Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.

Ilustraciones

Autores:
Urrego García, Dallany Milena
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79973
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79973
https://repositorio.unal.edu.co/
Palabra clave:
600 - Tecnología (Ciencias aplicadas)
660 - Ingeniería química
Hormigón
Arquitectura doméstica
Biodeterioro
Ácidos orgánicos
Concreto residual
Biodeterioration
Aspergillus niger
Organic acids
Leucaena leucocephala
Residual concrete
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_c58597cba467de649292b6e2b92cff87
oai_identifier_str oai:repositorio.unal.edu.co:unal/79973
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
dc.title.translated.eng.fl_str_mv Mechanisms of concrete degradation mediated by the symbiosis between Leucaena leucocephala and Aspergillus niger established in urban structures.
title Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
spellingShingle Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
600 - Tecnología (Ciencias aplicadas)
660 - Ingeniería química
Hormigón
Arquitectura doméstica
Biodeterioro
Ácidos orgánicos
Concreto residual
Biodeterioration
Aspergillus niger
Organic acids
Leucaena leucocephala
Residual concrete
title_short Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
title_full Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
title_fullStr Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
title_full_unstemmed Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
title_sort Mecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.
dc.creator.fl_str_mv Urrego García, Dallany Milena
dc.contributor.advisor.none.fl_str_mv Mejía Restrepo, Erica
Tobón, Jorge
dc.contributor.author.none.fl_str_mv Urrego García, Dallany Milena
dc.contributor.researchgroup.spa.fl_str_mv Grupo del Cemento y Materiales de Construcción
dc.subject.ddc.spa.fl_str_mv 600 - Tecnología (Ciencias aplicadas)
660 - Ingeniería química
topic 600 - Tecnología (Ciencias aplicadas)
660 - Ingeniería química
Hormigón
Arquitectura doméstica
Biodeterioro
Ácidos orgánicos
Concreto residual
Biodeterioration
Aspergillus niger
Organic acids
Leucaena leucocephala
Residual concrete
dc.subject.lemb.none.fl_str_mv Hormigón
Arquitectura doméstica
dc.subject.proposal.spa.fl_str_mv Biodeterioro
Ácidos orgánicos
Concreto residual
dc.subject.proposal.eng.fl_str_mv Biodeterioration
Aspergillus niger
Organic acids
Leucaena leucocephala
Residual concrete
description Ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-19T16:15:46Z
dc.date.available.none.fl_str_mv 2021-08-19T16:15:46Z
dc.date.issued.none.fl_str_mv 2021-08
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79973
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79973
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Angulo, S. C., Ulsen, C., John, V. M., Kahn, H., & Cincotto, M. A. (2009). Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. In Waste Management (Vol. 29, Issue 2, pp. 721–730). https://doi.org/10.1016/j.wasman.2008.07.009
2. Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010
3. Bakker, B. L. G., & Ji, C. R. (2013). Issues in the GPD formulation of DVCS. Acta Physica Polonica B, Proceedings Supplement, 6(1), 131–136. https://doi.org/10.5506/APhysPolBSupp.6.131 4. Banfield, J. F., Barker, W. W., Welch, S. A., & Taunton, A. (1999). Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3404–3411. https://doi.org/10.1073/pnas.96.7.3404
5. Bashan, Y., Vierheilig, H., Salazar, B. G., & Luz, E. (2006). Primary colonization and breakdown of igneous rocks by endemic , succulent elephant trees ( Pachycormus discolor ) of the deserts in Baja California , Mexico. 344–347. https://doi.org/10.1007/s00114-006-0111-4
6. Bertron, A., Duchesne, J., & Escadeillas, G. (2005). Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites, 27(9–10), 898–909. https://doi.org/10.1016/j.cemconcomp.2005.06.003
7. Bertron, A., Duchesne, J., & Escadeillas, G. (2007). Degradation of cement pastes by organic acids. Materials and Structures/Materiaux et Constructions, 40(3), 341–354. https://doi.org/10.1617/s11527-006-9110-3
8. Bertron, Alexandra. (2014). Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures, 47(11), 1787–1806. https://doi.org/10.1617/s11527-014-0433-1
9. Biodeterioro(de(monumentos(y(biorremediación:(estado(actual( y(perspectivas(futuras(. (2013). 562–579.
10. Corrêa Pinto, A. M., Palomar, T., Alves, L. C., da Silva, S. H. M., Monteiro, R. C., Macedo, M. F., & Vilarigues, M. G. (2019). Fungal biodeterioration of stained-glass windows in monuments from Belém do Pará (Brazil). International Biodeterioration and Biodegradation, 138(September 2018), 106–113. https://doi.org/10.1016/j.ibiod.2019.01.008
11. Coutinho, M. L., Miller, A. Z., & Macedo, M. F. (2015). Biological colonization and biodeterioration of architectural ceramic materials: An overview. In Journal of Cultural Heritage (Vol. 16, Issue 5). https://doi.org/10.1016/j.culher.2015.01.006
12. Cwalina, B. (2008). Biodeterioration of Concrete. Journal of Architecture Civil Engineering Environment, 133–140.
13. Dakal, T. C., & Cameotra, S. S. (2012). Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environmental Sciences Europe, 24(1), 1–13. https://doi.org/10.1186/2190-4715-24-36
14. De Windt, L., Bertron, A., Larreur-Cayol, S., & Escadeillas, G. (2015). Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling. Cement and Concrete Research, 69, 25–36. https://doi.org/10.1016/j.cemconres.2014.12.001
15. De Windt, L., & Devillers, P. (2010). Modeling the degradation of Portland cement pastes by biogenic organic acids. Cement and Concrete Research, 40(8), 1165–1174. https://doi.org/10.1016/j.cemconres.2010.03.005
16. Gadd, Geoffrey M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49. https://doi.org/10.1016/j.mycres.2006.12.001
17. Gadd, Geoffrey Michael. (2013). Molecular Environmental Soil Science. In Molecular Environmental Soil Science. https://doi.org/10.1007/978-94-007-4177-5
18. Gadd, Geoffrey Michael, Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., & Liang, X. (2014). Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 28(2–3), 36–55. https://doi.org/10.1016/j.fbr.2014.05.001
19. Gámez-Espinosa, E., Bellotti, N., Deyá, C., & Cabello, M. (2020). Mycological studies as a tool to improve the control of building materials biodeterioration. Journal of Building Engineering, 32(August). https://doi.org/10.1016/j.jobe.2020.101738
20. George, R. P., Ramya, S., Ramachandran, D., & Kamachi Mudali, U. (2013). Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp. Cement and Concrete Research, 47, 8–13. https://doi.org/10.1016/j.cemconres.2013.01.010
21. Giannantonio, D. J., Kurth, J. C., Kurtis, K. E., & Sobecky, P. A. (2009). Effects of concrete properties and nutrients on fungal colonization and fouling. International Biodeterioration and Biodegradation, 63(3), 252–259. https://doi.org/10.1016/j.ibiod.2008.10.002
22. Guerra, F. L., Lopes, W., Cazarolli, J. C., Lobato, M., Masuero, A. B., Dal Molin, D. C. C., Bento, F. M., Schrank, A., & Vainstein, M. H. (2019). Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Building and Environment, 155(October 2018), 195–209. https://doi.org/10.1016/j.buildenv.2019.03.017
23. Harbulakova, V. O., Estokova, A., Stevulova, N., Luptáková, A., & Foraiova, K. (2013). Current trends in investigation of concrete biodeterioration. Procedia Engineering, 65, 346–351. https://doi.org/10.1016/j.proeng.2013.09.053
24. Ivanov, V., & Stabnikov, V. (2017). Biocorrosion, Biodeterioration, and Biofouling in Civil Engineering. 261–269. https://doi.org/10.1007/978-981-10-1445-1_13
25. Jones, J. M. C., Guinel, F. C., & Antunes, P. M. (2020). Carbonatites as rock fertilizers: A review. Rhizosphere, 13(November 2019). https://doi.org/10.1016/j.rhisph.2020.100188
26. Kakakhel, M. A., Wu, F., Gu, J. D., Feng, H., Shah, K., & Wang, W. (2019). Controlling biodeterioration of cultural heritage objects with biocides: A review. International Biodeterioration and Biodegradation, 143(June), 104721. https://doi.org/10.1016/j.ibiod.2019.104721
27. Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere : an evolutionary perspective. 83–115. https://doi.org/10.1007/s11104-009-0042-x
28. Larreur-Cayol, S., Bertron, A., & Escadeillas, G. (2011). Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cement and Concrete Research, 41(8), 882–892. https://doi.org/10.1016/j.cemconres.2011.04.007
29. Leyva, L. A. (2006). Efecto del ácido glucónico sobre la actividad de las enzimas encargadas de su metabolismo, en la bacteria promotora de crecimiento en plantas Azospirillum brasilense Cd asociada a plantas de mezquite (Prosopis articulata S. Watson). 79. https://cibnor.repositorioinstitucional.mx/jspui/bitstream/1001/660/1/leyva_l.pdf
30. LIAN, B., CHEN, Y., ZHU, L., & YANG, R. (2008). Effect of Microbial Weathering on Carbonate Rocks. Earth Science Frontiers, 15(6), 90–99. https://doi.org/10.1016/s1872-5791(09)60009-9
31. Limbachiya, M. C., Marrocchino, E., & Koulouris, A. (2007). Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Management, 27(2), 201–208. https://doi.org/10.1016/j.wasman.2006.01.005
32. Lopez, B. R., & Bacilio, M. (2020). Weathering and soil formation in hot , dry environments mediated by plant – microbe interactions. 447–459.
33. Loukanov, A., El Allaoui, N., Omor, A., Elmadani, F. Z., Bouayad, K., & Seiichiro, N. (2020). Jo ur na l P. Journal of the Neurological Sciences, 116544. https://doi.org/10.1016/j.jns.2019.116544
34. Mej, E., & Sc, R. M. (2017). Bioacidulation of construction and demolition wastes and its potential use in bioremediation of urban-mining- degraded soils.
35. Mejía, E., Tobón, J. I., & Osorio, W. (2019). Urban structure degradation caused by growth of plants and microbial activity. Materiales de Construccion, 69(333), 1–11. https://doi.org/10.3989/mc.2019.09517
36. Mejía, Erica, Navarro, P., Vargas, C., Tobón, J. I., & Osorio, W. (2016). Caracterización de un residuo de construcción y demolición para la obtención de Ca y Si mediante tratamiento con ácido cítrico. DYNA (Colombia), 83(199), 94–101. https://doi.org/10.15446/dyna.v83n199.56394
37. Mendes, G. de O., Murta, H. M., Valadares, R. V., Silveira, W. B. da, Silva, I. R. da, & Costa, M. D. (2020). Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Minerals Engineering, 155(September 2019), 106458. https://doi.org/10.1016/j.mineng.2020.106458
38. Michel, D. (1998). Introduccion a la bioarchivistica. La Gazette Des Archives, 182(1), 282–283.
39. Nascimento, J. M. do, Vieira Netto, J. A. F., Valadares, R. V., Mendes, G. de O., Silva, I. R. da, Vergütz, L., & Costa, M. D. (2021). Aspergillus niger as a key to unlock fixed phosphorus in highly weathered soils. Soil Biology and Biochemistry, 156(May 2020). https://doi.org/10.1016/j.soilbio.2021.108190
40. Palla, F., & Barresi, G. (2017). Biotechnology and conservation of cultural heritage. Biotechnology and Conservation of Cultural Heritage, 1–100. https://doi.org/10.1007/978-3-319-46168-7
41. Quintero Ange Mauriciol, Carvajal Escobar Yesid, A. P. (2012). Luna Azul ISSN 1909-2474 No. 34, enero - junio 2012. Luna Azul, 34, 240–256. https://doi.org/10.17151/luaz.2015.40.14
42. Rendon Diaz Miron, L. E., & Koleva, D. A. (2017). Concrete durability: Cementitious materials and reinforced concrete properties, behavior and corrosion resistance. Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance, 1–162. https://doi.org/10.1007/978-3-319-55463-1
43. Rosling, A., Roose, T., Herrmann, A. M., Davidson, F. A., Finlay, R. D., & Gadd, G. M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 23(4), 138–144. https://doi.org/10.1016/j.fbr.2009.09.003
44. Siegesmund, S., & Snethlage, R. (2014). Stone in architecture: Properties, durability: Fifth edition. In Stone in Architecture: Properties, Durability: Fifth Edition. https://doi.org/10.1007/978-3-642-45155-3
45. Tiago, I., & Gil, F. (2020). International Biodeterioration & Biodegradation In vitro analyses of fungi and dolomitic limestone interactions : Bioreceptivity and biodeterioration assessment Jo a. 155(July). https://doi.org/10.1016/j.ibiod.2020.105107
46. Uroz, Stéphane, Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17(8), 378–387. https://doi.org/10.1016/j.tim.2009.05.004
47. Uroz, Stephane, Kelly, L. C., Turpault, M. P., Lepleux, C., & Frey-Klett, P. (2015). The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends in Microbiology, 23(12), 751–762. https://doi.org/10.1016/j.tim.2015.10.004
48. Varela, G. (n.d.). Fisiologia y metabolismo bacteriano. 1–8.
49. Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.030
50. Walaszczyk, E., Podgórski, W., Janczar-Smuga, M., & Dymarska, E. (2018). Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by aspergillus Niger W78C in submerged batch cultures with sucrose as a carbon source. Chemical Papers, 72(5), 1089–1093. https://doi.org/10.1007/s11696-017-0354-x
51. Wei, S., Jiang, Z., Liu, H., Zhou, D., & Sanchez-Silva, M. (2013). Microbiologically induced deterioration of concrete - A review. In Brazilian Journal of Microbiology. https://doi.org/10.1590/S1517-83822014005000006
52. Wiktor, V., De Leo, F., Urzì, C., Guyonnet, R., Grosseau, P., & Garcia-Diaz, E. (2009). Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. International Biodeterioration and Biodegradation, 63(8), 1061–1065. https://doi.org/10.1016/j.ibiod.2009.09.004
53. Xu, J., & Sparks, D. L. (2014). Molecular Environmental Soil Science. In Chemistry International -- Newsmagazine for IUPAC (Vol. 31, Issue 4). https://doi.org/10.1515/ci.2009.31.4.35a
54. Zhao, J., Csetenyi, L., & Michael, G. (2020). International Biodeterioration & Biodegradation Biocorrosion of copper metal by Aspergillus niger. International Biodeterioration & Biodegradation, 154(June), 105081. https://doi.org/10.1016/j.ibiod.2020.105081
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia-Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79973/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79973/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79973/5/1018372308.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79973/6/1018372308.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
1ce5cfb276d31671c06b8f5c9be8f752
a7e68f8ea83131faaa5539f9aebffa9a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089423333097472
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mejía Restrepo, Erica4afb2512db01a19731e8d60f9e012c94Tobón, Jorge1952839dba62f004c4e2e680a95bd8f6600Urrego García, Dallany Milena0133ccec7a5cd99ed1ecd59bd61fb708Grupo del Cemento y Materiales de Construcción2021-08-19T16:15:46Z2021-08-19T16:15:46Z2021-08https://repositorio.unal.edu.co/handle/unal/79973Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesUna gran parte de las estructuras urbanas son elaboradas con concreto el cual, es considerado una roca artificial y sufre procesos de meteorización al estar en contacto con agua, gases atmosféricos, microorganismos, plantas, entre otros. Estas interacciones generan inestabilidad al concreto cambiando sus propiedades químicas, físicas, mecánicas y mineralógicas, las cuáles son inducidas por procesos de actividad metabólica de los organismos vivos. Tanto microorganismo, plantas y animales representan los desencadenantes procesos de biodeterioro de las estructuras urbanas y de concreto en general. Aspergillus niger ha sido identificado en estructuras generando biodeterioro por mecanismos de acidólisis, al generar ácidos orgánicos como el cítrico, este hongo es considerado un buen agente mineralizador, con capacidades para transformar y solubilizar minerales en sustratos rocosos y de materiales para la construcción. Entre tanto Leucaena leucocephala, se ha encontrado establecida en estructuras, generando daños mecánicos en el concreto. Sin embargo, sus interacciones simbióticas en el proceso de biodeterioro, no han sido estudiadas. Por tanto, el objetivo de esta investigación es proponer el tipo de asociación simbiótica y mecanismos de biodeterioro in vitro entre Aspergillus niger y Leucaena leucocephala establecidas en el concreto, por medio de la producción de ácidos orgánicos, tales como ácido cítrico y oxálico y el ácido glucónico a partir de exudados radicales y el hongo a escala de laboratorio. Se evidenció que el hongo produce metabolitos ácidos que liberan Ca, Si y P a partir de cilindros de concreto, y que el ácido cítrico es el más fuerte ya que liberó Ca2+ y Si4+ a razones de 2500 g/L y 1500 g/L respectivamente en 90 días medidos por las técnicas de Absorción atómica y espectroscopia UV-VIS. También se encontró que las hifas del hongo Aspergillus niger generan ácido oxálico, a razones de 0,72 mg/L y cítrico 5,52 mg/L, los cuales provocan la disolución de los minerales, mientras que la planta suministra fuentes de carbono y energía por medio de la glucosa (ácido glucónico: 309,11 mg/L) generada en la fotosíntesis, en cultivo In vitro medidos por HPLC. Igualmente, se encontró que adiciones de concreto residual y A. niger mejora las propiedades nutricionales y mejora el pH del suelo en invernadero. Estos hallazgos mostraron que la meteorización del concreto, mediada por los ácidos orgánicos en simbiosis, modifica el pH del concreto, liberando Ca2+ y Si, elementos principales del concreto y fuentes nutritivas para el desarrollo vegetal. (Tomado de la fuente)Mechanisms of concrete degradation mediated by the symbiosis between Leucaena leucocephala and Aspergillus niger established in urban structures A large part of urban structures is made with concrete, which is considered an artificial rock and undergoes weathering processes when in contact with water, atmospheric gases, microorganisms, plants, among others. These interactions generate instability in concrete by changing its chemical, physical, mechanical and mineralogical properties, which are induced by processes of metabolic activity of living organisms. Both microorganisms, plants and animals represent the triggers of biodeterioration processes of urban and concrete structures in general. Aspergillus niger has been identified in structures generating biodeterioration by acidolysis mechanisms, by generating organic acids such as citric, this fungus is considered a good mineralizing agent, with capacities to transform and solubilize minerals in rocky substrates and construction materials. Meanwhile, Leucaena leucocephala has been found to be established in structures, causing mechanical damage to concrete. However, their symbiotic interactions in the biodeterioration process have not been studied. Therefore, the objective of this research is to propose the type of symbiotic association and in vitro biodeterioration mechanisms between Aspergillus niger and Leucaena leucocephala established in concrete, through the production of organic acids, such as citric and oxalic acid and acid gluconic acid from radical exudates and laboratory-scale fungus. It was shown that the fungus produces acid metabolites that release Ca, Si and P from concrete cylinders, and that citric acid is the strongest since it released Ca2 + and Si4 + at rates of 2500 g / L and 1500 g / L respectively in 90 days measured by atomic absorption and UV-VIS spectroscopy techniques. It was also found that the hyphae of the fungus Aspergillus niger generate oxalic acid, at rates of 0.72 mg / L and citric 5.52 mg / L, which cause the dissolution of minerals, while the plant provides sources of carbon and energy by means of glucose (gluconic acid: 309.11 mg / L) generated in photosynthesis, In vitro culture measured by HPLC. Likewise, it was found that additions of residual concrete and A. niger improve the nutritional properties and improve the pH of the soil in the greenhouse. These findings showed that the weathering of concrete, mediated by organic acids in symbiosis, modifies the pH of the concrete, releasing Ca2+ and Si, the main elements of concrete and nutritional sources for plant development. (Tomado de la fuente)MaestríaMagíster en Ciencias - BiotecnologíaConcreto Ecológico94 páginasapplication/pdfspaUniversidad Nacional de Colombia-Sede MedellínMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín600 - Tecnología (Ciencias aplicadas)660 - Ingeniería químicaHormigónArquitectura domésticaBiodeterioroÁcidos orgánicosConcreto residualBiodeteriorationAspergillus nigerOrganic acidsLeucaena leucocephalaResidual concreteMecanismos de degradación de concreto mediados por la simbiosis entre Leucaena leucocephala y Aspergillus niger establecidos en estructuras urbanas.Mechanisms of concrete degradation mediated by the symbiosis between Leucaena leucocephala and Aspergillus niger established in urban structures.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Angulo, S. C., Ulsen, C., John, V. M., Kahn, H., & Cincotto, M. A. (2009). Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. In Waste Management (Vol. 29, Issue 2, pp. 721–730). https://doi.org/10.1016/j.wasman.2008.07.0092. Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.0103. Bakker, B. L. G., & Ji, C. R. (2013). Issues in the GPD formulation of DVCS. Acta Physica Polonica B, Proceedings Supplement, 6(1), 131–136. https://doi.org/10.5506/APhysPolBSupp.6.131 4. Banfield, J. F., Barker, W. W., Welch, S. A., & Taunton, A. (1999). Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3404–3411. https://doi.org/10.1073/pnas.96.7.34045. Bashan, Y., Vierheilig, H., Salazar, B. G., & Luz, E. (2006). Primary colonization and breakdown of igneous rocks by endemic , succulent elephant trees ( Pachycormus discolor ) of the deserts in Baja California , Mexico. 344–347. https://doi.org/10.1007/s00114-006-0111-46. Bertron, A., Duchesne, J., & Escadeillas, G. (2005). Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites, 27(9–10), 898–909. https://doi.org/10.1016/j.cemconcomp.2005.06.0037. Bertron, A., Duchesne, J., & Escadeillas, G. (2007). Degradation of cement pastes by organic acids. Materials and Structures/Materiaux et Constructions, 40(3), 341–354. https://doi.org/10.1617/s11527-006-9110-38. Bertron, Alexandra. (2014). Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures, 47(11), 1787–1806. https://doi.org/10.1617/s11527-014-0433-19. Biodeterioro(de(monumentos(y(biorremediación:(estado(actual( y(perspectivas(futuras(. (2013). 562–579.10. Corrêa Pinto, A. M., Palomar, T., Alves, L. C., da Silva, S. H. M., Monteiro, R. C., Macedo, M. F., & Vilarigues, M. G. (2019). Fungal biodeterioration of stained-glass windows in monuments from Belém do Pará (Brazil). International Biodeterioration and Biodegradation, 138(September 2018), 106–113. https://doi.org/10.1016/j.ibiod.2019.01.00811. Coutinho, M. L., Miller, A. Z., & Macedo, M. F. (2015). Biological colonization and biodeterioration of architectural ceramic materials: An overview. In Journal of Cultural Heritage (Vol. 16, Issue 5). https://doi.org/10.1016/j.culher.2015.01.00612. Cwalina, B. (2008). Biodeterioration of Concrete. Journal of Architecture Civil Engineering Environment, 133–140.13. Dakal, T. C., & Cameotra, S. S. (2012). Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environmental Sciences Europe, 24(1), 1–13. https://doi.org/10.1186/2190-4715-24-3614. De Windt, L., Bertron, A., Larreur-Cayol, S., & Escadeillas, G. (2015). Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling. Cement and Concrete Research, 69, 25–36. https://doi.org/10.1016/j.cemconres.2014.12.00115. De Windt, L., & Devillers, P. (2010). Modeling the degradation of Portland cement pastes by biogenic organic acids. Cement and Concrete Research, 40(8), 1165–1174. https://doi.org/10.1016/j.cemconres.2010.03.00516. Gadd, Geoffrey M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49. https://doi.org/10.1016/j.mycres.2006.12.00117. Gadd, Geoffrey Michael. (2013). Molecular Environmental Soil Science. In Molecular Environmental Soil Science. https://doi.org/10.1007/978-94-007-4177-518. Gadd, Geoffrey Michael, Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., & Liang, X. (2014). Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 28(2–3), 36–55. https://doi.org/10.1016/j.fbr.2014.05.00119. Gámez-Espinosa, E., Bellotti, N., Deyá, C., & Cabello, M. (2020). Mycological studies as a tool to improve the control of building materials biodeterioration. Journal of Building Engineering, 32(August). https://doi.org/10.1016/j.jobe.2020.10173820. George, R. P., Ramya, S., Ramachandran, D., & Kamachi Mudali, U. (2013). Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp. Cement and Concrete Research, 47, 8–13. https://doi.org/10.1016/j.cemconres.2013.01.01021. Giannantonio, D. J., Kurth, J. C., Kurtis, K. E., & Sobecky, P. A. (2009). Effects of concrete properties and nutrients on fungal colonization and fouling. International Biodeterioration and Biodegradation, 63(3), 252–259. https://doi.org/10.1016/j.ibiod.2008.10.00222. Guerra, F. L., Lopes, W., Cazarolli, J. C., Lobato, M., Masuero, A. B., Dal Molin, D. C. C., Bento, F. M., Schrank, A., & Vainstein, M. H. (2019). Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Building and Environment, 155(October 2018), 195–209. https://doi.org/10.1016/j.buildenv.2019.03.01723. Harbulakova, V. O., Estokova, A., Stevulova, N., Luptáková, A., & Foraiova, K. (2013). Current trends in investigation of concrete biodeterioration. Procedia Engineering, 65, 346–351. https://doi.org/10.1016/j.proeng.2013.09.05324. Ivanov, V., & Stabnikov, V. (2017). Biocorrosion, Biodeterioration, and Biofouling in Civil Engineering. 261–269. https://doi.org/10.1007/978-981-10-1445-1_1325. Jones, J. M. C., Guinel, F. C., & Antunes, P. M. (2020). Carbonatites as rock fertilizers: A review. Rhizosphere, 13(November 2019). https://doi.org/10.1016/j.rhisph.2020.10018826. Kakakhel, M. A., Wu, F., Gu, J. D., Feng, H., Shah, K., & Wang, W. (2019). Controlling biodeterioration of cultural heritage objects with biocides: A review. International Biodeterioration and Biodegradation, 143(June), 104721. https://doi.org/10.1016/j.ibiod.2019.10472127. Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere : an evolutionary perspective. 83–115. https://doi.org/10.1007/s11104-009-0042-x28. Larreur-Cayol, S., Bertron, A., & Escadeillas, G. (2011). Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cement and Concrete Research, 41(8), 882–892. https://doi.org/10.1016/j.cemconres.2011.04.00729. Leyva, L. A. (2006). Efecto del ácido glucónico sobre la actividad de las enzimas encargadas de su metabolismo, en la bacteria promotora de crecimiento en plantas Azospirillum brasilense Cd asociada a plantas de mezquite (Prosopis articulata S. Watson). 79. https://cibnor.repositorioinstitucional.mx/jspui/bitstream/1001/660/1/leyva_l.pdf30. LIAN, B., CHEN, Y., ZHU, L., & YANG, R. (2008). Effect of Microbial Weathering on Carbonate Rocks. Earth Science Frontiers, 15(6), 90–99. https://doi.org/10.1016/s1872-5791(09)60009-931. Limbachiya, M. C., Marrocchino, E., & Koulouris, A. (2007). Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Management, 27(2), 201–208. https://doi.org/10.1016/j.wasman.2006.01.00532. Lopez, B. R., & Bacilio, M. (2020). Weathering and soil formation in hot , dry environments mediated by plant – microbe interactions. 447–459.33. Loukanov, A., El Allaoui, N., Omor, A., Elmadani, F. Z., Bouayad, K., & Seiichiro, N. (2020). Jo ur na l P. Journal of the Neurological Sciences, 116544. https://doi.org/10.1016/j.jns.2019.11654434. Mej, E., & Sc, R. M. (2017). Bioacidulation of construction and demolition wastes and its potential use in bioremediation of urban-mining- degraded soils.35. Mejía, E., Tobón, J. I., & Osorio, W. (2019). Urban structure degradation caused by growth of plants and microbial activity. Materiales de Construccion, 69(333), 1–11. https://doi.org/10.3989/mc.2019.0951736. Mejía, Erica, Navarro, P., Vargas, C., Tobón, J. I., & Osorio, W. (2016). Caracterización de un residuo de construcción y demolición para la obtención de Ca y Si mediante tratamiento con ácido cítrico. DYNA (Colombia), 83(199), 94–101. https://doi.org/10.15446/dyna.v83n199.5639437. Mendes, G. de O., Murta, H. M., Valadares, R. V., Silveira, W. B. da, Silva, I. R. da, & Costa, M. D. (2020). Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Minerals Engineering, 155(September 2019), 106458. https://doi.org/10.1016/j.mineng.2020.10645838. Michel, D. (1998). Introduccion a la bioarchivistica. La Gazette Des Archives, 182(1), 282–283.39. Nascimento, J. M. do, Vieira Netto, J. A. F., Valadares, R. V., Mendes, G. de O., Silva, I. R. da, Vergütz, L., & Costa, M. D. (2021). Aspergillus niger as a key to unlock fixed phosphorus in highly weathered soils. Soil Biology and Biochemistry, 156(May 2020). https://doi.org/10.1016/j.soilbio.2021.10819040. Palla, F., & Barresi, G. (2017). Biotechnology and conservation of cultural heritage. Biotechnology and Conservation of Cultural Heritage, 1–100. https://doi.org/10.1007/978-3-319-46168-741. Quintero Ange Mauriciol, Carvajal Escobar Yesid, A. P. (2012). Luna Azul ISSN 1909-2474 No. 34, enero - junio 2012. Luna Azul, 34, 240–256. https://doi.org/10.17151/luaz.2015.40.1442. Rendon Diaz Miron, L. E., & Koleva, D. A. (2017). Concrete durability: Cementitious materials and reinforced concrete properties, behavior and corrosion resistance. Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance, 1–162. https://doi.org/10.1007/978-3-319-55463-143. Rosling, A., Roose, T., Herrmann, A. M., Davidson, F. A., Finlay, R. D., & Gadd, G. M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 23(4), 138–144. https://doi.org/10.1016/j.fbr.2009.09.00344. Siegesmund, S., & Snethlage, R. (2014). Stone in architecture: Properties, durability: Fifth edition. In Stone in Architecture: Properties, Durability: Fifth Edition. https://doi.org/10.1007/978-3-642-45155-345. Tiago, I., & Gil, F. (2020). International Biodeterioration & Biodegradation In vitro analyses of fungi and dolomitic limestone interactions : Bioreceptivity and biodeterioration assessment Jo a. 155(July). https://doi.org/10.1016/j.ibiod.2020.10510746. Uroz, Stéphane, Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17(8), 378–387. https://doi.org/10.1016/j.tim.2009.05.00447. Uroz, Stephane, Kelly, L. C., Turpault, M. P., Lepleux, C., & Frey-Klett, P. (2015). The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends in Microbiology, 23(12), 751–762. https://doi.org/10.1016/j.tim.2015.10.00448. Varela, G. (n.d.). Fisiologia y metabolismo bacteriano. 1–8.49. Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.03050. Walaszczyk, E., Podgórski, W., Janczar-Smuga, M., & Dymarska, E. (2018). Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by aspergillus Niger W78C in submerged batch cultures with sucrose as a carbon source. Chemical Papers, 72(5), 1089–1093. https://doi.org/10.1007/s11696-017-0354-x51. Wei, S., Jiang, Z., Liu, H., Zhou, D., & Sanchez-Silva, M. (2013). Microbiologically induced deterioration of concrete - A review. In Brazilian Journal of Microbiology. https://doi.org/10.1590/S1517-8382201400500000652. Wiktor, V., De Leo, F., Urzì, C., Guyonnet, R., Grosseau, P., & Garcia-Diaz, E. (2009). Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. International Biodeterioration and Biodegradation, 63(8), 1061–1065. https://doi.org/10.1016/j.ibiod.2009.09.00453. Xu, J., & Sparks, D. L. (2014). Molecular Environmental Soil Science. In Chemistry International -- Newsmagazine for IUPAC (Vol. 31, Issue 4). https://doi.org/10.1515/ci.2009.31.4.35a54. Zhao, J., Csetenyi, L., & Michael, G. (2020). International Biodeterioration & Biodegradation Biocorrosion of copper metal by Aspergillus niger. International Biodeterioration & Biodegradation, 154(June), 105081. https://doi.org/10.1016/j.ibiod.2020.105081EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79973/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79973/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53ORIGINAL1018372308.2021.pdf1018372308.2021.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf1921593https://repositorio.unal.edu.co/bitstream/unal/79973/5/1018372308.2021.pdf1ce5cfb276d31671c06b8f5c9be8f752MD55THUMBNAIL1018372308.2021.pdf.jpg1018372308.2021.pdf.jpgGenerated Thumbnailimage/jpeg4177https://repositorio.unal.edu.co/bitstream/unal/79973/6/1018372308.2021.pdf.jpga7e68f8ea83131faaa5539f9aebffa9aMD56unal/79973oai:repositorio.unal.edu.co:unal/799732024-07-27 00:14:32.551Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==