Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua

ilustraciones, tablas

Autores:
Romero Benavides, Luis Eduardo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79820
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79820
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Fotoquímica
Photochemistry
Conductividad eléctrica
Electric conductivity
Nanomateriales
Óxido de zinc
ZnO
Fotocatálisis
Zinc Oxide
Nanostructures
Photocatalyst
PEC efficiency
Fotolisis
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_c5140ea3d981987a2fa7887d70d5c1f3
oai_identifier_str oai:repositorio.unal.edu.co:unal/79820
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
dc.title.translated.eng.fl_str_mv Synthesis of zinc oxide nanostructured electrodes for water splitting
title Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
spellingShingle Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Fotoquímica
Photochemistry
Conductividad eléctrica
Electric conductivity
Nanomateriales
Óxido de zinc
ZnO
Fotocatálisis
Zinc Oxide
Nanostructures
Photocatalyst
PEC efficiency
Fotolisis
title_short Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
title_full Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
title_fullStr Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
title_full_unstemmed Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
title_sort Obtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de agua
dc.creator.fl_str_mv Romero Benavides, Luis Eduardo
dc.contributor.advisor.none.fl_str_mv Zea Ramírez, Hugo Ricardo
Quintero Cortés, Francisco Javier
dc.contributor.author.none.fl_str_mv Romero Benavides, Luis Eduardo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Materiales, Catálisis y Medio Ambiente
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Fotoquímica
Photochemistry
Conductividad eléctrica
Electric conductivity
Nanomateriales
Óxido de zinc
ZnO
Fotocatálisis
Zinc Oxide
Nanostructures
Photocatalyst
PEC efficiency
Fotolisis
dc.subject.lemb.none.fl_str_mv Fotoquímica
Photochemistry
Conductividad eléctrica
Electric conductivity
dc.subject.proposal.spa.fl_str_mv Nanomateriales
Óxido de zinc
ZnO
Fotocatálisis
dc.subject.proposal.eng.fl_str_mv Zinc Oxide
Nanostructures
Photocatalyst
PEC efficiency
dc.subject.spines.none.fl_str_mv Fotolisis
description ilustraciones, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-19T21:42:38Z
dc.date.available.none.fl_str_mv 2021-07-19T21:42:38Z
dc.date.issued.none.fl_str_mv 2021-03-22
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79820
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79820
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] IEA, World Energy Balances 2019. OECD, 2019.
[2] P. Emílio and V. De Miranda, “Hydrogen Energy: Sustainable and Perennial,” 2019.
[3] International Energy Agency, Key World Energy Statistics 2018. OECD, 2018.
[4] BP, “Full report – BP Statistical Review of World Energy 2019.”
[5] P. Jackson, “De Estocolmo a Kyoto : Breve historia del cambio climático,” Crónica ONU, vol. XLIV, no. 2, pp. 1–6, 2007, [Online]. Available: https://www.un.org/es/chronicle/article/de-estocolmo-kyotobreve-historia-del-cambio-climatico.
[6] Organización de las Naciones Unidas, “Objetivo 7. ENERGÍA ASEQUIBLE Y NO CONTAMINANTE,” United Nations, p. 1, 2016, [Online]. Available: https://www.un.org/sustainabledevelopment/es/wp-content/uploads/sites/3/2016/10/7_Spanish_Why_it_Matters.pdf.
[7] M. Momirlan and T. N. Veziroglu, “The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet,” Int. J. Hydrogen Energy, vol. 30, pp. 795–802, 2005, doi: 10.1016/j.ijhydene.2004.10.011.
[8] World Nuclear Association, “Heat values of various fuels - World Nuclear Association,” p. 2018, 2018, Accessed: Mar. 25, 2020. [Online]. Available: https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx.
[9] J. Kegel, I. M. Povey, and M. E. Pemble, “Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities,” Nano Energy, vol. 54, pp. 409–428, Dec. 2018, doi: 10.1016/j.nanoen.2018.10.043.
[10] J. Jia et al., “Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%,” Nat. Commun., vol. 7, no. 1, pp. 1–6, Oct. 2016, doi: 10.1038/ncomms13237.
[11] P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy,” RSC Adv., vol. 2, no. 21, pp. 7933–7947, 2012, doi: 10.1039/c2ra20839c.
[12] A. Rokade, S. Rondiya, V. Sharma, M. Prasad, H. Pathan, and S. Jadkar, “Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water,” J. Solid State Electrochem., vol. 21, no. 9, pp. 2639–2648, 2017, doi: 10.1007/s10008-016-3427-9.
[13] S. He et al., “Preparation and properties of ZnO nanostructures by electrochemical anodization method,” Appl. Surf. Sci., vol. 256, no. 8, pp. 2557–2562, 2010, doi: 10.1016/j.apsusc.2009.10.104.
[14] A. Y. Faid and N. K. Allam, “Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes,” RSC Adv., vol. 6, no. 83, pp. 80221–80225, 2016, doi: 10.1039/C6RA18747A.
[15] F. Quintero, P. Arias, and H. Zea, “Novel anodizing procedure to grow TiO2 nanotubes successfully employed in ethanol photolysis,” Int. J. ChemTech Res., vol. 5, no. 4, pp. 1641–1645, 2013, [Online]. Available: http://www.sphinxsai.com/2013/VOL5_NO.4_APRIL/PDFS_VOL5_NO.4/CT=33(1641-1645)AJ13.pdf.
[16] P. Arias Monje, “Photoelectrocatalytic Hydrogen Production with TiO2 Nanostructures Formed by Alternating Voltage Anodization,” Universidad Nacional de Colombia, 2016.
[17] H. Yan et al., “Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation,” Mater. Res. Bull., vol. 44, no. 10, pp. 1954–1958, Oct. 2009, doi: 10.1016/j.materresbull.2009.06.014.
[18] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes. Elsevier, 1998.
[19] R. A. Serway and J. W. Jewwett, “Teoría de banda en sólidos,” in Física para ciencias e ingenierías Vol. 2., 9a., Cengage, 2015, pp. 1359–1364.
[20] O. Coddington, J. L. Lean, D. Lindholm, P. Pilewskie, M. Snow, and N. C. Program, “NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2,” Jan. 01, 2015. https://www.ncdc.noaa.gov/cdr/atmospheric/solar-spectral-irradiance (accessed Mar. 31, 2020).
[21] S. B. A. Hamid, S. J. Teh, and C. W. Lai, “Photocatalytic Water Oxidation on ZnO: A Review,” Catalysts, vol. 7, no. 3, p. 93, 2017, doi: 10.3390/catal7030093.
[22] R. Van De Krol and M. Grätzel, Photoelectro - chemical Hydrogen Production. 2012.
[23] H. Pan, “Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting,” Renewable and Sustainable Energy Reviews, vol. 57. Elsevier Ltd, pp. 584–601, May 01, 2016, doi: 10.1016/j.rser.2015.12.117.
[24] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting, 1st ed. New York, NY: Springer New York, 2013.
[25] R. M. Navarro, F. del Valle, J. A. Villoria de la Mano, M. C. Álvarez-Galván, and J. L. G. Fierro, “Photocatalytic Water Splitting Under Visible Light. Concept and Catalysts Development,” Advances in Chemical Engineering, vol. 36. pp. 111–143, 2009, doi: 10.1016/S0065-2377(09)00404-9.
[26] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, Jul. 1972, doi: 10.1038/238037a0.
[27] S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa, “Photocatalytic activity for hydrogen evolution of electrospun TiO 2 nanofibers,” ACS Appl. Mater. Interfaces, vol. 1, no. 5, pp. 1140–1143, 2009, doi: 10.1021/am9001474.
[28] A. Kudo, “Photocatalyst Materials for Water Splitting,” Catal. Surv. from Asia, vol. 7, no. 1, pp. 31–38, 2003, doi: 10.1023/A:1023480507710 ID.
[29] A. B. Murphy et al., “Efficiency of solar water splitting using semiconductor electrodes,” Int. J. Hydrogen Energy, 2006, doi: 10.1016/j.ijhydene.2006.01.014.
[30] L. Andrade, T. Lopes, H. A. Ribeiro, and A. Mendes, “Transient phenomenological modeling of photoelectrochemical cells for water splitting - Application to undoped hematite electrodes,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 175–188, 2011, doi: 10.1016/j.ijhydene.2010.09.098.
[31] P. Dias, A. Vilanova, T. Lopes, L. Andrade, and A. Mendes, “Extremely stable bare hematite photoanode for solar water splitting,” Nano Energy, vol. 23, pp. 70–79, May 2016, doi: 10.1016/j.nanoen.2016.03.008.
[32] T. Lopes, L. Andrade, H. A. Ribeiro, and A. Mendes, “Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11601–11608, 2010, doi: 10.1016/j.ijhydene.2010.04.001.
[33] R. Sánchez-Tovar, R. M. Fernández-Domene, M. T. Montañés, A. Sanz-Marco, and J. Garcia-Antón, “ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting,” RSC Adv., vol. 6, no. 36, pp. 30425–30435, 2016, doi: 10.1039/C6RA03501A.
[34] F. D. Ruiz-Ocampo, J. M. Zapien-Rodríguez, O. Burgara-Montero, E. A. Escoto-Sotelo, F. A. Núñez-Pérez, and L. de S. E. Ballesteros-Pachecho, J.C. (Universidad Politécnica de Lázaro Cárdenas, “Electrodeposition of Nanostructured ZnO Photoanodes for Their Application in the Oxygen Evolution Reaction,” Int. J. Electrochem. Sci., no. 12, pp. 4898–4914, Jun. 2017, doi: 10.20964/2017.06.74.
[35] L. Zaraska, K. Mika, K. Syrek, and G. D. Sulka, “Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes,” J. Electroanal. Chem., vol. 801, no. August, pp. 511–520, Sep. 2017, doi: 10.1016/j.jelechem.2017.08.035.
[36] J. Wang, L. Pan, H. Meng, R. Han, Z. Huang, and C. Zhang, “One-Step Seedless and Catalyst — Free Growth of Hierarchical ZnO Film Promising for Photoelectrochemical Application,” no. March, pp. 61–76, 2016.
[37] M.-C. Huang, T. Wang, B.-J. Wu, J.-C. Lin, and C.-C. Wu, “Anodized ZnO nanostructures for photoelectrochemical water splitting,” Appl. Surf. Sci., vol. 360, pp. 442–450, Jan. 2016, doi: 10.1016/j.apsusc.2015.09.174.
[38] G. S. Huang, X. L. Wu, Y. C. Cheng, J. C. Shen, A. P. Huang, and P. K. Chu, “Fabrication and characterization of anodic ZnO nanoparticles,” Appl. Phys. A Mater. Sci. Process., vol. 86, no. 4, pp. 463–467, 2007, doi: 10.1007/s00339-006-3778-7.
[39] L. Zaraska, K. Mika, M. Zych, and G. D. Sulka, “Anodic formation of zinc oxide nanostructures with various morphologies,” in Nanostructured Anodic Metal Oxides, Elsevier, 2020, pp. 385–414.
[40] L. Zaraska et al., “High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2017, doi: 10.1016/j.mseb.2017.09.003.
[41] W. Siripala, “Hydrogen Energy and Photoelectrolysis of Water,” Proc. Tech. Sess., no. 20, pp. 67–73, 2004, [Online]. Available: https://www.researchgate.net/publication/237549114.
[42] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034.
[43] J.-M. Herrmann, “Fundamentals and misconceptions in photocatalysis,” J. Photochem. Photobiol. A Chem., vol. 216, no. 2–3, pp. 85–93, Dec. 2010, doi: 10.1016/j.jphotochem.2010.05.015.
[44] S. K. Saraswat, D. D. Rodene, and R. B. Gupta, “Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light,” Renew. Sustain. Energy Rev., vol. 89, no. June 2017, pp. 228–248, 2018, doi: 10.1016/j.rser.2018.03.063.
[45] M. S. Ramachandra Rao and T. Okada, ZnO Nanocrystals and Allied Materials, vol. 180. 2014.
[46] T. Bak, J. Nowotny, M. Rekas, and C. . Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy, vol. 27, no. 10, pp. 991–1022, Oct. 2002, doi: 10.1016/S0360-3199(02)00022-8.
[47] Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang, “2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions,” Adv. Mater., vol. 28, no. 10, pp. 1917–1933, Mar. 2016, doi: 10.1002/adma.201503270.
[48] U.S.Geological_Survey, “Mineral Commodity Summaries,” Reston, Virginia, 2020. doi: 10.3133/mcs2020.
[49] Metalary, “Metalary - Latest and Historical Metal Prices,” 2020. http://www.metalary.com/ (accessed Mar. 31, 2020).
[50] B. O. Seraphin, Ed., Solar Energy Conversion, vol. 31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979.
[51] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, and A. Z. Moshfegh, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review,” Research on Chemical Intermediates, vol. 45, no. 4. Springer Netherlands, pp. 2197–2254, Apr. 15, 2019, doi: 10.1007/s11164-018-03729-5.
[52] O. A. Fouad, A. A. Ismail, Z. I. Zaki, and R. M. Mohamed, “Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity,” Appl. Catal. B Environ., vol. 62, no. 1–2, pp. 144–149, Jan. 2006, doi: 10.1016/j.apcatb.2005.07.006.
[53] M. V. Rao, K. Rajeshwar, V. R. Pal Verneker, and J. DuBow, “Photosynthetic production of H2 and H2O2 on semiconducting oxide grains in aqueous solutions,” J. Phys. Chem., vol. 84, no. 15, pp. 1987–1991, 1980, doi: 10.1021/j100452a023.
[54] J. Han, W. Qiu, and W. Gao, “Potential dissolution and photo-dissolution of ZnO thin films,” J. Hazard. Mater., vol. 178, no. 1–3, pp. 115–122, Jun. 2010, doi: 10.1016/j.jhazmat.2010.01.050.
[55] H. Li, W. Dong, J. Xi, Z. Li, X. Wu, and Z. Ji, “Hydropowered photoelectrochemical water splitting solar cell for hydrogen production,” J. Alloys Compd., vol. 691, pp. 750–754, Jan. 2017, doi: 10.1016/j.jallcom.2016.08.290.
[56] M. A. Johar, R. A. Afzal, A. A. Alazba, and U. Manzoor, “Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites,” Adv. Mater. Sci. Eng., vol. 2015, 2015, doi: 10.1155/2015/934587.
[57] R. Dom, L. R. Baby, H. G. Kim, and P. H. Borse, “Fe controlled charge-dynamics in ZnO for solar hydrogen generation,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5758–5767, Mar. 2017, doi: 10.1016/j.ijhydene.2016.12.089.
[58] H. Abdullah, D. H. Kuo, and X. Chen, “High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5638–5648, 2017, doi: 10.1016/j.ijhydene.2016.11.137.
[59] M. Y. Guo et al., “ZnO and TiO2 1D nanostructures for photocatalytic applications,” J. Alloys Compd., vol. 509, no. 4, pp. 1328–1332, Jan. 2011, doi: 10.1016/j.jallcom.2010.10.028.
[60] J. Lu, H. Wang, D. Peng, T. Chen, S. Dong, and Y. Chang, “Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 78, pp. 41–48, Apr. 2016, doi: 10.1016/j.physe.2015.11.035.
[61] T. H. Yang et al., “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal., vol. 329, no. 1, pp. 167–176, Sep. 2015, doi: 10.1016/j.jcat.2015.05.009.
[62] N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, and M. Batzill, “Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO,” Langmuir, vol. 25, no. 5, pp. 3310–3315, Mar. 2009, doi: 10.1021/la803845f.
[63] B. Beverskog and I. Puigdomenech, “Revised pourbaix diagrams for zinc at 25-300°C,” Corros. Sci., vol. 39, no. 1, pp. 107–114, Jan. 1997, doi: 10.1016/S0010-938X(97)89246-3.
[64] University of Cambridge, “DoITPoMS - TLP Library The Nernst Equation and Pourbaix Diagrams.” https://www.doitpoms.ac.uk/tlplib/pourbaix/printall.php (accessed Jan. 19, 2021).
[65] J. R. Davis, Corrosion : Understanding the Basics. Materials Park, Ohio: ASM International, 2000.
[66] E. McCafferty, Introduction to corrosion science. Springer New York, 2010.
[67] J. Ramsden, Nanotechnology. Elsevier Inc., 2011.
[68] D. Filipponi, Luisa Sutherland, NANOTECHNOLOGIES Principles, Applications, Implications and Hands-on Activities. A compendium for educators. Brussels, 2013.
[69] European Comission, “Questions on nanomaterials.” https://ec.europa.eu/health/scientific_committees/opinions_layman/nanomaterials2012/en/index.htm (accessed Jun. 22, 2020).
[70] J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B, vol. 81, no. 11, p. 115318, Mar. 2010, doi: 10.1103/PhysRevB.81.115318.
[71] T. P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler, and A. N. Tiwari, “Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements,” Sci. Rep., vol. 9, no. 1, p. 5385, Dec. 2019, doi: 10.1038/s41598-019-41716-x.
[72] F. Zuo, L. Wang, and P. Feng, “Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity,” Int. J. Hydrogen Energy, vol. 39, no. 2, pp. 711–717, Jan. 2014, doi: 10.1016/j.ijhydene.2013.10.120.
[73] X. Gu, T. Edvinsson, and J. Zhu, “ZnO nanomaterials: strategies for improvement of photocatalytic and photoelectrochemical activities,” in Current Developments in Photocatalysis and Photocatalytic Materials, Elsevier, 2020, pp. 231–244.
[74] M. Kong et al., “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc., vol. 133, no. 41, pp. 16414–16417, Oct. 2011, doi: 10.1021/ja207826q.
[75] R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int., vol. 39, no. 3, pp. 2283–2292, Apr. 2013, doi: 10.1016/j.ceramint.2012.08.075.
[76] A. Samavati et al., “Influence of ZnO nanostructure configuration on tailoring the optical bandgap: Theory and experiment,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 263, p. 114811, Jan. 2021, doi: 10.1016/j.mseb.2020.114811.
[77] Y.-J. Kim et al., “ZnO nanostructures with controlled morphologies on a glass substrate.,” Nanotechnology, vol. 21, no. 26, p. 265603, 2010, doi: 10.1088/0957-4484/21/26/265603.
[78] A. Ramirez-Canon, D. O. Miles, P. J. Cameron, and D. Mattia, “Zinc oxide nanostructured films produced via anodization: a rational design approach,” RSC Adv., vol. 3, no. 47, p. 25323, 2013, doi: 10.1039/c3ra43886d.
[79] N. Clament Sagaya Selvam, J. J. Vijaya, and L. J. Kennedy, “Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures,” Ind. Eng. Chem. Res., vol. 51, no. 50, pp. 16333–16345, Dec. 2012, doi: 10.1021/ie3016945.
[80] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, May 2007, doi: 10.1016/S1369-7021(07)70078-0.
[81] M. Kumar and C. Sasikumar, “Electrodeposition of Nanostructured ZnO Thin Film: A Review,” Am. J. Mater. Sci. Eng., vol. 2, no. 2, pp. 18–23, May 2014, doi: 10.12691/ajmse-2-2-2.
[82] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” J. Nanomater., vol. 2012, no. July 2012, 2012, doi: 10.1155/2012/624520.
[83] B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale, vol. 2, no. 9. The Royal Society of Chemistry, pp. 1573–1587, Sep. 01, 2010, doi: 10.1039/c0nr00047g.
[84] X. Wu, G. Lu, C. Li, and G. Shi, “Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil,” Nanotechnology, vol. 17, no. 19, pp. 4936–4940, Oct. 2006, doi: 10.1088/0957-4484/17/19/026.
[85] G. Huey-Shya, A. Rohana, and F. Akhyar, “ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange,” Turkish J. od Chem., no. 35, pp. 375–391, 2011, doi: 10.3906/kim-1010-742.
[86] Y. Yamaguchi, M. Yamazaki, S. Yoshihara, and T. Shirakashi, “Photocatalytic ZnO films prepared by anodizing,” J. Electroanal. Chem., vol. 442, no. 1–2, pp. 1–3, Jan. 1998, doi: 10.1016/S0022-0728(97)00354-9.
[87] N. K. Shrestha, K. Lee, R. Hahn, and P. Schmuki, “Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte,” Electrochem. commun., vol. 34, pp. 9–13, 2013, doi: 10.1016/j.elecom.2013.04.020.
[88] H. M. Chen et al., “A new approach to solar hydrogen production: A ZnO-ZnS solid solution nanowire array photoanode,” Adv. Energy Mater., vol. 1, no. 5, pp. 742–747, 2011, doi: 10.1002/aenm.201100246.
[89] S. J. Kim, J. Lee, and J. Choi, “Understanding of anodization of zinc in an electrolyte containing fluoride ions,” Electrochim. Acta, vol. 53, no. 27, pp. 7941–7945, 2008, doi: 10.1016/j.electacta.2008.06.006.
[90] S. Sreekantan, L. R. Gee, and Z. Lockman, “Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide,” J. Alloys Compd., vol. 476, no. 1–2, pp. 513–518, 2009, doi: 10.1016/j.jallcom.2008.09.044.
[91] J. Zhao, X. Wang, J. Liu, Y. Meng, X. Xu, and C. Tang, “Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method,” Mater. Chem. Phys., vol. 126, no. 3, pp. 555–559, 2011, doi: 10.1016/j.matchemphys.2011.01.028.
[92] J. Park, K. Kim, and J. Choi, “Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization,” Curr. Appl. Phys., vol. 13, no. 7, pp. 1370–1375, 2013, doi: 10.1016/j.cap.2013.04.015.
[93] C. F. Mah, K. P. Beh, F. K. Yam, and Z. Hassan, “Rapid Formation and Evolution of Anodized-Zn Nanostructures in NaHCO 3 Solution,” ECS J. Solid State Sci. Technol., vol. 5, no. 10, pp. M105–M112, Aug. 2016, doi: 10.1149/2.0061610jss.
[94] S. Ono, Y. Kobayashi, R. Kobayashi, and H. Asoh, “Fabrication of Self-Organized Nanoporous Oxide Semiconductors by Anodization,” ECS Trans., vol. 16, no. 3, pp. 353–358, Dec. 2019, doi: 10.1149/1.2982575.
[95] P. Wang, J. J. Kosinski, A. Anderko, R. D. Springer, M. M. Lencka, and J. Liu, “Ethylene Glycol and Its Mixtures with Water and Electrolytes: Thermodynamic and Transport Properties,” 2013, doi: 10.1021/ie4019353.
[96] M. Zhang et al., “Effect of methanol ratio in mixed solvents on optical properties and wettability of ZnO films by cathodic electrodeposition,” J. Alloys Compd., vol. 615, pp. 327–332, 2014, doi: 10.1016/j.jallcom.2014.06.178.
[97] N. A. Abd Samad, C. W. Lai, and S. B. Abd Hamid, “Influence Applied Potential on the Formation of Self-Organized ZnO Nanorod Film and Its Photoelectrochemical Response,” Int. J. Photoenergy, vol. 2016, 2016, doi: 10.1155/2016/1413072.
[98] ASTM International, “ASTM B6-13, Standard Specification for Zinc.” ASTM international, West Conshohocken, PA, pp. 1–3, 2013, doi: 10.1520/B0006-13.
[99] ASTM International, “ASTM E536-16, Standard Test Methods for Chemical Analysis of Zinc and Zinc Alloys.” ASTM international, West Conshohocken, PA, pp. 1–6, 2016, doi: 10.1520/E0536-16.
[100] A. Ul-Hamid, “Sample Preparation,” in A Beginners’ Guide to Scanning Electron Microscopy, Cham: Springer International Publishing, 2018, pp. 309–359.
[101] Sylvania-Lighting, “UV-C Purification and Disinfection For Air, Water and Surfaces Special Lighting,” Newhaven, UK, 2019.
[102] Merck-KGaA, “Specification, 1.0870.1000 Zinc granular for analysis, particle size 3-8mm EMSURE(R) ISO.” 2017.
[103] Wayne-Rasband, “ImageJ 1.52a.” National Institute of Health, USA, 2018.
[104] P. Batista-Grau, R. Sánchez-Tovar, R. M. Fernández-Domene, and J. García-Antón, “Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting,” 2019, doi: 10.1016/j.surfcoat.2019.125197.
[105] P. Scherrer, “Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen,” in Kolloidchemie Ein Lehrbuch, Berlin, Heidelberg: Springer Berlin Heidelberg, 1912, pp. 387–409.
[106] Grillo-Zinkoxid_GmbH, “Pharmaceutical Zinc Oxide (API),” 2019. Accessed: Jan. 03, 2021. [Online]. Available: www.grillo-zno.de.
[107] S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., vol. 60, no. 2, pp. 309–319, Feb. 1938, doi: 10.1021/ja01269a023.
[108] Y. Zheng, “Evaluation of a New Method to Estimate the Micropore Volume Evaluation of a New Method to Estimate the Micropore Volume and External Surface Area of Single-walled Carbon Nanotubes and External Surface Area of Single-walled Carbon Nanotubes,” University of Tennessee, Knoxville, Tennessee, 2008.
[109] R. Holguin Ruiz, “Espectroscopia de Reflectancia Difusa — Steemit,” Jul. 11, 2018. https://steemit.com/stem-espanol/@rossyholg/espectroscopia-de-reflectancia-difusa (accessed Jan. 03, 2021).
[110] L. Mohd Fudzi, Z. Zainal, H. Lim, S.-K. Chang, A. Holi, and M. Sarif@Mohd Ali, “Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells,” Materials (Basel)., vol. 11, no. 5, p. 704, Apr. 2018, doi: 10.3390/ma11050704.
[111] R. Gill et al., “Vertically aligned ZnO nanorods for photoelectrochemical water splitting application,” doi: 10.1016/j.matlet.2020.128295.
[112] C. M. Taylor, A. Ramirez-Canon, J. Wenk, and D. Mattia, “Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts,” J. Hazard. Mater., vol. 378, p. 120799, Oct. 2019, doi: 10.1016/j.jhazmat.2019.120799.
[113] K. Govatsi, A. Seferlis, S. G. Neophytides, and S. N. Yannopoulos, “Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency,” Int. J. Hydrogen Energy, vol. 43, no. 10, pp. 4866–4879, Mar. 2018, doi: 10.1016/j.ijhydene.2018.01.087.
[114] X. Sun, Q. Li, J. Jiang, and Y. Mao, “Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance,” Nanoscale, vol. 6, no. 15, pp. 8769–8780, Aug. 2014, doi: 10.1039/c4nr01146e.
[115] Y. Qiu, K. Yan, H. Deng, and S. Yang, “Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting,” Nano Lett., vol. 12, no. 1, pp. 407–413, Jan. 2012, doi: 10.1021/nl2037326.
[116] J. Kegel, F. Laffir, I. M. Povey, and M. E. Pemble, “Defect-promoted photo-electrochemical performance enhancement of orange-luminescent ZnO nanorod-arrays,” Phys. Chem. Chem. Phys., vol. 19, no. 19, pp. 12255–12268, May 2017, doi: 10.1039/c7cp01606a.
[117] M. Nehra et al., “1D semiconductor nanowires for energy conversion, harvesting and storage applications,” Nano Energy, vol. 76. Elsevier Ltd, p. 104991, Oct. 01, 2020, doi: 10.1016/j.nanoen.2020.104991.
[118] X. Sheng, T. Xu, and X. Feng, “Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications,” Adv. Mater., vol. 31, no. 11, p. 1805132, Mar. 2019, doi: 10.1002/adma.201805132.
[119] L. Y. Chen and Y. T. Yin, “The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells,” J. Mater. Chem., vol. 22, no. 47, pp. 24591–24596, Dec. 2012, doi: 10.1039/c2jm35413f.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 101 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79820/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79820/2/Obtenci%c3%b3n%20de%20electrodos%20nanoestructrados%20de%20ZnO.pdf
https://repositorio.unal.edu.co/bitstream/unal/79820/3/Obtenci%c3%b3n%20de%20electrodos%20nanoestructrados%20de%20ZnO.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
2d520eb8bb0dce91f6700da2b7607a93
544ef3dd3d468939a3d8a9002843708e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090102871162880
spelling Atribución-CompartirIgual 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zea Ramírez, Hugo Ricardo84e91344e05ee783ba3d0544b83bda6cQuintero Cortés, Francisco Javier9791a6ebed95dee7e47c2b44b993c98eRomero Benavides, Luis Eduardo3b14227d21058b832b74be9e31fcc314Grupo de Investigación en Materiales, Catálisis y Medio Ambiente2021-07-19T21:42:38Z2021-07-19T21:42:38Z2021-03-22https://repositorio.unal.edu.co/handle/unal/79820Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasSe fabricó fotoelectrodos por anodización de zinc metálico en electrolitos de Na2CO3 y KHCO3 preparados en solventes mixtos de agua y etilenglicol, posteriormente recocidos a 300°C durante 1 hora. Este proceso produjo recubrimientos de ZnO nanoestructurados de diferente morfología y grosor de acuerdo con la conductividad del medio de anodización. Se estudió características de los recubrimientos por diferentes técnicas que incluyen microscopía electrónica SEM y TEM, difracción de rayos X, espectrofotometría para calcular el band gap óptico, sortometría para área BET y medidas electroquímicas en una celda PEC. La evaluación de los fotoelectrodos PEC arrojó eficiencias IPCE entre 5,4 y 20,4%. (Texto tomado de la fuente)Photoelectrodes were made by anodizing metallic zinc in electrolytes of Na2CO3 and KHCO3 prepared in mixed solvents of water and ethylene glycol, subsequently annealed at 300 °C for 1 hour. This process produced nanostructured ZnO coatings of different morphology and thickness according to the conductivity of the anodizing medium. Features of the coatings were studied by different techniques including SEM and TEM electron microscopy, X-ray diffraction, spectrophotometry to calculate optical band gap, sorptometry for BET surface area and electrochemical measurements in a PEC cell. The evaluation of the PEC photoelectrodes yielded IPCE efficiencies between 5.4 and 20.4%. (Text taken from source)MaestríaMagíster en Ingeniería - Ingeniería QuímicaCiencia de materiales101 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesFotoquímicaPhotochemistryConductividad eléctricaElectric conductivityNanomaterialesÓxido de zincZnOFotocatálisisZinc OxideNanostructuresPhotocatalystPEC efficiencyFotolisisObtención de electrodos nanoestructurados de óxido de zinc vía anodizado para fotólisis de aguaSynthesis of zinc oxide nanostructured electrodes for water splittingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] IEA, World Energy Balances 2019. OECD, 2019.[2] P. Emílio and V. De Miranda, “Hydrogen Energy: Sustainable and Perennial,” 2019.[3] International Energy Agency, Key World Energy Statistics 2018. OECD, 2018.[4] BP, “Full report – BP Statistical Review of World Energy 2019.”[5] P. Jackson, “De Estocolmo a Kyoto : Breve historia del cambio climático,” Crónica ONU, vol. XLIV, no. 2, pp. 1–6, 2007, [Online]. Available: https://www.un.org/es/chronicle/article/de-estocolmo-kyotobreve-historia-del-cambio-climatico.[6] Organización de las Naciones Unidas, “Objetivo 7. ENERGÍA ASEQUIBLE Y NO CONTAMINANTE,” United Nations, p. 1, 2016, [Online]. Available: https://www.un.org/sustainabledevelopment/es/wp-content/uploads/sites/3/2016/10/7_Spanish_Why_it_Matters.pdf.[7] M. Momirlan and T. N. Veziroglu, “The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet,” Int. J. Hydrogen Energy, vol. 30, pp. 795–802, 2005, doi: 10.1016/j.ijhydene.2004.10.011.[8] World Nuclear Association, “Heat values of various fuels - World Nuclear Association,” p. 2018, 2018, Accessed: Mar. 25, 2020. [Online]. Available: https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx.[9] J. Kegel, I. M. Povey, and M. E. Pemble, “Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities,” Nano Energy, vol. 54, pp. 409–428, Dec. 2018, doi: 10.1016/j.nanoen.2018.10.043.[10] J. Jia et al., “Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%,” Nat. Commun., vol. 7, no. 1, pp. 1–6, Oct. 2016, doi: 10.1038/ncomms13237.[11] P. C. K. Vesborg and T. F. Jaramillo, “Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy,” RSC Adv., vol. 2, no. 21, pp. 7933–7947, 2012, doi: 10.1039/c2ra20839c.[12] A. Rokade, S. Rondiya, V. Sharma, M. Prasad, H. Pathan, and S. Jadkar, “Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water,” J. Solid State Electrochem., vol. 21, no. 9, pp. 2639–2648, 2017, doi: 10.1007/s10008-016-3427-9.[13] S. He et al., “Preparation and properties of ZnO nanostructures by electrochemical anodization method,” Appl. Surf. Sci., vol. 256, no. 8, pp. 2557–2562, 2010, doi: 10.1016/j.apsusc.2009.10.104.[14] A. Y. Faid and N. K. Allam, “Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes,” RSC Adv., vol. 6, no. 83, pp. 80221–80225, 2016, doi: 10.1039/C6RA18747A.[15] F. Quintero, P. Arias, and H. Zea, “Novel anodizing procedure to grow TiO2 nanotubes successfully employed in ethanol photolysis,” Int. J. ChemTech Res., vol. 5, no. 4, pp. 1641–1645, 2013, [Online]. Available: http://www.sphinxsai.com/2013/VOL5_NO.4_APRIL/PDFS_VOL5_NO.4/CT=33(1641-1645)AJ13.pdf.[16] P. Arias Monje, “Photoelectrocatalytic Hydrogen Production with TiO2 Nanostructures Formed by Alternating Voltage Anodization,” Universidad Nacional de Colombia, 2016.[17] H. Yan et al., “Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation,” Mater. Res. Bull., vol. 44, no. 10, pp. 1954–1958, Oct. 2009, doi: 10.1016/j.materresbull.2009.06.014.[18] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes. Elsevier, 1998.[19] R. A. Serway and J. W. Jewwett, “Teoría de banda en sólidos,” in Física para ciencias e ingenierías Vol. 2., 9a., Cengage, 2015, pp. 1359–1364.[20] O. Coddington, J. L. Lean, D. Lindholm, P. Pilewskie, M. Snow, and N. C. Program, “NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2,” Jan. 01, 2015. https://www.ncdc.noaa.gov/cdr/atmospheric/solar-spectral-irradiance (accessed Mar. 31, 2020).[21] S. B. A. Hamid, S. J. Teh, and C. W. Lai, “Photocatalytic Water Oxidation on ZnO: A Review,” Catalysts, vol. 7, no. 3, p. 93, 2017, doi: 10.3390/catal7030093.[22] R. Van De Krol and M. Grätzel, Photoelectro - chemical Hydrogen Production. 2012.[23] H. Pan, “Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting,” Renewable and Sustainable Energy Reviews, vol. 57. Elsevier Ltd, pp. 584–601, May 01, 2016, doi: 10.1016/j.rser.2015.12.117.[24] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting, 1st ed. New York, NY: Springer New York, 2013.[25] R. M. Navarro, F. del Valle, J. A. Villoria de la Mano, M. C. Álvarez-Galván, and J. L. G. Fierro, “Photocatalytic Water Splitting Under Visible Light. Concept and Catalysts Development,” Advances in Chemical Engineering, vol. 36. pp. 111–143, 2009, doi: 10.1016/S0065-2377(09)00404-9.[26] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, Jul. 1972, doi: 10.1038/238037a0.[27] S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa, “Photocatalytic activity for hydrogen evolution of electrospun TiO 2 nanofibers,” ACS Appl. Mater. Interfaces, vol. 1, no. 5, pp. 1140–1143, 2009, doi: 10.1021/am9001474.[28] A. Kudo, “Photocatalyst Materials for Water Splitting,” Catal. Surv. from Asia, vol. 7, no. 1, pp. 31–38, 2003, doi: 10.1023/A:1023480507710 ID.[29] A. B. Murphy et al., “Efficiency of solar water splitting using semiconductor electrodes,” Int. J. Hydrogen Energy, 2006, doi: 10.1016/j.ijhydene.2006.01.014.[30] L. Andrade, T. Lopes, H. A. Ribeiro, and A. Mendes, “Transient phenomenological modeling of photoelectrochemical cells for water splitting - Application to undoped hematite electrodes,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 175–188, 2011, doi: 10.1016/j.ijhydene.2010.09.098.[31] P. Dias, A. Vilanova, T. Lopes, L. Andrade, and A. Mendes, “Extremely stable bare hematite photoanode for solar water splitting,” Nano Energy, vol. 23, pp. 70–79, May 2016, doi: 10.1016/j.nanoen.2016.03.008.[32] T. Lopes, L. Andrade, H. A. Ribeiro, and A. Mendes, “Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11601–11608, 2010, doi: 10.1016/j.ijhydene.2010.04.001.[33] R. Sánchez-Tovar, R. M. Fernández-Domene, M. T. Montañés, A. Sanz-Marco, and J. Garcia-Antón, “ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting,” RSC Adv., vol. 6, no. 36, pp. 30425–30435, 2016, doi: 10.1039/C6RA03501A.[34] F. D. Ruiz-Ocampo, J. M. Zapien-Rodríguez, O. Burgara-Montero, E. A. Escoto-Sotelo, F. A. Núñez-Pérez, and L. de S. E. Ballesteros-Pachecho, J.C. (Universidad Politécnica de Lázaro Cárdenas, “Electrodeposition of Nanostructured ZnO Photoanodes for Their Application in the Oxygen Evolution Reaction,” Int. J. Electrochem. Sci., no. 12, pp. 4898–4914, Jun. 2017, doi: 10.20964/2017.06.74.[35] L. Zaraska, K. Mika, K. Syrek, and G. D. Sulka, “Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes,” J. Electroanal. Chem., vol. 801, no. August, pp. 511–520, Sep. 2017, doi: 10.1016/j.jelechem.2017.08.035.[36] J. Wang, L. Pan, H. Meng, R. Han, Z. Huang, and C. Zhang, “One-Step Seedless and Catalyst — Free Growth of Hierarchical ZnO Film Promising for Photoelectrochemical Application,” no. March, pp. 61–76, 2016.[37] M.-C. Huang, T. Wang, B.-J. Wu, J.-C. Lin, and C.-C. Wu, “Anodized ZnO nanostructures for photoelectrochemical water splitting,” Appl. Surf. Sci., vol. 360, pp. 442–450, Jan. 2016, doi: 10.1016/j.apsusc.2015.09.174.[38] G. S. Huang, X. L. Wu, Y. C. Cheng, J. C. Shen, A. P. Huang, and P. K. Chu, “Fabrication and characterization of anodic ZnO nanoparticles,” Appl. Phys. A Mater. Sci. Process., vol. 86, no. 4, pp. 463–467, 2007, doi: 10.1007/s00339-006-3778-7.[39] L. Zaraska, K. Mika, M. Zych, and G. D. Sulka, “Anodic formation of zinc oxide nanostructures with various morphologies,” in Nanostructured Anodic Metal Oxides, Elsevier, 2020, pp. 385–414.[40] L. Zaraska et al., “High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2017, doi: 10.1016/j.mseb.2017.09.003.[41] W. Siripala, “Hydrogen Energy and Photoelectrolysis of Water,” Proc. Tech. Sess., no. 20, pp. 67–73, 2004, [Online]. Available: https://www.researchgate.net/publication/237549114.[42] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034.[43] J.-M. Herrmann, “Fundamentals and misconceptions in photocatalysis,” J. Photochem. Photobiol. A Chem., vol. 216, no. 2–3, pp. 85–93, Dec. 2010, doi: 10.1016/j.jphotochem.2010.05.015.[44] S. K. Saraswat, D. D. Rodene, and R. B. Gupta, “Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light,” Renew. Sustain. Energy Rev., vol. 89, no. June 2017, pp. 228–248, 2018, doi: 10.1016/j.rser.2018.03.063.[45] M. S. Ramachandra Rao and T. Okada, ZnO Nanocrystals and Allied Materials, vol. 180. 2014.[46] T. Bak, J. Nowotny, M. Rekas, and C. . Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy, vol. 27, no. 10, pp. 991–1022, Oct. 2002, doi: 10.1016/S0360-3199(02)00022-8.[47] Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang, “2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions,” Adv. Mater., vol. 28, no. 10, pp. 1917–1933, Mar. 2016, doi: 10.1002/adma.201503270.[48] U.S.Geological_Survey, “Mineral Commodity Summaries,” Reston, Virginia, 2020. doi: 10.3133/mcs2020.[49] Metalary, “Metalary - Latest and Historical Metal Prices,” 2020. http://www.metalary.com/ (accessed Mar. 31, 2020).[50] B. O. Seraphin, Ed., Solar Energy Conversion, vol. 31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979.[51] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, and A. Z. Moshfegh, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review,” Research on Chemical Intermediates, vol. 45, no. 4. Springer Netherlands, pp. 2197–2254, Apr. 15, 2019, doi: 10.1007/s11164-018-03729-5.[52] O. A. Fouad, A. A. Ismail, Z. I. Zaki, and R. M. Mohamed, “Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity,” Appl. Catal. B Environ., vol. 62, no. 1–2, pp. 144–149, Jan. 2006, doi: 10.1016/j.apcatb.2005.07.006.[53] M. V. Rao, K. Rajeshwar, V. R. Pal Verneker, and J. DuBow, “Photosynthetic production of H2 and H2O2 on semiconducting oxide grains in aqueous solutions,” J. Phys. Chem., vol. 84, no. 15, pp. 1987–1991, 1980, doi: 10.1021/j100452a023.[54] J. Han, W. Qiu, and W. Gao, “Potential dissolution and photo-dissolution of ZnO thin films,” J. Hazard. Mater., vol. 178, no. 1–3, pp. 115–122, Jun. 2010, doi: 10.1016/j.jhazmat.2010.01.050.[55] H. Li, W. Dong, J. Xi, Z. Li, X. Wu, and Z. Ji, “Hydropowered photoelectrochemical water splitting solar cell for hydrogen production,” J. Alloys Compd., vol. 691, pp. 750–754, Jan. 2017, doi: 10.1016/j.jallcom.2016.08.290.[56] M. A. Johar, R. A. Afzal, A. A. Alazba, and U. Manzoor, “Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites,” Adv. Mater. Sci. Eng., vol. 2015, 2015, doi: 10.1155/2015/934587.[57] R. Dom, L. R. Baby, H. G. Kim, and P. H. Borse, “Fe controlled charge-dynamics in ZnO for solar hydrogen generation,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5758–5767, Mar. 2017, doi: 10.1016/j.ijhydene.2016.12.089.[58] H. Abdullah, D. H. Kuo, and X. Chen, “High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5638–5648, 2017, doi: 10.1016/j.ijhydene.2016.11.137.[59] M. Y. Guo et al., “ZnO and TiO2 1D nanostructures for photocatalytic applications,” J. Alloys Compd., vol. 509, no. 4, pp. 1328–1332, Jan. 2011, doi: 10.1016/j.jallcom.2010.10.028.[60] J. Lu, H. Wang, D. Peng, T. Chen, S. Dong, and Y. Chang, “Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 78, pp. 41–48, Apr. 2016, doi: 10.1016/j.physe.2015.11.035.[61] T. H. Yang et al., “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal., vol. 329, no. 1, pp. 167–176, Sep. 2015, doi: 10.1016/j.jcat.2015.05.009.[62] N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, and M. Batzill, “Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO,” Langmuir, vol. 25, no. 5, pp. 3310–3315, Mar. 2009, doi: 10.1021/la803845f.[63] B. Beverskog and I. Puigdomenech, “Revised pourbaix diagrams for zinc at 25-300°C,” Corros. Sci., vol. 39, no. 1, pp. 107–114, Jan. 1997, doi: 10.1016/S0010-938X(97)89246-3.[64] University of Cambridge, “DoITPoMS - TLP Library The Nernst Equation and Pourbaix Diagrams.” https://www.doitpoms.ac.uk/tlplib/pourbaix/printall.php (accessed Jan. 19, 2021).[65] J. R. Davis, Corrosion : Understanding the Basics. Materials Park, Ohio: ASM International, 2000.[66] E. McCafferty, Introduction to corrosion science. Springer New York, 2010.[67] J. Ramsden, Nanotechnology. Elsevier Inc., 2011.[68] D. Filipponi, Luisa Sutherland, NANOTECHNOLOGIES Principles, Applications, Implications and Hands-on Activities. A compendium for educators. Brussels, 2013.[69] European Comission, “Questions on nanomaterials.” https://ec.europa.eu/health/scientific_committees/opinions_layman/nanomaterials2012/en/index.htm (accessed Jun. 22, 2020).[70] J. V. Foreman, H. O. Everitt, J. Yang, T. McNicholas, and J. Liu, “Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO,” Phys. Rev. B, vol. 81, no. 11, p. 115318, Mar. 2010, doi: 10.1103/PhysRevB.81.115318.[71] T. P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler, and A. N. Tiwari, “Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements,” Sci. Rep., vol. 9, no. 1, p. 5385, Dec. 2019, doi: 10.1038/s41598-019-41716-x.[72] F. Zuo, L. Wang, and P. Feng, “Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity,” Int. J. Hydrogen Energy, vol. 39, no. 2, pp. 711–717, Jan. 2014, doi: 10.1016/j.ijhydene.2013.10.120.[73] X. Gu, T. Edvinsson, and J. Zhu, “ZnO nanomaterials: strategies for improvement of photocatalytic and photoelectrochemical activities,” in Current Developments in Photocatalysis and Photocatalytic Materials, Elsevier, 2020, pp. 231–244.[74] M. Kong et al., “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc., vol. 133, no. 41, pp. 16414–16417, Oct. 2011, doi: 10.1021/ja207826q.[75] R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int., vol. 39, no. 3, pp. 2283–2292, Apr. 2013, doi: 10.1016/j.ceramint.2012.08.075.[76] A. Samavati et al., “Influence of ZnO nanostructure configuration on tailoring the optical bandgap: Theory and experiment,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 263, p. 114811, Jan. 2021, doi: 10.1016/j.mseb.2020.114811.[77] Y.-J. Kim et al., “ZnO nanostructures with controlled morphologies on a glass substrate.,” Nanotechnology, vol. 21, no. 26, p. 265603, 2010, doi: 10.1088/0957-4484/21/26/265603.[78] A. Ramirez-Canon, D. O. Miles, P. J. Cameron, and D. Mattia, “Zinc oxide nanostructured films produced via anodization: a rational design approach,” RSC Adv., vol. 3, no. 47, p. 25323, 2013, doi: 10.1039/c3ra43886d.[79] N. Clament Sagaya Selvam, J. J. Vijaya, and L. J. Kennedy, “Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures,” Ind. Eng. Chem. Res., vol. 51, no. 50, pp. 16333–16345, Dec. 2012, doi: 10.1021/ie3016945.[80] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, May 2007, doi: 10.1016/S1369-7021(07)70078-0.[81] M. Kumar and C. Sasikumar, “Electrodeposition of Nanostructured ZnO Thin Film: A Review,” Am. J. Mater. Sci. Eng., vol. 2, no. 2, pp. 18–23, May 2014, doi: 10.12691/ajmse-2-2-2.[82] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” J. Nanomater., vol. 2012, no. July 2012, 2012, doi: 10.1155/2012/624520.[83] B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale, vol. 2, no. 9. The Royal Society of Chemistry, pp. 1573–1587, Sep. 01, 2010, doi: 10.1039/c0nr00047g.[84] X. Wu, G. Lu, C. Li, and G. Shi, “Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil,” Nanotechnology, vol. 17, no. 19, pp. 4936–4940, Oct. 2006, doi: 10.1088/0957-4484/17/19/026.[85] G. Huey-Shya, A. Rohana, and F. Akhyar, “ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange,” Turkish J. od Chem., no. 35, pp. 375–391, 2011, doi: 10.3906/kim-1010-742.[86] Y. Yamaguchi, M. Yamazaki, S. Yoshihara, and T. Shirakashi, “Photocatalytic ZnO films prepared by anodizing,” J. Electroanal. Chem., vol. 442, no. 1–2, pp. 1–3, Jan. 1998, doi: 10.1016/S0022-0728(97)00354-9.[87] N. K. Shrestha, K. Lee, R. Hahn, and P. Schmuki, “Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte,” Electrochem. commun., vol. 34, pp. 9–13, 2013, doi: 10.1016/j.elecom.2013.04.020.[88] H. M. Chen et al., “A new approach to solar hydrogen production: A ZnO-ZnS solid solution nanowire array photoanode,” Adv. Energy Mater., vol. 1, no. 5, pp. 742–747, 2011, doi: 10.1002/aenm.201100246.[89] S. J. Kim, J. Lee, and J. Choi, “Understanding of anodization of zinc in an electrolyte containing fluoride ions,” Electrochim. Acta, vol. 53, no. 27, pp. 7941–7945, 2008, doi: 10.1016/j.electacta.2008.06.006.[90] S. Sreekantan, L. R. Gee, and Z. Lockman, “Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide,” J. Alloys Compd., vol. 476, no. 1–2, pp. 513–518, 2009, doi: 10.1016/j.jallcom.2008.09.044.[91] J. Zhao, X. Wang, J. Liu, Y. Meng, X. Xu, and C. Tang, “Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method,” Mater. Chem. Phys., vol. 126, no. 3, pp. 555–559, 2011, doi: 10.1016/j.matchemphys.2011.01.028.[92] J. Park, K. Kim, and J. Choi, “Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization,” Curr. Appl. Phys., vol. 13, no. 7, pp. 1370–1375, 2013, doi: 10.1016/j.cap.2013.04.015.[93] C. F. Mah, K. P. Beh, F. K. Yam, and Z. Hassan, “Rapid Formation and Evolution of Anodized-Zn Nanostructures in NaHCO 3 Solution,” ECS J. Solid State Sci. Technol., vol. 5, no. 10, pp. M105–M112, Aug. 2016, doi: 10.1149/2.0061610jss.[94] S. Ono, Y. Kobayashi, R. Kobayashi, and H. Asoh, “Fabrication of Self-Organized Nanoporous Oxide Semiconductors by Anodization,” ECS Trans., vol. 16, no. 3, pp. 353–358, Dec. 2019, doi: 10.1149/1.2982575.[95] P. Wang, J. J. Kosinski, A. Anderko, R. D. Springer, M. M. Lencka, and J. Liu, “Ethylene Glycol and Its Mixtures with Water and Electrolytes: Thermodynamic and Transport Properties,” 2013, doi: 10.1021/ie4019353.[96] M. Zhang et al., “Effect of methanol ratio in mixed solvents on optical properties and wettability of ZnO films by cathodic electrodeposition,” J. Alloys Compd., vol. 615, pp. 327–332, 2014, doi: 10.1016/j.jallcom.2014.06.178.[97] N. A. Abd Samad, C. W. Lai, and S. B. Abd Hamid, “Influence Applied Potential on the Formation of Self-Organized ZnO Nanorod Film and Its Photoelectrochemical Response,” Int. J. Photoenergy, vol. 2016, 2016, doi: 10.1155/2016/1413072.[98] ASTM International, “ASTM B6-13, Standard Specification for Zinc.” ASTM international, West Conshohocken, PA, pp. 1–3, 2013, doi: 10.1520/B0006-13.[99] ASTM International, “ASTM E536-16, Standard Test Methods for Chemical Analysis of Zinc and Zinc Alloys.” ASTM international, West Conshohocken, PA, pp. 1–6, 2016, doi: 10.1520/E0536-16.[100] A. Ul-Hamid, “Sample Preparation,” in A Beginners’ Guide to Scanning Electron Microscopy, Cham: Springer International Publishing, 2018, pp. 309–359.[101] Sylvania-Lighting, “UV-C Purification and Disinfection For Air, Water and Surfaces Special Lighting,” Newhaven, UK, 2019.[102] Merck-KGaA, “Specification, 1.0870.1000 Zinc granular for analysis, particle size 3-8mm EMSURE(R) ISO.” 2017.[103] Wayne-Rasband, “ImageJ 1.52a.” National Institute of Health, USA, 2018.[104] P. Batista-Grau, R. Sánchez-Tovar, R. M. Fernández-Domene, and J. García-Antón, “Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting,” 2019, doi: 10.1016/j.surfcoat.2019.125197.[105] P. Scherrer, “Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen,” in Kolloidchemie Ein Lehrbuch, Berlin, Heidelberg: Springer Berlin Heidelberg, 1912, pp. 387–409.[106] Grillo-Zinkoxid_GmbH, “Pharmaceutical Zinc Oxide (API),” 2019. Accessed: Jan. 03, 2021. [Online]. Available: www.grillo-zno.de.[107] S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., vol. 60, no. 2, pp. 309–319, Feb. 1938, doi: 10.1021/ja01269a023.[108] Y. Zheng, “Evaluation of a New Method to Estimate the Micropore Volume Evaluation of a New Method to Estimate the Micropore Volume and External Surface Area of Single-walled Carbon Nanotubes and External Surface Area of Single-walled Carbon Nanotubes,” University of Tennessee, Knoxville, Tennessee, 2008.[109] R. Holguin Ruiz, “Espectroscopia de Reflectancia Difusa — Steemit,” Jul. 11, 2018. https://steemit.com/stem-espanol/@rossyholg/espectroscopia-de-reflectancia-difusa (accessed Jan. 03, 2021).[110] L. Mohd Fudzi, Z. Zainal, H. Lim, S.-K. Chang, A. Holi, and M. Sarif@Mohd Ali, “Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells,” Materials (Basel)., vol. 11, no. 5, p. 704, Apr. 2018, doi: 10.3390/ma11050704.[111] R. Gill et al., “Vertically aligned ZnO nanorods for photoelectrochemical water splitting application,” doi: 10.1016/j.matlet.2020.128295.[112] C. M. Taylor, A. Ramirez-Canon, J. Wenk, and D. Mattia, “Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts,” J. Hazard. Mater., vol. 378, p. 120799, Oct. 2019, doi: 10.1016/j.jhazmat.2019.120799.[113] K. Govatsi, A. Seferlis, S. G. Neophytides, and S. N. Yannopoulos, “Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency,” Int. J. Hydrogen Energy, vol. 43, no. 10, pp. 4866–4879, Mar. 2018, doi: 10.1016/j.ijhydene.2018.01.087.[114] X. Sun, Q. Li, J. Jiang, and Y. Mao, “Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance,” Nanoscale, vol. 6, no. 15, pp. 8769–8780, Aug. 2014, doi: 10.1039/c4nr01146e.[115] Y. Qiu, K. Yan, H. Deng, and S. Yang, “Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting,” Nano Lett., vol. 12, no. 1, pp. 407–413, Jan. 2012, doi: 10.1021/nl2037326.[116] J. Kegel, F. Laffir, I. M. Povey, and M. E. Pemble, “Defect-promoted photo-electrochemical performance enhancement of orange-luminescent ZnO nanorod-arrays,” Phys. Chem. Chem. Phys., vol. 19, no. 19, pp. 12255–12268, May 2017, doi: 10.1039/c7cp01606a.[117] M. Nehra et al., “1D semiconductor nanowires for energy conversion, harvesting and storage applications,” Nano Energy, vol. 76. Elsevier Ltd, p. 104991, Oct. 01, 2020, doi: 10.1016/j.nanoen.2020.104991.[118] X. Sheng, T. Xu, and X. Feng, “Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications,” Adv. Mater., vol. 31, no. 11, p. 1805132, Mar. 2019, doi: 10.1002/adma.201805132.[119] L. Y. Chen and Y. T. Yin, “The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells,” J. Mater. Chem., vol. 22, no. 47, pp. 24591–24596, Dec. 2012, doi: 10.1039/c2jm35413f.GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79820/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALObtención de electrodos nanoestructrados de ZnO.pdfObtención de electrodos nanoestructrados de ZnO.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf2370455https://repositorio.unal.edu.co/bitstream/unal/79820/2/Obtenci%c3%b3n%20de%20electrodos%20nanoestructrados%20de%20ZnO.pdf2d520eb8bb0dce91f6700da2b7607a93MD52THUMBNAILObtención de electrodos nanoestructrados de ZnO.pdf.jpgObtención de electrodos nanoestructrados de ZnO.pdf.jpgGenerated Thumbnailimage/jpeg4887https://repositorio.unal.edu.co/bitstream/unal/79820/3/Obtenci%c3%b3n%20de%20electrodos%20nanoestructrados%20de%20ZnO.pdf.jpg544ef3dd3d468939a3d8a9002843708eMD53unal/79820oai:repositorio.unal.edu.co:unal/798202023-07-24 23:03:51.692Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==