T. Western Blot: Technique, Theory, and Trouble Shooting. North Am. J. Med. Sci. 2012, 4 (9), 429. https://doi.org/10.4103/1947-2714.100998. (127) Klingenberg, M. Nicotinamide-Adenine Dinucleotides (NAD, NADP, NADH, NADPH): Spectrophotometric and Fluorimetric Methods. In Methods of Enzymatic Analysis (Second Edition); Bergmeyer, H. U., Ed.; Academic Press, 1974; pp 2045–2072. https://doi.org/10.1016/B978-0-12-091304-6.50060-4. (128) Champion pET SUMO Protein Expression System https://www.thermofisher.com/document-connect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2Fpetsumo_man.pdf&title=Q2hhbXBpb24gcEVUIF NVTU8gUHJvdGVpbiBFeHByZXNzaW9uIFN5c3RlbQ== (accessed 2019 -07 -07). (129) User Guide: EcoRI, 10 U/uL, 5000U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0012089_EcoRI_10_UuL_5000U_UG.pdf&ti tle=VXNlciBHdWlkZTogRWNvUkksIDEwIFUvdUwsIDUwMDBV (accessed 2019 - 07 -07). (130) Contreras, L. E.; Neme, R.; Ramírez, M. H. Identification and Functional Evaluation of Leishmania Braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expr. Purif. 2015, 115, 26–33. https://doi.org/10.1016/j.pep.2015.08.022. (131) Moreno-González, P. A.; Diaz, G. J.; Ramírez-Hernández, M. H. Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo del NAD+. Rev. Colomb. Quím. 2013, 42 (2), 12–20. (132) Pauly, D.; Dorner, M.; Zhang, X.; Hlinak, A.; Dorner, B.; Schade, R. Monitoring of Laying Capacity, Immunoglobulin Y Concentration, and Antibody Titer Development in Chickens Immunized with Ricin and Botulinum Toxins over a TwoYear Period. Poult. Sci. 2009, 88 (2), 281–290. https://doi.org/10.3382/ps.2008- 00323. (133) Polson, A.; von Wechmar, M. B.; van Regenmortel, M. H. Isolation of Viral IgY Antibodies from Yolks of Immunized Hens. Immunol. Commun. 1980, 9 (5), 475– 493. https://doi.org/10.3109/08820138009066010. (134) Guilmineau, F.; Krause, I.; Kulozik, U. Efficient Analysis of Egg Yolk Proteins and Their Thermal Sensitivity Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis under Reducing and Nonreducing Conditions. J. Agric. Food Chem. 2005, 53 (24), 9329–9336. https://doi.org/10.1021/jf050475f. (135) Matsuda, H.; Tanaka, H.; Blas, B. L.; Noseñas, J. S.; Tokawa, T.; Ohsawa, S. Evaluation of ELISA with ABTS, 2-2’-Azino-Di-(3-Ethylbenzthiazoline Sulfonic Acid), as the Substrate of Peroxidase and Its Application to the Diagnosis of Schistosomiasis. Jpn. J. Exp. Med. 1984, 54 (3), 131–138. (136) Niño, C. H. Identificación y Caracterización de La Nicotinamida Mononucleótido Adenilil Transferasa (NMNAT) En Trypanosoma Cruzi: Enzima Clave En El Metabolismo Del NAD+. 2014. (137) Innis, M. A.; Gelfand, D. H.; Sninsky, J. J.; White, T. J. PCR Protocols: A Guide to Methods and Applications; Academic Press, 2012. (138) User Guide: BamHI, 10 U/uL, 10,000U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0012058_BamHI_10_UuL_10000U_UG.pdf &title=VXNlciBHdWlkZTogQmFtSEksIDEwIFUvdUwsIDEwLDAwMFU= (accessed 2020 -06 -13). (139) User Guide: HindIII, 10 U/uL, 5000U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0012130_HindIII_10_UuL_5000U_UG.pdf&title=VXNlciBHdWlkZTogSGluZElJSSwgMTAgVS91TCwgNTAwMFU= (accessed 2020 -06 -13). (140) Zhang, T.; Lei, J.; Yang, H.; Xu, K.; Wang, R.; Zhang, Z. An Improved Method for Whole Protein Extraction from Yeast Saccharomyces Cerevisiae: Yeast Protein Extraction by LiAc/NaOH. Yeast 2011, 28 (11), 795–798. https://doi.org/10.1002/yea.1905. (141) Ziegler, M.; Monné, M.; Nikiforov, A.; Agrimi, G.; Heiland, I.; Palmieri, F. Welcome to the Family: Identification of the NAD+ Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules 2021, 11 (6), 880. https://doi.org/10.3390/biom11060880. (142) Chacón, E.; Ramírez-Hernández, M. H. APROXIMACIÓN BIOINFORMÁTICA Y EXPERIMENTAL AL ESTUDIO DE TRANSPORTADORES DE NAD+ EN EL PARÁSITO PROTOZOARIO Trypanosoma cruzi; Asociación Colombiana de Ciencias Biológicas: Armenia, 2019; Vol. 2, pp 409–411. (143) Rost, B. Twilight Zone of Protein Sequence Alignments. Protein Eng. Des. Sel. 1999, 12 (2), 85–94. https://doi.org/10.1093/protein/12.2.85. (144) Hannaert, V.; Saavedra, E.; Duffieux, F.; Szikora, J.-P.; Rigden, D. J.; Michels, P. A. M.; Opperdoes, F. R. Plant-like Traits Associated with Metabolism of Trypanosoma Parasites. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (3), 1067–1071. https://doi.org/10.1073/pnas.0335769100. (145) Jones, J. M.; Morrell, J. C.; Gould, S. J. Multiple Distinct Targeting Signals in Integral Peroxisomal Membrane Proteins. J. Cell Biol. 2001, 153 (6), 1141–1150. https://doi.org/10.1083/jcb.153.6.1141. (146) Wang, X.; Unruh, M. J.; Goodman, J. M. Discrete Targeting Signals Direct Pmp47 to Oleate-Induced Peroxisomes in Saccharomyces Cerevisiae *. J. Biol. Chem. 2001, 276 (14), 10897–10905. https://doi.org/10.1074/jbc.M010883200. (147) Cole, S. P. C. Multidrug Resistance Protein 1 (MRP1, ABCC1), a “Multitasking” ATP-Binding Cassette (ABC) Transporter *. J. Biol. Chem. 2014, 289 (45), 30880– 30888. https://doi.org/10.1074/jbc.R114.609248. (148) Hollingsworth, S. A.; Karplus, P. A. A Fresh Look at the Ramachandran Plot and the Occurrence of Standard Structures in Proteins. Biomol. Concepts 2010, 1 (3– 4), 271–283. https://doi.org/10.1515/BMC.2010.022. (149) Anderson, K. A.; Hirschey, M. D. Mitochondrial Protein Acetylation Regulates Metabolism. Essays Biochem. 2012, 52, 10.1042/bse0520023. https://doi.org/10.1042/bse0520023. (150) Ritagliati, C.; Alonso, V. L.; Manarin, R.; Cribb, P.; Serra, E. C. Overexpression of Cytoplasmic TcSIR2RP1 and Mitochondrial TcSIR2RP3 Impacts on Trypanosoma Cruzi Growth and Cell Invasion. 2015. https://doi.org/10.1371/journal.pntd.0003725. (151) Fisher, P.; Thomas-Oates, J.; Wood, A. J.; Ungar, D. The N-Glycosylation Processing Potential of the Mammalian Golgi Apparatus. Front. Cell Dev. Biol. 2019, 7, 157. https://doi.org/10.3389/fcell.2019.00157. (152) Millar, B. C.; Jiru, X.; Moore, J. E.; Earle, J. A. P. A Simple and Sensitive Method to Extract Bacterial, Yeast and Fungal DNA from Blood Culture Material. J. Microbiol. Methods 2000, 42 (2), 139–147. https://doi.org/10.1016/S0167-7012(00)00174-3. (153) Mirhendi, H.; Diba, K.; Rezaei, A.; Jalalizand, N.; Hosseinpur, L.; Khodadadi, H. Colony PCR Is a Rapid and Sensitive Method for DNA Amplification in Yeasts. Iran. J. Public Health 2007, 36 (1), 40–44. (154) Koh, C. M. Storage of Bacteria and Yeast. In Methods in Enzymology; Elsevier, 2013; Vol. 533, pp 15–21. https://doi.org/10.1016/B978-0-12-420067-8.00002-7. (155) Villamil Silva, S. E. Exploración de un transportador de NAD+ y/o sus precursores en Leishmania. Trabajo de grado - Maestría, Universidad Nacional de Colombia, 2021. (156) Fathi-Roudsari, M.; Maghsoudi, N.; Maghsoudi, A.; Niazi, S.; Soleiman, M. AutoInduction for High Level Production of Biologically Active Reteplase in Escherichia Coli. Protein Expr. Purif. 2018, 151, 18–22. https://doi.org/10.1016/j.pep.2018.05.008. (157) Shaw, A. Z.; Miroux, B. A General Approach for Heterologous Membrane Protein Expression in Escherichia Coli. In Membrane Protein Protocols: Expression, Purification, and Characterization; Selinsky, B. S., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2003; pp 23–35. https://doi.org/10.1385/1- 59259-400-X:23. (158) Aguirre-López, B.; Cabrera, N.; de Gómez-Puyou, M. T.; Perez-Montfort, R.; Gómez-Puyou, A. The Importance of Arginine Codons AGA and AGG for the Expression in E. Coli of Triosephosphate Isomerase from Seven Different Species. Biotechnol. Rep. 2017, 13, 42–48. https://doi.org/10.1016/j.btre.2017.01.002. (159) Horn, D. Codon Usage Suggests That Translational Selection Has a Major Impact on Protein Expression in Trypanosomatids. BMC Genomics 2008, 9, 2. https://doi.org/10.1186/1471-2164-9-2. (160) Jeacock, L.; Faria, J.; Horn, D. Codon Usage Bias Controls MRNA and Protein Abundance in Trypanosomatids. eLife 2018, 7, e32496. https://doi.org/10.7554/eLife.32496. (161) Kleber-Janke, T.; Becker, W.-M. Use of Modified BL21(DE3) Escherichia Coli Cells for High-Level Expression of Recombinant Peanut Allergens Affected by Poor Codon Usage. Protein Expr. Purif. 2000, 19 (3), 419–424. https://doi.org/10.1006/prep.2000.1265. (162) Geertsma, E. R.; Groeneveld, M.; Slotboom, D.-J.; Poolman, B. Quality Control of Overexpressed Membrane Proteins. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (15), 5722–5727. https://doi.org/10.1073/pnas.0802190105. (163) Zhou, Y. J.; Yang, W.; Wang, L.; Zhu, Z.; Zhang, S.; Zhao, Z. K. Engineering NAD+ Availability for Escherichia Coli Whole-Cell Biocatalysis: A Case Study for Dihydroxyacetone Production. Microb. Cell Factories 2013, 12 (1), 103. https://doi.org/10.1186/1475-2859-12-103. (164) Palmieri, F.; Pierri, C. L. Structure and Function of Mitochondrial Carriers - Role of the Transmembrane Helix P and G Residues in the Gating and Transport Mechanism. FEBS Lett. 2010, 584 (9), 1931–1939. https://doi.org/10.1016/j.febslet.2009.10.063. (165) Sivashanmugam, A.; Murray, V.; Cui, C.; Zhang, Y.; Wang, J.; Li, Q. Practical Protocols for Production of Very High Yields of Recombinant Proteins Using Escherichia Coli. Protein Sci. Publ. Protein Soc. 2009, 18 (5), 936–948. https://doi.org/10.1002/pro.102. (166) Hayat, S. M. G.; Farahani, N.; Golichenari, B.; Sahebkar, A. Recombinant Protein Expression in Escherichia Coli (E.Coli): What We Need to Know. Curr. Pharm. Des. 2018, 24 (6), 718–725. https://doi.org/10.2174/1381612824666180131121940. (167) Singhvi, P.; Saneja, A.; Srichandan, S.; Panda, A. K. Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol. 2020, 38 (5), 474–486. https://doi.org/10.1016/j.tibtech.2019.12.011. (168) Schade, R.; Calzado, E. G.; Sarmiento, R.; Chacana, P. A.; Porankiewicz-Asplund, J.; Terzolo, H. R. Chicken Egg Yolk Antibodies (IgY-Technology): A Review of Progress in Production and Use in Research and Human and Veterinary Medicine. Altern. Lab. Anim. 2005, 33 (2), 129–154. https://doi.org/10.1177/026119290503300208. (169) Adrizal, A.; Patterson, P. H.; Cravener, T.; Hendricks, G. L. Egg Yolk and Serum Antibody Titers of Broiler Breeder Hens Immunized with Uricase and or Urease. Poult. Sci. 2011, 90 (10), 2162–2168. https://doi.org/10.3382/ps.2010-00855. (170) Klimentzou, P.; Paravatou-Petsotas, M.; Zikos, C.; Beck, A.; Skopeliti, M.; Czarnecki, J.; Tsitsilonis, O.; Voelter, W.; Livaniou, E.; Evangelatos, G. P. Development and Immunochemical Evaluation of Antibodies Y for the Poorly Immunogenic Polypeptide Prothymosin Alpha. Peptides 2006, 27 (1), 183–193. https://doi.org/10.1016/j.peptides.2005.07.002. (171) FoodData Central https://fdc.nal.usda.gov/fdc-app.html#/fooddetails/172184/nutrients (accessed 2019 -12 -12). (172) Aalberse, R. C. Structural Biology of Allergens. J. Allergy Clin. Immunol. 2000, 106 (2), 228–238. https://doi.org/10.1067/mai.2000.108434. (173) Gallo, J.-M.; Precigout, E. Tubulin Expression in Trypanosomes. Biol. Cell 1988, 64 (2), 137–143. (174) Mattos, E. C.; Schumacher, R. I.; Colli, W.; Alves, M. J. M. Adhesion of Trypanosoma Cruzi Trypomastigotes to Fibronectin or Laminin Modifies Tubulin and Paraflagellar Rod Protein Phosphorylation. PLOS ONE 2012, 7 (10), e46767. https://doi.org/10.1371/journal.pone.0046767. (175) Panchuk-Voloshina, N.; Haugland, R. P.; Bishop-Stewart, J.; Bhalgat, M. K.; Millard, P. J.; Mao, F.; Leung, W.-Y.; Haugland, R. P. Alexa Dyes, a Series of New Fluorescent Dyes That Yield Exceptionally Bright, Photostable Conjugates. J. Histochem. Cytochem. 1999, 47 (9), 1179–1188. https://doi.org/10.1177/002215549904700910. (176) Zuma, A. A.; Cavalcanti, D. P.; Zogovich, M.; Machado, A. C. L.; Mendes, I. C.; Thiry, M.; Galina, A.; de Souza, W.; Machado, C. R.; Motta, M. C. M. Unveiling the Effects of Berenil, a DNA-Binding Drug, on Trypanosoma Cruzi: Implications for KDNA Ultrastructure and Replication. Parasitol. Res. 2015, 114 (2), 419–430. https://doi.org/10.1007/s00436-014-4199-8. (177) Kalb, L. C.; Frederico, Y. C. A.; Boehm, C.; Moreira, C. M. do N.; Soares, M. J.; Field, M. C. Conservation and Divergence within the Clathrin Interactome of Trypanosoma Cruzi. Sci. Rep. 2016, 6 (1), 31212. https://doi.org/10.1038/srep31212. (178) Kalel, V. C.; Li, M.; Gaussmann, S.; Delhommel, F.; Schäfer, A.-B.; Tippler, B.; Jung, M.; Maier, R.; Oeljeklaus, S.; Schliebs, W.; Warscheid, B.; Sattler, M.; Erdmann, R. Evolutionary Divergent PEX3 Is Essential for Glycosome Biogenesis and Survival of Trypanosomatid Parasites. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2019, 1866 (12), 118520. https://doi.org/10.1016/j.bbamcr.2019.07.015. (179) Salazar, O. Bacteria and Yeast Cell Disruption Using Lytic Enzymes. In 2D PAGE: Sample Preparation and Fractionation; Posch, A., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, 2008; pp 23–34. https://doi.org/10.1007/978-1-60327-064-9_2. (180) Diekert, K.; I.P.M. de Kroon, A.; Kispal, G.; Lill, R. Chapter 2 Isolation and Subfractionation of Mitochondria from the Yeast Saccharomyces Cerevisiae. In Methods in Cell Biology; Mitochondria; Academic Press, 2001; Vol. 65, pp 37–51. https://doi.org/10.1016/S0091-679X(01)65003-9. (181) Nielsen, K. H. Protein Expression-Yeast. In Methods in Enzymology; Elsevier, 2014; Vol. 536, pp 133–147. https://doi.org/10.1016/B978-0-12-420070-8.00012-X. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 112 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81733/3/1026581504.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81733/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81733/5/1026581504.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
c69ae479ea06cbabc52e43daa036c247 8153f7789df02f0a4c9e079953658ab2 9f9e1355427d41263a123aa14e36b240 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089796876763136 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Hernández, Maria Helenae4ff3d503c25c95f30fecf7215f5065eChacón Gómez, Miguel Estebandd51e755c143dd105b11a20ad58788bfLibbiq Un2022-07-25T12:33:44Z2022-07-25T12:33:44Z2021https://repositorio.unal.edu.co/handle/unal/81733Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasTrypanosoma cruzi causa la enfermedad de Chagas, patología distribuida globalmente y carente de tratamientos efectivos, lo que hace pertinente la búsqueda de estrategias alternas de control. La dinámica del dinucleótido de nicotinamida y adenina (NAD+) es determinante en la homeostasis celular, y, las proteínas que participan en ella son promisorios blancos farmacológicos. La síntesis del NAD+ es citosólica en T. cruzi, por lo que un sistema intracelular de distribución debe existir; proteínas de la Familia de Transportadores Mitocondriales (MCF) cumplen esta función en eucariotas, y se espera que el parásito cuente con homólogos capaces de movilizar al dinucleótido. Tres secuencias candidato a transportador de NAD+ de T. cruzi fueron caracterizadas; el estudio in silico de las proteínas TcNdt1 y TcNdt2 mostró que estructuralmente conservan características de la MCF, y por docking molecular se determinó que están dotadas de elementos capaces de interactuar específicamente con el dinucleótido. Por su parte, el candidato TcNdt3 es una proteína atípica de la MCF con una duplicación de sus elementos estructurales. En los 3 candidatos se predice una localización mitocondrial o glicosomal, al igual que la presencia sitios blanco de modificaciones postraduccionales. Ensayos de complementación realizados con las cepas Δndt1 y Δndt2 de Saccharomyces cerevisiae mostraron que TcNdt1 y TcNdt2 reestablecen el crecimiento rezagado de los mutantes en medio no fermentable, comprobando su actividad transportadora de NAD+. De forma complementaria, se desarrolló el sistema de expresión MISTIC que media la inserción de proteínas en membranas de E. coli, y se adelantaron ensayos piloto de transporte del dinucleótido. Empleando un antígeno recombinante generado en E. coli se produjeron IgY que permitieron la detección por inmunofluorescencia de la TcNdt2 endógena sobre epimastigotes de T. cruzi, indicando que presenta localización posiblemente glicosomal asociada a tráfico vesicular. Adicionalmente, se evaluó la expresión de un fragmento de la RVG del virus de la rabia en S. cerevisiae, donde fue posible obtener un patrón de reconocimiento diferencial en la inmunodetección, el cual es atribuible a la expresión de la recombinante en el modelo eucariota. Los resultados obtenidos en este estudio constituyen un aporte importante para entender la simplificación en el metabolismo del NAD+ en parásitos intracelulares, y sus relaciones con el hospedero. (Texto tomado de la fuente)Trypanosoma cruzi is the etiological agent of Chagas disease, a disease that has a worldwide distribution and lacks effective treatments, making it pertinent to look for alternate control strategies. The nicotinamide-adenine nucleotide (NAD+) dynamics determines cell homeostasis, and the proteins involved in it are interesting pharmacological targets. NAD+ synthesis is cytosolic in T. cruzi, and therefore, an intracellular distribution system should exist; proteins belonging to the Mitochondrial Carrier Family (MCF) fulfill this role in eukaryotes, ant it is expected that the parasite has MCF homologues able to transport the dinucleotide. Three NAD+ carrier candidate sequences from T. cruzi were studied; in silico analysis of the TcNdt1 and TcNdt2 protein showed that typical structural features from the MCF are conserved in these proteins, and, through molecular docking, it was found that they are both endowed with structural elements able to interact specifically with the dinucleotide. On the other hand, the TcNdt3 candidate is an atypical MCF protein that shows a complete duplication of its structural elements. The 3 candidate sequences are predicted to have a mitochondrial or glycosomal localization, and throughout the TcNdt1, TcNdt2 and TcNdt3 sequences post-translational modification sites are predicted. Complementation assays carried out with the Saccharomyces cerevisiae mutant strains Δndt1 and Δndt2, showed that the TcNdt1 and TcNdt2 sequences reestablish yeast cell growth on a non-fermentable media, supporting that the T. cruzi proteins are functional NAD+ carriers. As a complementary approach, the MISTIC expression system, that mediates recombinant protein insertion in E. coli membranes, was developed, and pilot dinucleotide transport assays were performed. Using a recombinant antigen produced in E. coli, specific IgY against TcNdt2 were raised, which allowed for the endogenous carrier recognition through immunofluorescence on T. cruzi epimastigotes, showing that the NAD+ carrier has a glycosomal localization, linked to the vesicular transport. Further, the expression of a recombinant fragment derived from the rabies virus RVG protein was evaluated in S. cerevisiae, and at the immunodetection a differential recognition pattern was obtained, which can be attributed to the recombinant protein production in the eukaryotic system. The results obtained in this study make for an important contribution for the understanding of the NAD+ metabolism simplification that occurred in the intracellular parasites, and for the understanding of the host-parasite interactions.MaestríaMagíster en Ciencias - BioquímicaBioquímica y Biología Molecular de Parásitosxix, 112 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaParásitosParasitesProteínas recombinantesAnticuerposBioinformáticaMembranaIntracelularEnsayos de complementaciónRecombinant proteinBioinformaticsAntibodiesMembraneIntracellularComplementation assaysTripanosomiasisBiotechnologyBiotecnologíaEvaluación de un candidato a transportador de NAD+ en el parásito protozoario Trypanosoma cruziEvaluation of a NAD+ carrier candidate in the protozoan parasite Trypanosoma cruziTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferencia(1) Coura, J. R.; Viñas, P. A. Chagas Disease: A New Worldwide Challenge. Nature 2010, 465 (7301), S6-7. https://doi.org/10.1038/nature09221.(2) Dias, J. C. P.; Schofield, C. J. 3 - Social and Medical Aspects on Chagas Disease Management and Control. In American Trypanosomiasis Chagas Disease (Second Edition); Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, 2017; pp 47–57. https://doi.org/10.1016/B978-0-12-801029-7.00003-4.(3) Rassi, A.; Rassi, A.; Marcondes de Rezende, J. American Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. North Am. 2012, 26 (2), 275–291. https://doi.org/10.1016/j.idc.2012.03.002.(4) Rassi, A.; de Rezende, J. M.; Luquetti, A. O.; Rassi, A. 28 - Clinical Phases and Forms of Chagas Disease. In American Trypanosomiasis Chagas Disease (Second Edition); Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, 2017; pp 653–686. https://doi.org/10.1016/B978-0-12-801029-7.00029-0(5) Luquetti, A. O.; Schmuñis, G. A. Diagnosis of Trypanosoma Cruzi Infection. In American Trypanosomiasis Chagas Disease: One Hundred Years of Research: Second Edition; 2017; pp 687–730. https://doi.org/10.1016/B978-0-12-801029- 7.00030-7.(6) Bern, C.; Montgomery, S. P.; Herwaldt, B. L.; Rassi, A.; Marin-Neto, J. A.; Dantas, R. O.; Maguire, J. H.; Acquatella, H.; Morillo, C.; Kirchhoff, L. V.; Gilman, R. H.; Reyes, P. A.; Salvatella, R.; Moore, A. C. Evaluation and Treatment of Chagas Disease in the United States: A Systematic Review. JAMA 2007, 298 (18), 2171– 2181. https://doi.org/10.1001/jama.298.18.2171.(7) A Higher Level Classification of All Living Organisms https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119248 (accessed 2018 -09 -08).(8) Sacks, D.; Sher, A. Evasion of Innate Immunity by Parasitic Protozoa. Nat. Immunol. 2002, 3 (11), 1041–1047. https://doi.org/10.1038/ni1102-1041.(9) Mansfield, J. M.; Olivier, M. Immune Evasion by Parasites. Immune Response Infect. 2011, 453–469. https://doi.org/10.1128/9781555816872.ch36.(10) Sibley, L. D. Invasion and Intracellular Survival by Protozoan Parasites. Immunol. Rev. 2011, 240 (1), 72–91. https://doi.org/10.1111/j.1600-065X.2010.00990.x.(11) Cavalier-Smith, T. Higher Classification and Phylogeny of Euglenozoa. Eur. J. Protistol. 2016, 56, 250–276. https://doi.org/10.1016/j.ejop.2016.09.003.(12) Hannaert, V.; Bringaud, F.; Opperdoes, F. R.; Michels, P. A. Evolution of Energy Metabolism and Its Compartmentation in Kinetoplastida. Kinetoplastid Biol. Dis. 2003, 2, 11. https://doi.org/10.1186/1475-9292-2-11.(13) El-Sayed, N. M.; Myler, P. J.; Bartholomeu, D. C.; Nilsson, D.; Aggarwal, G.; Tran, A.-N.; Ghedin, E.; Worthey, E. A.; Delcher, A. L.; Blandin, G.; Westenberger, S. J.; Caler, E.; Cerqueira, G. C.; Branche, C.; Haas, B.; Anupama, A.; Arner, E.; Aslund, L.; Attipoe, P.; Bontempi, E.; Bringaud, F.; Burton, P.; Cadag, E.; Campbell, D. A.; Carrington, M.; Crabtree, J.; Darban, H.; da Silveira, J. F.; de Jong, P.; Edwards, K.; Englund, P. T.; Fazelina, G.; Feldblyum, T.; Ferella, M.; Frasch, A. C.; Gull, K.; Horn, D.; Hou, L.; Huang, Y.; Kindlund, E.; Klingbeil, M.; Kluge, S.; Koo, H.; Lacerda, D.; Levin, M. J.; Lorenzi, H.; Louie, T.; Machado, C. R.; McCulloch, R.; McKenna, A.; Mizuno, Y.; Mottram, J. C.; Nelson, S.; Ochaya, S.; Osoegawa, K.; Pai, G.; Parsons, M.; Pentony, M.; Pettersson, U.; Pop, M.; Ramirez, J. L.; Rinta, J.; Robertson, L.; Salzberg, S. L.; Sanchez, D. O.; Seyler, A.; Sharma, R.; Shetty, J.; Simpson, A. J.; Sisk, E.; Tammi, M. T.; Tarleton, R.; Teixeira, S.; Van Aken, S.; Vogt, C.; Ward, P. N.; Wickstead, B.; Wortman, J.; White, O.; Fraser, C. M.; Stuart, K. D.; Andersson, B. The Genome Sequence of Trypanosoma Cruzi, Etiologic Agent of Chagas Disease. Science 2005, 309 (5733), 409–415. https://doi.org/10.1126/science.1112631.(14) Weatherly, D. B.; Boehlke, C.; Tarleton, R. L. Chromosome Level Assembly of the Hybrid Trypanosoma Cruzi Genome. BMC Genomics 2009, 10, 255. https://doi.org/10.1186/1471-2164-10-255.(15) Callejas-Hernández, F.; Gironès, N.; Fresno, M. Genome Sequence of Trypanosoma Cruzi Strain Bug2148. Genome Announc. 2018, 6 (3). https://doi.org/10.1128/genomeA.01497-17.(16) Minning, T. A.; Weatherly, D. B.; Atwood, J.; Orlando, R.; Tarleton, R. L. The Steady-State Transcriptome of the Four Major Life-Cycle Stages of Trypanosoma Cruzi. BMC Genomics 2009, 10, 370. https://doi.org/10.1186/1471-2164-10-370.(17) de Souza, W.; de Carvalho, T. U.; Barrias, E. S. 18 - Ultrastructure of Trypanosoma Cruzi and Its Interaction with Host Cells. In American Trypanosomiasis Chagas Disease (Second Edition); Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, 2017; pp 401–427. https://doi.org/10.1016/B978-0-12-801029-7.00018-6.(18) De Souza, W. Basic Cell Biology of Trypanosoma Cruzi. Curr. Pharm. Des. 2002, 8 (4), 269–285.(19) Michels, P. A. M.; Bringaud, F.; Herman, M.; Hannaert, V. Metabolic Functions of Glycosomes in Trypanosomatids. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2006, 1763 (12), 1463–1477. https://doi.org/10.1016/j.bbamcr.2006.08.019.(20) Gaunt, M. W.; Yeo, M.; Frame, I. A.; Stothard, J. R.; Carrasco, H. J.; Taylor, M. C.; Mena, S. S.; Veazey, P.; Miles, G. A. J.; Acosta, N.; de Arias, A. R.; Miles, M. A. Mechanism of Genetic Exchange in American Trypanosomes. Nature 2003, 421 (6926), 936–939. https://doi.org/10.1038/nature01438.(21) Cuervo, P.; Domont, G. B.; De Jesus, J. B. Proteomics of Trypanosomatids of Human Medical Importance. J. Proteomics 2010, 73 (5), 845–867. https://doi.org/10.1016/j.jprot.2009.12.012.(22) Nikiforov, A.; Dölle, C.; Niere, M.; Ziegler, M. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells FROM ENTRY OF EXTRACELLULAR PRECURSORS TO MITOCHONDRIAL NAD GENERATION. J. Biol. Chem. 2011, 286 (24), 21767–21778. https://doi.org/10.1074/jbc.M110.213298.(23) Nikiforov, A.; Kulikova, V.; Ziegler, M. The Human NAD Metabolome: Functions, Metabolism and Compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015, 50 (4), 284–297. https://doi.org/10.3109/10409238.2015.1028612.(24) Zhang, N.; Sauve, A. A. Regulatory Effects of NAD + Metabolic Pathways on Sirtuin Activity. In Progress in Molecular Biology and Translational Science; Elsevier, 2018; Vol. 154, pp 71–104. https://doi.org/10.1016/bs.pmbts.2017.11.012.(25) Dean, P.; Major, P.; Nakjang, S.; Hirt, R. P.; Embley, T. M. Transport Proteins of Parasitic Protists and Their Role in Nutrient Salvage. Front. Plant Sci. 2014, 5. https://doi.org/10.3389/fpls.2014.00153.(26) Acimovic, Y.; Coe, I. R. Molecular Evolution of the Equilibrative Nucleoside Transporter Family: Identification of Novel Family Members in Prokaryotes and Eukaryotes. Mol. Biol. Evol. 2002, 19 (12), 2199–2210. https://doi.org/10.1093/oxfordjournals.molbev.a004044.(27) Molina-Arcas, M.; Casado, F. J.; Pastor-Anglada, M. Nucleoside Transporter Proteins. Curr. Vasc. Pharmacol. 2009, 7 (4), 426–434.(28) Landfear, S. M. Nutrient Transport and Pathogenesis in Selected Parasitic Protozoa▿. Eukaryot. Cell 2011, 10 (4), 483–493. https://doi.org/10.1128/EC.00287-10.(29) Parker, J. L.; Newstead, S. Structural Basis of Nucleotide Sugar Transport across the Golgi Membrane. Nature 2017, 551 (7681), 521–524. https://doi.org/10.1038/nature24464.(30) Haferkamp, I.; Schmitz-Esser, S.; Wagner, M.; Neigel, N.; Horn, M.; Neuhaus, H. E. Tapping the Nucleotide Pool of the Host: Novel Nucleotide Carrier Proteins of Protochlamydia Amoebophila. Mol. Microbiol. 2006, 60 (6), 1534–1545. https://doi.org/10.1111/j.1365-2958.2006.05193.x.(31) Fisher, D. J.; Fernández, R. E.; Maurelli, A. T. Chlamydia Trachomatis Transports NAD via the Npt1 ATP/ADP Translocase. J. Bacteriol. 2013, 195 (15), 3381–3386. https://doi.org/10.1128/JB.00433-13.(32) Ruprecht, J. J.; Kunji, E. R. S. The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem. Sci. 2020, 45 (3), 244–258. https://doi.org/10.1016/j.tibs.2019.11.001.(33) Agrimi, G.; Russo, A.; Scarcia, P.; Palmieri, F. The Human Gene SLC25A17 Encodes a Peroxisomal Transporter of Coenzyme A, FAD and NAD+. Biochem. J. 2012, 443 (1), 241–247. https://doi.org/10.1042/BJ20111420.(34) Zhou, Y.; Wang, L.; Yang, F.; Lin, X.; Zhang, S.; Zhao, Z. K. Determining the Extremes of the Cellular NAD(H) Level by Using an Escherichia Coli NAD+- Auxotrophic Mutant ▿. Appl. Environ. Microbiol. 2011, 77 (17), 6133–6140. https://doi.org/10.1128/AEM.00630-11.(35) Haferkamp, I.; Schmitz-Esser, S. The Plant Mitochondrial Carrier Family: Functional and Evolutionary Aspects. Front. Plant Sci. 2012, 3. https://doi.org/10.3389/fpls.2012.00002.(36) Palmieri, F.; Pierri, C. L.; De Grassi, A.; Nunes-Nesi, A.; Fernie, A. R. Evolution, Structure and Function of Mitochondrial Carriers: A Review with New Insights. Plant J. Cell Mol. Biol. 2011, 66 (1), 161–181. https://doi.org/10.1111/j.1365- 313X.2011.04516.x.(37) Palmieri, F. The Mitochondrial Transporter Family SLC25: Identification, Properties and Physiopathology. Mol. Aspects Med. 2013, 34 (2–3), 465–484. https://doi.org/10.1016/j.mam.2012.05.005.(38) Ogunbona, O. B.; Claypool, S. M. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front. Cell Dev. Biol. 2019, 7. https://doi.org/10.3389/fcell.2019.00003.(39) King, M. S.; Kerr, M.; Crichton, P. G.; Springett, R.; Kunji, E. R. S. Formation of a Cytoplasmic Salt Bridge Network in the Matrix State Is a Fundamental Step in the Transport Mechanism of the Mitochondrial ADP/ATP Carrier. Biochim. Biophys. Acta 2016, 1857 (1), 14–22. https://doi.org/10.1016/j.bbabio.2015.09.013.(40) Nury, H.; Blesneac, I.; Ravaud, S.; Pebay-Peyroula, E. Structural Approaches of the Mitochondrial Carrier Family. In Membrane Protein Structure Determination; Lacapère, J.-J., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2010; Vol. 654, pp 105–117. https://doi.org/10.1007/978-1-60761-762-4_6.(41) Ruprecht, J. J.; King, M. S.; Zögg, T.; Aleksandrova, A. A.; Pardon, E.; Crichton, P. G.; Steyaert, J.; Kunji, E. R. S. The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell 2019, 176 (3), 435-447.e15. https://doi.org/10.1016/j.cell.2018.11.025.(42) Kunji, E. R. S.; Robinson, A. J. The Conserved Substrate Binding Site of Mitochondrial Carriers. Biochim. Biophys. Acta 2006, 1757 (9–10), 1237–1248. https://doi.org/10.1016/j.bbabio.2006.03.021.(43) Czuba, L. C.; Hillgren, K. M.; Swaan, P. W. Post-Translational Modifications of Transporters. Pharmacol. Ther. 2018, 192, 88–99. https://doi.org/10.1016/j.pharmthera.2018.06.013.(44) Marquez, J.; Lee, S. R.; Kim, N.; Han, J. Post-Translational Modifications of Cardiac Mitochondrial Proteins in Cardiovascular Disease: Not Lost in Translation. Korean Circ. J. 2016, 46 (1), 1–12. https://doi.org/10.4070/kcj.2016.46.1.1.(45) Burnham-Marusich, A. R.; Berninsone, P. M. Multiple Proteins with Essential Mitochondrial Functions Have Glycosylated Isoforms. Mitochondrion 2012, 12 (4), 423–427. https://doi.org/10.1016/j.mito.2012.04.004.(46) Morales Herrera, D. S.; Contreras Rodríguez, L. E.; Rubiano Castellanos, C. C.; Ramírez Hernández, M. H. Identification and Sub-Cellular Localization of a NAD Transporter in Leishmania Braziliensis (LbNDT1). Heliyon 2020, 6 (7), e04331. https://doi.org/10.1016/j.heliyon.2020.e04331.(47) Lambrechts, R. A.; Schepers, H.; Yu, Y.; van der Zwaag, M.; Autio, K. J.; VieiraLara, M. A.; Bakker, B. M.; Tijssen, M. A.; Hayflick, S. J.; Grzeschik, N. A.; Sibon, O. C. CoA-Dependent Activation of Mitochondrial Acyl Carrier Protein Links Four Neurodegenerative Diseases. EMBO Mol. Med. 2019, 11 (12), e10488. https://doi.org/10.15252/emmm.201910488.(48) Luongo, T. S.; Eller, J. M.; Lu, M.-J.; Niere, M.; Raith, F.; Perry, C.; Bornstein, M. R.; Oliphint, P.; Wang, L.; McReynolds, M. R.; Migaud, M. E.; Rabinowitz, J. D.; Johnson, F. B.; Johnsson, K.; Ziegler, M.; Cambronne, X. A.; Baur, J. A. SLC25A51 Is a Mammalian Mitochondrial NAD+ Transporter. Nature 2020, 588 (7836), 174– 179. https://doi.org/10.1038/s41586-020-2741-7.(49) Palmieri, F.; Rieder, B.; Ventrella, A.; Blanco, E.; Do, P. T.; Nunes-Nesi, A.; Trauth, A. U.; Fiermonte, G.; Tjaden, J.; Agrimi, G.; Kirchberger, S.; Paradies, E.; Fernie, A. R.; Neuhaus, H. E. Molecular Identification and Functional Characterization of Arabidopsis Thaliana Mitochondrial and Chloroplastic NAD+ Carrier Proteins. J. Biol. Chem. 2009, 284 (45), 31249–31259. https://doi.org/10.1074/jbc.M109.041830.(50) Bernhardt, K.; Wilkinson, S.; Weber, A. P. M.; Linka, N. A Peroxisomal Carrier Delivers NAD+ and Contributes to Optimal Fatty Acid Degradation during Storage Oil Mobilization. Plant J. Cell Mol. Biol. 2012, 69 (1), 1–13. https://doi.org/10.1111/j.1365-313X.2011.04775.x.(51) Todisco, S.; Agrimi, G.; Castegna, A.; Palmieri, F. Identification of the Mitochondrial NAD+ Transporter in Saccharomyces Cerevisiae. J. Biol. Chem. 2006, 281 (3), 1524–1531. https://doi.org/10.1074/jbc.M510425200.(52) Balico, L. de L. de L.; de Souza Santos, E.; Suzuki-Hatano, S.; Sousa, L. O.; Azzolini, A. E. C. S.; Lucisano-Valim, Y. M.; Dinamarco, T. M.; Kannen, V.; Uyemura, S. A. Heterologous Expression of Mitochondrial Nicotinamide Adenine Dinucleotide Transporter (Ndt1) from Aspergillus Fumigatus Rescues Impaired Growth in Δndt1Δndt2 Saccharomyces Cerevisiae Strain. J. Bioenerg. Biomembr. 2017, 49 (6), 423–435. https://doi.org/10.1007/s10863-017-9732-x.(53) Agrimi, G.; Brambilla, L.; Frascotti, G.; Pisano, I.; Porro, D.; Vai, M.; Palmieri, L. Deletion or Overexpression of Mitochondrial NAD+ Carriers in Saccharomyces Cerevisiae Alters Cellular NAD and ATP Contents and Affects Mitochondrial Metabolism and the Rate of Glycolysis. Appl. Environ. Microbiol. 2011, 77 (7), 2239–2246. https://doi.org/10.1128/AEM.01703-10.(54) Orlandi, I.; Stamerra, G.; Vai, M. Altered Expression of Mitochondrial NAD+ Carriers Influences Yeast Chronological Lifespan by Modulating Cytosolic and Mitochondrial Metabolism. Front. Genet. 2018, 9. https://doi.org/10.3389/fgene.2018.00676.(55) Gakière, B.; Hao, J.; Bont, L. de; Pétriacq, P.; Nunes-Nesi, A.; Fernie, A. R. NAD+ Biosynthesis and Signaling in Plants. Crit. Rev. Plant Sci. 2018, 37 (4), 259–307. https://doi.org/10.1080/07352689.2018.1505591.(56) Feitosa-Araujo, E.; Chaves, I. de S.; Florian, A.; da Fonseca-Pereira, P.; Apfata, J. A. C.; Heyneke, E.; Medeiros, D. B.; Pires, M. V.; Mettler-Altmann, T.; Neuhaus, H. E.; Palmieri, F.; Araújo, W. L.; Obata, T.; Weber, A. P. M.; Linka, N.; Fernie, A. R.; Nunes-Nesi, A. Down-Regulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcaa017.(57) Girardi, E.; Agrimi, G.; Goldmann, U.; Fiume, G.; Lindinger, S.; Sedlyarov, V.; Srndic, I.; Gürtl, B.; Agerer, B.; Kartnig, F.; Scarcia, P.; Di Noia, M. A.; Liñeiro, E.; Rebsamen, M.; Wiedmer, T.; Bergthaler, A.; Palmieri, L.; Superti-Furga, G. Epistasis-Driven Identification of SLC25A51 as a Regulator of Human Mitochondrial NAD Import. Nat. Commun. 2020, 11 (1), 6145. https://doi.org/10.1038/s41467- 020-19871-x.(58) Kory, N.; Bos, J. uit de; Rijt, S. van der; Jankovic, N.; Güra, M.; Arp, N.; Pena, I. A.; Prakash, G.; Chan, S. H.; Kunchok, T.; Lewis, C. A.; Sabatini, D. M. MCART1/SLC25A51 Is Required for Mitochondrial NAD Transport. Sci. Adv. 2020, 6 (43), eabe5310. https://doi.org/10.1126/sciadv.abe5310.(59) Vögtle, F.-N.; Wortelkamp, S.; Zahedi, R. P.; Becker, D.; Leidhold, C.; Gevaert, K.; Kellermann, J.; Voos, W.; Sickmann, A.; Pfanner, N.; Meisinger, C. Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability. Cell 2009, 139 (2), 428–439. https://doi.org/10.1016/j.cell.2009.07.045.(60) Harsman, A.; Schneider, A. Mitochondrial Protein Import in Trypanosomes: Expect the Unexpected. Traffic 2017, 18 (2), 96–109. https://doi.org/10.1111/tra.12463.(61) Jores, T.; Klinger, A.; Groß, L. E.; Kawano, S.; Flinner, N.; Duchardt-Ferner, E.; Wöhnert, J.; Kalbacher, H.; Endo, T.; Schleiff, E.; Rapaport, D. Characterization of the Targeting Signal in Mitochondrial β-Barrel Proteins. Nat. Commun. 2016, 7. https://doi.org/10.1038/ncomms12036.(62) Ferramosca, A.; Zara, V. Biogenesis of Mitochondrial Carrier Proteins: Molecular Mechanisms of Import into Mitochondria. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2013, 1833 (3), 494–502. https://doi.org/10.1016/j.bbamcr.2012.11.014.(63) Dyer, J. M.; McNew, J. A.; Goodman, J. M. The Sorting Sequence of the Peroxisomal Integral Membrane Protein PMP47 Is Contained within a Short Hydrophilic Loop. J. Cell Biol. 1996, 133 (2), 269–280. https://doi.org/10.1083/jcb.133.2.269.(64) Kim, P. K.; Hettema, E. H. Multiple Pathways for Protein Transport to Peroxisomes. J. Mol. Biol. 2015, 427 (6), 1176–1190. https://doi.org/10.1016/j.jmb.2015.02.005.(65) Mayerhofer, P. U. Targeting and Insertion of Peroxisomal Membrane Proteins: ER Trafficking versus Direct Delivery to Peroxisomes. Biochim. Biophys. Acta BBA -Mol. Cell Res. 2016, 1863 (5), 870–880. https://doi.org/10.1016/j.bbamcr.2015.09.021.(66) Zara, V.; Ferramosca, A.; Robitaille-Foucher, P.; Palmieri, F.; Young, J. C. Mitochondrial Carrier Protein Biogenesis: Role of the Chaperones Hsc70 and Hsp90. Biochem. J. 2009, 419 (2), 369–375. https://doi.org/10.1042/BJ20082270.(67) Endo, T.; Yamamoto, H.; Esaki, M. Functional Cooperation and Separation of Translocators in Protein Import into Mitochondria, the Double-Membrane Bounded Organelles. J. Cell Sci. 2003, 116 (Pt 16), 3259–3267. https://doi.org/10.1242/jcs.00667.(68) Jansen, R. L. M.; van der Klei, I. J. The Peroxisome Biogenesis Factors Pex3 and Pex19: Multitasking Proteins with Disputed Functions. FEBS Lett. 2019, 593 (5), 457–474. https://doi.org/10.1002/1873-3468.13340.(69) Colasante, C.; Peña Diaz, P.; Clayton, C.; Voncken, F. Mitochondrial Carrier Family Inventory of Trypanosoma Brucei Brucei: Identification, Expression and Subcellular Localisation. Mol. Biochem. Parasitol. 2009, 167 (2), 104–117. https://doi.org/10.1016/j.molbiopara.2009.05.004.(70) Fiermonte, G.; Palmieri, L.; Todisco, S.; Agrimi, G.; Palmieri, F.; Walker, J. E. Identification of the Mitochondrial Glutamate Transporter BACTERIAL EXPRESSION, RECONSTITUTION, FUNCTIONAL CHARACTERIZATION, AND TISSUE DISTRIBUTION OF TWO HUMAN ISOFORMS. J. Biol. Chem. 2002, 277 (22), 19289–19294. https://doi.org/10.1074/jbc.M201572200.(71) Roosild, T. P.; Greenwald, J.; Vega, M.; Castronovo, S.; Riek, R.; Choe, S. NMR Structure of Mistic, a Membrane-Integrating Protein for Membrane Protein Expression. Science 2005, 307 (5713), 1317–1321. https://doi.org/10.1126/science.1106392.(72) Roosild, T. P.; Vega, M.; Castronovo, S.; Choe, S. Characterization of the Family of Mistic Homologues. BMC Struct. Biol. 2006, 6 (1), 10. https://doi.org/10.1186/1472- 6807-6-10.(73) Deniaud, A.; Bernaudat, F.; Frelet-Barrand, A.; Juillan-Binard, C.; Vernet, T.; Rolland, N.; Pebay-Peyroula, E. Expression of a Chloroplast ATP/ADP Transporter in E. Coli Membranes: Behind the Mistic Strategy. Biochim. Biophys. Acta 2011, 1808 (8), 2059–2066. https://doi.org/10.1016/j.bbamem.2011.04.011.(74) Colasante, C.; Alibu, V. P.; Kirchberger, S.; Tjaden, J.; Clayton, C.; Voncken, F. Characterization and Developmentally Regulated Localization of the Mitochondrial Carrier Protein Homologue MCP6 from Trypanosoma Brucei. Eukaryot. Cell 2006, 5 (8), 1194–1205. https://doi.org/10.1128/EC.00096-06.(75) Pena-Diaz, P.; Pelosi, L.; Ebikeme, C.; Colasante, C.; Gao, F.; Bringaud, F.; Voncken, F. Functional Characterisation of TbMCP5, a Conserved and Essential ADP/ATP Carrier Present in the Mitochondrion of the Human Pathogen Trypanosoma Brucei. J. Biol. Chem. 2012, jbc.M112.404699. https://doi.org/10.1074/jbc.M112.404699.(76) Macêdo, J. P. de; Burkard, G. S.; Niemann, M.; Barrett, M. P.; Vial, H.; Mäser, P.; Roditi, I.; Schneider, A.; Bütikofer, P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma Brucei. PLOS Pathog. 2015, 11 (5), e1004875. https://doi.org/10.1371/journal.ppat.1004875.(77) Zheng, F.; Colasante, C.; Voncken, F. Characterisation of a Mitochondrial Iron Transporter of the Pathogen Trypanosoma Brucei. Mol. Biochem. Parasitol. 2019, 233, 111221. https://doi.org/10.1016/j.molbiopara.2019.111221.(78) Colasante, C.; Zheng, F.; Kemp, C.; Voncken, F. A Plant-like Mitochondrial Carrier Family Protein Facilitates Mitochondrial Transport of Di- and Tricarboxylates in Trypanosoma Brucei. Mol. Biochem. Parasitol. 2018, 221, 36–51. https://doi.org/10.1016/j.molbiopara.2018.03.003.(79) Mittra, B.; Laranjeira-Silva, M. F.; Menezes, J. P. B. de; Jensen, J.; Michailowsky, V.; Andrews, N. W. A Trypanosomatid Iron Transporter That Regulates Mitochondrial Function Is Required for Leishmania Amazonensis Virulence. PLOS Pathog. 2016, 12 (1), e1005340. https://doi.org/10.1371/journal.ppat.1005340.(80) Sánchez-Lancheros, D. M.; Ospina-Giraldo, L. F.; Ramírez-Hernández, M. H. Nicotinamide Mononucleotide Adenylyltransferase of Trypanosoma Cruzi (TcNMNAT): A Cytosol Protein Target for Serine Kinases. Mem. Inst. Oswaldo Cruz 2016, 111 (11), 670–675. https://doi.org/10.1590/0074-02760160103.(81) Niño, C. H.; Forero-Baena, N.; Contreras, L. E.; Sánchez-Lancheros, D.; Figarella, K.; Ramírez, M. H.; Niño, C. H.; Forero-Baena, N.; Contreras, L. E.; SánchezLancheros, D.; Figarella, K.; Ramírez, M. H. Identification of the Nicotinamide Mononucleotide Adenylyltransferase of Trypanosoma Cruzi. Mem. Inst. Oswaldo Cruz 2015, 110 (7), 890–897. https://doi.org/10.1590/0074-02760150175.(82) Velasco-Villa, A.; Mauldin, M. R.; Shi, M.; Escobar, L. E.; Gallardo-Romero, N. F.; Damon, I.; Olson, V. A.; Streicker, D. G.; Emerson, G. The History of Rabies in the Western Hemisphere. Antiviral Res. 2017, 146, 221–232. https://doi.org/10.1016/j.antiviral.2017.03.013.(83) Fooks, A. R.; Cliquet, F.; Finke, S.; Freuling, C.; Hemachudha, T.; Mani, R. S.; Müller, T.; Nadin-Davis, S.; Picard-Meyer, E.; Wilde, H.; Banyard, A. C. Rabies. Nat. Rev. Dis. Primer 2017, 3 (1), 1–19. https://doi.org/10.1038/nrdp.2017.91.(84) Cherian, S.; Singh, R.; Anjaneya; Kp, S. Rabies Glycoprotein: A Benefit to the Virus, Us or Both? Res. Rev. J. Veternary Sci. 2015, 1 (1), 1–9.(85) Giesen, A.; Gniel, D.; Malerczyk, C. 30 Years of Rabies Vaccination with Rabipur: A Summary of Clinical Data and Global Experience. Expert Rev. Vaccines 2015, 14 (3), 351–367. https://doi.org/10.1586/14760584.2015.1011134.(86) Hemachudha, T.; Ugolini, G.; Wacharapluesadee, S.; Sungkarat, W.; Shuangshoti, S.; Laothamatas, J. Human Rabies: Neuropathogenesis, Diagnosis, and Management. Lancet Neurol. 2013, 12 (5), 498–513. https://doi.org/10.1016/S1474-4422(13)70038-3.(87) INS. Boletín Epidemiológico - Semana 38, 2019 https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/Forms/AllItems.aspx (accessed 2020 -05 -19). (88) MinSalud. MinSalud promueve jornada nacional de vacunación para prevenir la rabia https://www.minsalud.gov.co/Paginas/MinSalud-promueve-jornada-nacionalde-vacunacion-para-prevenir-la-rabia-.aspx (accessed 2020 -05 -19).(89) VECOL. RABICÁN https://www.vecol.com.co/productos/mascotas/biologicos/rabican (accessed 2020 - 05 -20).(90) Yelverton, E.; Norton, S.; Obijeski, J. F.; Goeddel, D. V. Rabies Virus Glycoprotein Analogs: Biosynthesis in Escherichia Coli. Science 1983, 219 (4585), 614–620. https://doi.org/10.1126/science.6297004.(91) Fernando, B.-G.; Yersin, C.-T.; José, C.-B.; Paola, Z.-S. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer https://www.hindawi.com/journals/bmri/2016/1674580/ (accessed 2020 -05 -30). https://doi.org/10.1155/2016/1674580.(92) Gomes, A. R.; Byregowda, S. M.; Veeregowda, B. M.; Balamurugan, V. An Overview of Heterologous Expression Host Systems for the Production of Recombinant Proteins. 2016. https://doi.org/10.14737/journal.aavs/2016/4.7.346.356.(93) Robinson, A. J.; Kunji, E. R. S. Mitochondrial Carriers in the Cytoplasmic State Have a Common Substrate Binding Site. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (8), 2617–2622. https://doi.org/10.1073/pnas.0509994103.(94) Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096.(95) Finn, R. D.; Attwood, T. K.; Babbitt, P. C.; Bateman, A.; Bork, P.; Bridge, A. J.; Chang, H.-Y.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.; Gough, J.; Haft, D.; Holliday, G. L.; Huang, H.; Huang, X.; Letunic, I.; Lopez, R.; Lu, S.; Marchler-Bauer, A.; Mi, H.; Mistry, J.; Natale, D. A.; Necci, M.; Nuka, G.; Orengo, C. A.; Park, Y.; Pesseat, S.; Piovesan, D.; Potter, S. C.; Rawlings, N. D.; Redaschi, N.; Richardson, L.; Rivoire, C.; Sangrador-Vegas, A.; Sigrist, C.; Sillitoe, I.; Smithers, B.; Squizzato, S.; Sutton, G.; Thanki, N.; Thomas, P. D.; Tosatto, S. C. E.; Wu, C. H.; Xenarios, I.; Yeh, L.-S.; Young, S.-Y.; Mitchell, A. L. InterPro in 2017—beyond Protein Family and Domain Annotations. Nucleic Acids Res. 2017, 45 (Database issue), D190–D199. https://doi.org/10.1093/nar/gkw1107.(96) Finn, R. D.; Clements, J.; Eddy, S. R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucleic Acids Res. 2011, 39 (Web Server issue), W29–W37. https://doi.org/10.1093/nar/gkr367.(97) Chou, K.-C.; Shen, H.-B. Euk-MPLoc: A Fusion Classifier for Large-Scale Eukaryotic Protein Subcellular Location Prediction by Incorporating Multiple Sites. J. Proteome Res. 2007, 6 (5), 1728–1734. https://doi.org/10.1021/pr060635i.(98) Chou, K.-C.; Shen, H.-B. Cell-PLoc: A Package of Web Servers for Predicting Subcellular Localization of Proteins in Various Organisms. Nat. Protoc. 2008, 3 (2), 153–162. https://doi.org/10.1038/nprot.2007.494.(99) Lin, W.-Z.; Fang, J.-A.; Xiao, X.; Chou, K.-C. ILoc-Animal: A Multi-Label Learning Classifier for Predicting Subcellular Localization of Animal Proteins. Mol. Biosyst. 2013, 9 (4), 634–644. https://doi.org/10.1039/c3mb25466f.(100) Blum, T.; Briesemeister, S.; Kohlbacher, O. MultiLoc2: Integrating Phylogeny and Gene Ontology Terms Improves Subcellular Protein Localization Prediction. BMC Bioinformatics 2009, 10, 274. https://doi.org/10.1186/1471-2105-10-274.(101) Almagro Armenteros, J. J.; Sønderby, C. K.; Sønderby, S. K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of Protein Subcellular Localization Using Deep Learning. Bioinformatics 2017, 33 (21), 3387–3395. https://doi.org/10.1093/bioinformatics/btx431.(102) Kelley, L. A.; Mezulis, S.; Yates, C. M.; Wass, M. N.; Sternberg, M. J. E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10 (6), 845–858. https://doi.org/10.1038/nprot.2015.053.(103) Kim, D. E.; Chivian, D.; Baker, D. Protein Structure Prediction and Analysis Using the Robetta Server. Nucleic Acids Res. 2004, 32 (Web Server issue), W526–W531. https://doi.org/10.1093/nar/gkh468.(104) Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G. R.; Wang, J.; Cong, Q.; Kinch, L. N.; Schaeffer, R. D.; Millán, C.; Park, H.; Adams, C.; Glassman, C. R.; DeGiovanni, A.; Pereira, J. H.; Rodrigues, A. V.; van Dijk, A. A.; Ebrecht, A. C.; Opperman, D. J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M. K.; Dalwadi, U.; Yip, C. K.; Burke, J. E.; Garcia, K. C.; Grishin, N. V.; Adams, P. D.; Read, R. J.; Baker, D. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373 (6557), 871–876. https://doi.org/10.1126/science.abj8754.(105) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Meng, E. C.; Couch, G. S.; Croll, T. I.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. Publ. Protein Soc. 2021, 30 (1), 70–82. https://doi.org/10.1002/pro.3943.(106) Pontius, J.; Richelle, J.; Wodak, S. J. Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures. J. Mol. Biol. 1996, 264 (1), 121– 136. https://doi.org/10.1006/jmbi.1996.0628.(107) Sanner, M. F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17 (1), 57–61.(108) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31 (2), 455–461. https://doi.org/10.1002/jcc.21334.(109) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA | Nucleic Acids Research | Oxford Academic https://academic.oup.com/nar/article/49/W1/W530/6266421 (accessed 2021 -09 - 29).(110) Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and Structure-Based Prediction of Eukaryotic Protein Phosphorylation Sites. J. Mol. Biol. 1999, 294 (5), 1351–1362. https://doi.org/10.1006/jmbi.1999.3310.(111) Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of Post-Translational Glycosylation and Phosphorylation of Proteins from the Amino Acid Sequence. Proteomics 2004, 4 (6), 1633–1649. https://doi.org/10.1002/pmic.200300771.(112) Kiemer, L.; Bendtsen, J. D.; Blom, N. NetAcet: Prediction of N-Terminal Acetylation Sites. Bioinforma. Oxf. Engl. 2005, 21 (7), 1269–1270. https://doi.org/10.1093/bioinformatics/bti130.(113) Steentoft, C.; Vakhrushev, S. Y.; Joshi, H. J.; Kong, Y.; Vester-Christensen, M. B.; Schjoldager, K. T.-B. G.; Lavrsen, K.; Dabelsteen, S.; Pedersen, N. B.; MarcosSilva, L.; Gupta, R.; Bennett, E. P.; Mandel, U.; Brunak, S.; Wandall, H. H.; Levery, S. B.; Clausen, H. Precision Mapping of the Human O-GalNAc Glycoproteome through SimpleCell Technology. EMBO J. 2013, 32 (10), 1478–1488. https://doi.org/10.1038/emboj.2013.79.(114) Gupta, R.; Brunak, S. Prediction of Glycosylation across the Human Proteome and the Correlation to Protein Function. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 2002, 310–322.(115) Apte, A.; Daniel, S. PCR Primer Design. Cold Spring Harb. Protoc. 2009, 2009 (3), pdb.ip65. https://doi.org/10.1101/pdb.ip65.(116) Sutherland, J. C.; Lin, B.; Monteleone, D. C.; Mugavero, J.; Sutherland, B. M.; Trunk, J. Electronic Imaging System for Direct and Rapid Quantitation of Fluorescence from Electrophoretic Gels: Application to Ethidium Bromide-Stained DNA. Anal. Biochem. 1987, 163 (2), 446–457. https://doi.org/10.1016/0003- 2697(87)90247-8.(117) Wizard® SV Gel and PCR Clean-Up System Protocol https://www.promega.com/resources/protocols/technical-bulletins/101/wizard-svgel-and-pcr-cleanup-system-protocol/ (accessed 2019 -09 -22).(118) pGEM®-T Vector Systems https://worldwide.promega.com/products/pcr/pcrcloning/pgem-t-vector-systems/ (accessed 2018 -11 -08).(119) Sambrook, J.; Russell, D. W. Molecular Cloning: A Laboratory Manual; CSHL Press, 2001.(120) Poxon, S. W.; Hughes, J. A. The Effect of Lyophilization on Plasmid DNA Activity. Pharm. Dev. Technol. 2000, 5 (1), 115–122. https://doi.org/10.1081/PDT100100526.(121) Eco32I (EcoRV) (10 U/L) - Thermo Fisher Scientific https://www.thermofisher.com/order/catalog/product/ER0301 (accessed 2018 -10 - 25).(122) User Guide: NheI 2500 U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0013185_NheI_2500U_UG.pdf&title=VXNlci BHdWlkZTogTmhlSSAyNTAwIFU= (accessed 2020 -06 -14).(123) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method | Nature Protocols https://www.nature.com/articles/nprot.2007.13?draft=collection (accessed 2020 -03 -17).(124) Duennwald, M. L. Growth Assays to Assess Polyglutamine Toxicity in Yeast. JoVE J. Vis. Exp. 2012, No. 61, e3461. https://doi.org/10.3791/3461.(125) Schägger, H. Tricine–SDS-PAGE. Nat. Protoc. 2006, 1 (1), 16–22. https://doi.org/10.1038/nprot.2006.4.(126) Yang, P.-C.; Mahmood, T. Western Blot: Technique, Theory, and Trouble Shooting. North Am. J. Med. Sci. 2012, 4 (9), 429. https://doi.org/10.4103/1947-2714.100998.(127) Klingenberg, M. Nicotinamide-Adenine Dinucleotides (NAD, NADP, NADH, NADPH): Spectrophotometric and Fluorimetric Methods. In Methods of Enzymatic Analysis (Second Edition); Bergmeyer, H. U., Ed.; Academic Press, 1974; pp 2045–2072. https://doi.org/10.1016/B978-0-12-091304-6.50060-4.(128) Champion pET SUMO Protein Expression System https://www.thermofisher.com/document-connect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2Fpetsumo_man.pdf&title=Q2hhbXBpb24gcEVUIF NVTU8gUHJvdGVpbiBFeHByZXNzaW9uIFN5c3RlbQ== (accessed 2019 -07 -07).(129) User Guide: EcoRI, 10 U/uL, 5000U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0012089_EcoRI_10_UuL_5000U_UG.pdf&ti tle=VXNlciBHdWlkZTogRWNvUkksIDEwIFUvdUwsIDUwMDBV (accessed 2019 - 07 -07).(130) Contreras, L. E.; Neme, R.; Ramírez, M. H. Identification and Functional Evaluation of Leishmania Braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expr. Purif. 2015, 115, 26–33. https://doi.org/10.1016/j.pep.2015.08.022.(131) Moreno-González, P. A.; Diaz, G. J.; Ramírez-Hernández, M. H. Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo del NAD+. Rev. Colomb. Quím. 2013, 42 (2), 12–20.(132) Pauly, D.; Dorner, M.; Zhang, X.; Hlinak, A.; Dorner, B.; Schade, R. Monitoring of Laying Capacity, Immunoglobulin Y Concentration, and Antibody Titer Development in Chickens Immunized with Ricin and Botulinum Toxins over a TwoYear Period. Poult. Sci. 2009, 88 (2), 281–290. https://doi.org/10.3382/ps.2008- 00323.(133) Polson, A.; von Wechmar, M. B.; van Regenmortel, M. H. Isolation of Viral IgY Antibodies from Yolks of Immunized Hens. Immunol. Commun. 1980, 9 (5), 475– 493. https://doi.org/10.3109/08820138009066010.(134) Guilmineau, F.; Krause, I.; Kulozik, U. Efficient Analysis of Egg Yolk Proteins and Their Thermal Sensitivity Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis under Reducing and Nonreducing Conditions. J. Agric. Food Chem. 2005, 53 (24), 9329–9336. https://doi.org/10.1021/jf050475f.(135) Matsuda, H.; Tanaka, H.; Blas, B. L.; Noseñas, J. S.; Tokawa, T.; Ohsawa, S. Evaluation of ELISA with ABTS, 2-2’-Azino-Di-(3-Ethylbenzthiazoline Sulfonic Acid), as the Substrate of Peroxidase and Its Application to the Diagnosis of Schistosomiasis. Jpn. J. Exp. Med. 1984, 54 (3), 131–138.(136) Niño, C. H. Identificación y Caracterización de La Nicotinamida Mononucleótido Adenilil Transferasa (NMNAT) En Trypanosoma Cruzi: Enzima Clave En El Metabolismo Del NAD+. 2014.(137) Innis, M. A.; Gelfand, D. H.; Sninsky, J. J.; White, T. J. PCR Protocols: A Guide to Methods and Applications; Academic Press, 2012.(138) User Guide: BamHI, 10 U/uL, 10,000U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0012058_BamHI_10_UuL_10000U_UG.pdf &title=VXNlciBHdWlkZTogQmFtSEksIDEwIFUvdUwsIDEwLDAwMFU= (accessed 2020 -06 -13).(139) User Guide: HindIII, 10 U/uL, 5000U https://www.thermofisher.com/documentconnect/documentconnect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fmanuals%2FMAN0012130_HindIII_10_UuL_5000U_UG.pdf&title=VXNlciBHdWlkZTogSGluZElJSSwgMTAgVS91TCwgNTAwMFU= (accessed 2020 -06 -13).(140) Zhang, T.; Lei, J.; Yang, H.; Xu, K.; Wang, R.; Zhang, Z. An Improved Method for Whole Protein Extraction from Yeast Saccharomyces Cerevisiae: Yeast Protein Extraction by LiAc/NaOH. Yeast 2011, 28 (11), 795–798. https://doi.org/10.1002/yea.1905.(141) Ziegler, M.; Monné, M.; Nikiforov, A.; Agrimi, G.; Heiland, I.; Palmieri, F. Welcome to the Family: Identification of the NAD+ Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules 2021, 11 (6), 880. https://doi.org/10.3390/biom11060880.(142) Chacón, E.; Ramírez-Hernández, M. H. APROXIMACIÓN BIOINFORMÁTICA Y EXPERIMENTAL AL ESTUDIO DE TRANSPORTADORES DE NAD+ EN EL PARÁSITO PROTOZOARIO Trypanosoma cruzi; Asociación Colombiana de Ciencias Biológicas: Armenia, 2019; Vol. 2, pp 409–411.(143) Rost, B. Twilight Zone of Protein Sequence Alignments. Protein Eng. Des. Sel. 1999, 12 (2), 85–94. https://doi.org/10.1093/protein/12.2.85.(144) Hannaert, V.; Saavedra, E.; Duffieux, F.; Szikora, J.-P.; Rigden, D. J.; Michels, P. A. M.; Opperdoes, F. R. Plant-like Traits Associated with Metabolism of Trypanosoma Parasites. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (3), 1067–1071. https://doi.org/10.1073/pnas.0335769100.(145) Jones, J. M.; Morrell, J. C.; Gould, S. J. Multiple Distinct Targeting Signals in Integral Peroxisomal Membrane Proteins. J. Cell Biol. 2001, 153 (6), 1141–1150. https://doi.org/10.1083/jcb.153.6.1141.(146) Wang, X.; Unruh, M. J.; Goodman, J. M. Discrete Targeting Signals Direct Pmp47 to Oleate-Induced Peroxisomes in Saccharomyces Cerevisiae *. J. Biol. Chem. 2001, 276 (14), 10897–10905. https://doi.org/10.1074/jbc.M010883200.(147) Cole, S. P. C. Multidrug Resistance Protein 1 (MRP1, ABCC1), a “Multitasking” ATP-Binding Cassette (ABC) Transporter *. J. Biol. Chem. 2014, 289 (45), 30880– 30888. https://doi.org/10.1074/jbc.R114.609248.(148) Hollingsworth, S. A.; Karplus, P. A. A Fresh Look at the Ramachandran Plot and the Occurrence of Standard Structures in Proteins. Biomol. Concepts 2010, 1 (3– 4), 271–283. https://doi.org/10.1515/BMC.2010.022.(149) Anderson, K. A.; Hirschey, M. D. Mitochondrial Protein Acetylation Regulates Metabolism. Essays Biochem. 2012, 52, 10.1042/bse0520023. https://doi.org/10.1042/bse0520023.(150) Ritagliati, C.; Alonso, V. L.; Manarin, R.; Cribb, P.; Serra, E. C. Overexpression of Cytoplasmic TcSIR2RP1 and Mitochondrial TcSIR2RP3 Impacts on Trypanosoma Cruzi Growth and Cell Invasion. 2015. https://doi.org/10.1371/journal.pntd.0003725.(151) Fisher, P.; Thomas-Oates, J.; Wood, A. J.; Ungar, D. The N-Glycosylation Processing Potential of the Mammalian Golgi Apparatus. Front. Cell Dev. Biol. 2019, 7, 157. https://doi.org/10.3389/fcell.2019.00157.(152) Millar, B. C.; Jiru, X.; Moore, J. E.; Earle, J. A. P. A Simple and Sensitive Method to Extract Bacterial, Yeast and Fungal DNA from Blood Culture Material. J. Microbiol. Methods 2000, 42 (2), 139–147. https://doi.org/10.1016/S0167-7012(00)00174-3.(153) Mirhendi, H.; Diba, K.; Rezaei, A.; Jalalizand, N.; Hosseinpur, L.; Khodadadi, H. Colony PCR Is a Rapid and Sensitive Method for DNA Amplification in Yeasts. Iran. J. Public Health 2007, 36 (1), 40–44.(154) Koh, C. M. Storage of Bacteria and Yeast. In Methods in Enzymology; Elsevier, 2013; Vol. 533, pp 15–21. https://doi.org/10.1016/B978-0-12-420067-8.00002-7.(155) Villamil Silva, S. E. Exploración de un transportador de NAD+ y/o sus precursores en Leishmania. Trabajo de grado - Maestría, Universidad Nacional de Colombia, 2021.(156) Fathi-Roudsari, M.; Maghsoudi, N.; Maghsoudi, A.; Niazi, S.; Soleiman, M. AutoInduction for High Level Production of Biologically Active Reteplase in Escherichia Coli. Protein Expr. Purif. 2018, 151, 18–22. https://doi.org/10.1016/j.pep.2018.05.008.(157) Shaw, A. Z.; Miroux, B. A General Approach for Heterologous Membrane Protein Expression in Escherichia Coli. In Membrane Protein Protocols: Expression, Purification, and Characterization; Selinsky, B. S., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2003; pp 23–35. https://doi.org/10.1385/1- 59259-400-X:23.(158) Aguirre-López, B.; Cabrera, N.; de Gómez-Puyou, M. T.; Perez-Montfort, R.; Gómez-Puyou, A. The Importance of Arginine Codons AGA and AGG for the Expression in E. Coli of Triosephosphate Isomerase from Seven Different Species. Biotechnol. Rep. 2017, 13, 42–48. https://doi.org/10.1016/j.btre.2017.01.002.(159) Horn, D. Codon Usage Suggests That Translational Selection Has a Major Impact on Protein Expression in Trypanosomatids. BMC Genomics 2008, 9, 2. https://doi.org/10.1186/1471-2164-9-2.(160) Jeacock, L.; Faria, J.; Horn, D. Codon Usage Bias Controls MRNA and Protein Abundance in Trypanosomatids. eLife 2018, 7, e32496. https://doi.org/10.7554/eLife.32496.(161) Kleber-Janke, T.; Becker, W.-M. Use of Modified BL21(DE3) Escherichia Coli Cells for High-Level Expression of Recombinant Peanut Allergens Affected by Poor Codon Usage. Protein Expr. Purif. 2000, 19 (3), 419–424. https://doi.org/10.1006/prep.2000.1265.(162) Geertsma, E. R.; Groeneveld, M.; Slotboom, D.-J.; Poolman, B. Quality Control of Overexpressed Membrane Proteins. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (15), 5722–5727. https://doi.org/10.1073/pnas.0802190105.(163) Zhou, Y. J.; Yang, W.; Wang, L.; Zhu, Z.; Zhang, S.; Zhao, Z. K. Engineering NAD+ Availability for Escherichia Coli Whole-Cell Biocatalysis: A Case Study for Dihydroxyacetone Production. Microb. Cell Factories 2013, 12 (1), 103. https://doi.org/10.1186/1475-2859-12-103.(164) Palmieri, F.; Pierri, C. L. Structure and Function of Mitochondrial Carriers - Role of the Transmembrane Helix P and G Residues in the Gating and Transport Mechanism. FEBS Lett. 2010, 584 (9), 1931–1939. https://doi.org/10.1016/j.febslet.2009.10.063.(165) Sivashanmugam, A.; Murray, V.; Cui, C.; Zhang, Y.; Wang, J.; Li, Q. Practical Protocols for Production of Very High Yields of Recombinant Proteins Using Escherichia Coli. Protein Sci. Publ. Protein Soc. 2009, 18 (5), 936–948. https://doi.org/10.1002/pro.102.(166) Hayat, S. M. G.; Farahani, N.; Golichenari, B.; Sahebkar, A. Recombinant Protein Expression in Escherichia Coli (E.Coli): What We Need to Know. Curr. Pharm. Des. 2018, 24 (6), 718–725. https://doi.org/10.2174/1381612824666180131121940.(167) Singhvi, P.; Saneja, A.; Srichandan, S.; Panda, A. K. Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol. 2020, 38 (5), 474–486. https://doi.org/10.1016/j.tibtech.2019.12.011.(168) Schade, R.; Calzado, E. G.; Sarmiento, R.; Chacana, P. A.; Porankiewicz-Asplund, J.; Terzolo, H. R. Chicken Egg Yolk Antibodies (IgY-Technology): A Review of Progress in Production and Use in Research and Human and Veterinary Medicine. Altern. Lab. Anim. 2005, 33 (2), 129–154. https://doi.org/10.1177/026119290503300208.(169) Adrizal, A.; Patterson, P. H.; Cravener, T.; Hendricks, G. L. Egg Yolk and Serum Antibody Titers of Broiler Breeder Hens Immunized with Uricase and or Urease. Poult. Sci. 2011, 90 (10), 2162–2168. https://doi.org/10.3382/ps.2010-00855.(170) Klimentzou, P.; Paravatou-Petsotas, M.; Zikos, C.; Beck, A.; Skopeliti, M.; Czarnecki, J.; Tsitsilonis, O.; Voelter, W.; Livaniou, E.; Evangelatos, G. P. Development and Immunochemical Evaluation of Antibodies Y for the Poorly Immunogenic Polypeptide Prothymosin Alpha. Peptides 2006, 27 (1), 183–193. https://doi.org/10.1016/j.peptides.2005.07.002.(171) FoodData Central https://fdc.nal.usda.gov/fdc-app.html#/fooddetails/172184/nutrients (accessed 2019 -12 -12).(172) Aalberse, R. C. Structural Biology of Allergens. J. Allergy Clin. Immunol. 2000, 106 (2), 228–238. https://doi.org/10.1067/mai.2000.108434.(173) Gallo, J.-M.; Precigout, E. Tubulin Expression in Trypanosomes. Biol. Cell 1988, 64 (2), 137–143.(174) Mattos, E. C.; Schumacher, R. I.; Colli, W.; Alves, M. J. M. Adhesion of Trypanosoma Cruzi Trypomastigotes to Fibronectin or Laminin Modifies Tubulin and Paraflagellar Rod Protein Phosphorylation. PLOS ONE 2012, 7 (10), e46767. https://doi.org/10.1371/journal.pone.0046767.(175) Panchuk-Voloshina, N.; Haugland, R. P.; Bishop-Stewart, J.; Bhalgat, M. K.; Millard, P. J.; Mao, F.; Leung, W.-Y.; Haugland, R. P. Alexa Dyes, a Series of New Fluorescent Dyes That Yield Exceptionally Bright, Photostable Conjugates. J. Histochem. Cytochem. 1999, 47 (9), 1179–1188. https://doi.org/10.1177/002215549904700910.(176) Zuma, A. A.; Cavalcanti, D. P.; Zogovich, M.; Machado, A. C. L.; Mendes, I. C.; Thiry, M.; Galina, A.; de Souza, W.; Machado, C. R.; Motta, M. C. M. Unveiling the Effects of Berenil, a DNA-Binding Drug, on Trypanosoma Cruzi: Implications for KDNA Ultrastructure and Replication. Parasitol. Res. 2015, 114 (2), 419–430. https://doi.org/10.1007/s00436-014-4199-8.(177) Kalb, L. C.; Frederico, Y. C. A.; Boehm, C.; Moreira, C. M. do N.; Soares, M. J.; Field, M. C. Conservation and Divergence within the Clathrin Interactome of Trypanosoma Cruzi. Sci. Rep. 2016, 6 (1), 31212. https://doi.org/10.1038/srep31212.(178) Kalel, V. C.; Li, M.; Gaussmann, S.; Delhommel, F.; Schäfer, A.-B.; Tippler, B.; Jung, M.; Maier, R.; Oeljeklaus, S.; Schliebs, W.; Warscheid, B.; Sattler, M.; Erdmann, R. Evolutionary Divergent PEX3 Is Essential for Glycosome Biogenesis and Survival of Trypanosomatid Parasites. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2019, 1866 (12), 118520. https://doi.org/10.1016/j.bbamcr.2019.07.015.(179) Salazar, O. Bacteria and Yeast Cell Disruption Using Lytic Enzymes. In 2D PAGE: Sample Preparation and Fractionation; Posch, A., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, 2008; pp 23–34. https://doi.org/10.1007/978-1-60327-064-9_2.(180) Diekert, K.; I.P.M. de Kroon, A.; Kispal, G.; Lill, R. Chapter 2 Isolation and Subfractionation of Mitochondria from the Yeast Saccharomyces Cerevisiae. In Methods in Cell Biology; Mitochondria; Academic Press, 2001; Vol. 65, pp 37–51. https://doi.org/10.1016/S0091-679X(01)65003-9.(181) Nielsen, K. H. Protein Expression-Yeast. In Methods in Enzymology; Elsevier, 2014; Vol. 536, pp 133–147. https://doi.org/10.1016/B978-0-12-420070-8.00012-X.EstudiantesInvestigadoresMaestrosORIGINAL1026581504.2021.pdf1026581504.2021.pdfTesis de Maestría en Ciencias – Bioquímicaapplication/pdf6412116https://repositorio.unal.edu.co/bitstream/unal/81733/3/1026581504.2021.pdfc69ae479ea06cbabc52e43daa036c247MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81733/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1026581504.2021.pdf.jpg1026581504.2021.pdf.jpgGenerated Thumbnailimage/jpeg5092https://repositorio.unal.edu.co/bitstream/unal/81733/5/1026581504.2021.pdf.jpg9f9e1355427d41263a123aa14e36b240MD55unal/81733oai:repositorio.unal.edu.co:unal/817332024-08-06 23:10:06.628Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |