On the performance of Kernel Density Estimation using Density Matrices
Density estimation methods can be used to solve a variety of statistical and machine learning challenges. They can be used to tackle a variety of problems, including anomaly detection, generative models, semi-supervised learning, compression, and text-to-speech. A popular technique to find density e...
- Autores:
-
Osorio Ramírez, Juan Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80040
- Palabra clave:
- 510 - Matemáticas::518 - Análisis numérico
Density matrix
Kernel Density Estimation
Random Fourier Features
Quantum System
Matriz de Densidad
Matriz de Densidad
Estimación Kernel de Densidad
Características Aleatorias de Fourier
Sistema Cuántico
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_c45c0ceea1d7fbca018be224ef130729 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80040 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
On the performance of Kernel Density Estimation using Density Matrices |
dc.title.translated.none.fl_str_mv |
Sobre el rendimiento de la estimación de densidad usando matrices de densidad |
title |
On the performance of Kernel Density Estimation using Density Matrices |
spellingShingle |
On the performance of Kernel Density Estimation using Density Matrices 510 - Matemáticas::518 - Análisis numérico Density matrix Kernel Density Estimation Random Fourier Features Quantum System Matriz de Densidad Matriz de Densidad Estimación Kernel de Densidad Características Aleatorias de Fourier Sistema Cuántico |
title_short |
On the performance of Kernel Density Estimation using Density Matrices |
title_full |
On the performance of Kernel Density Estimation using Density Matrices |
title_fullStr |
On the performance of Kernel Density Estimation using Density Matrices |
title_full_unstemmed |
On the performance of Kernel Density Estimation using Density Matrices |
title_sort |
On the performance of Kernel Density Estimation using Density Matrices |
dc.creator.fl_str_mv |
Osorio Ramírez, Juan Felipe |
dc.contributor.advisor.none.fl_str_mv |
González Osorio, Fabio Augusto Gallego Mejia, Joseph Alejandro |
dc.contributor.author.none.fl_str_mv |
Osorio Ramírez, Juan Felipe |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::518 - Análisis numérico |
topic |
510 - Matemáticas::518 - Análisis numérico Density matrix Kernel Density Estimation Random Fourier Features Quantum System Matriz de Densidad Matriz de Densidad Estimación Kernel de Densidad Características Aleatorias de Fourier Sistema Cuántico |
dc.subject.proposal.eng.fl_str_mv |
Density matrix Kernel Density Estimation Random Fourier Features Quantum System |
dc.subject.proposal.spa.fl_str_mv |
Matriz de Densidad Matriz de Densidad Estimación Kernel de Densidad Características Aleatorias de Fourier Sistema Cuántico |
description |
Density estimation methods can be used to solve a variety of statistical and machine learning challenges. They can be used to tackle a variety of problems, including anomaly detection, generative models, semi-supervised learning, compression, and text-to-speech. A popular technique to find density estimates for new samples in a non parametric set up is Kernel Density Estimation, a method which suffers from costly evaluations especially for large data sets and higher dimensions. In this thesis we want to compare the performance of the novel method Kernel Density Estimation using Density Matrices introduced by González et al. [9] against other state-of-the-art fast procedures for estimating the probability density function in different sets of complex synthetic scenarios. Our experimental results show that this novel method is a competitive strategy to calculate density estimates among its competitors and also show advantages when performing on large data sets and high dimensions. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-27T05:58:48Z |
dc.date.available.none.fl_str_mv |
2021-08-27T05:58:48Z |
dc.date.issued.none.fl_str_mv |
2021-07-30 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80040 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80040 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Fabio A González, Alejandro Gallego, Santiago Toledo-Cortés, and Vladimir Vargas- Calderón. Learning with density matrices and random features. arXiv preprint arXiv:2102.04394, 2021. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
IV, 41 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Estadística |
dc.publisher.department.spa.fl_str_mv |
Departamento de Estadística |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80040/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/80040/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80040/2/Tesis%20de%20pregrado%20Estad%c3%adstica https://repositorio.unal.edu.co/bitstream/unal/80040/4/Tesis%20de%20pregrado%20Estad%c3%adstica.jpg |
bitstream.checksum.fl_str_mv |
0175ea4a2d4caec4bbcc37e300941108 cccfe52f796b7c63423298c2d3365fc6 4d42f9184d6084f285b04540cb3a7a28 129fda3f8c7ce320537678f2bfcd60b5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090011598913536 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80600Gallego Mejia, Joseph Alejandrod47764f999dc4685973a67dd2ae28298Osorio Ramírez, Juan Felipe66f98f5b2d398a1ead25096e007814622021-08-27T05:58:48Z2021-08-27T05:58:48Z2021-07-30https://repositorio.unal.edu.co/handle/unal/80040Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Density estimation methods can be used to solve a variety of statistical and machine learning challenges. They can be used to tackle a variety of problems, including anomaly detection, generative models, semi-supervised learning, compression, and text-to-speech. A popular technique to find density estimates for new samples in a non parametric set up is Kernel Density Estimation, a method which suffers from costly evaluations especially for large data sets and higher dimensions. In this thesis we want to compare the performance of the novel method Kernel Density Estimation using Density Matrices introduced by González et al. [9] against other state-of-the-art fast procedures for estimating the probability density function in different sets of complex synthetic scenarios. Our experimental results show that this novel method is a competitive strategy to calculate density estimates among its competitors and also show advantages when performing on large data sets and high dimensions.Los métodos de estimación de densidad se pueden aplicar a diferentes problemas en estadística y aprendizaje automático. Se pueden utilizar para resolver tareas como detección de anomalías, modelos generativos, aprendizaje semi-supervisado, compresión, conversión de texto a voz, entre otras. Una técnica popular para encontrar estimaciones de densidad de nuevas muestras en una configuración no paramétrica se realiza a través de Estimación Kernel de Densidad, un método que adolece de evaluaciones costosas, especialmente para conjuntos de datos grandes y dimensiones altas. En esta tesis queremos comparar el rendimiento del método novedoso Estimación Kernel de Densidad usando Matrices de Densidad introducido por González et al. [9] con otros procedimientos rápidos estado-del-arte para estimar la función de densidad de probabilidad en diferentes conjuntos de escenarios sintéticos complejos. Nuestros resultados experimentales muestran que este novedoso método es una estrategia competitiva de calcular estimaciones de densidad entre sus competidores y también muestra ventajas cuando se trabaja con grandes conjuntos de datos y altas dimensiones. El software utilizado para probar el método propuesto está disponible en línea. (Texto tomado de la fuente)PregradoEstadísticoQuantum Machine LearningIV, 41 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaDepartamento de EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::518 - Análisis numéricoDensity matrixKernel Density EstimationRandom Fourier FeaturesQuantum SystemMatriz de DensidadMatriz de DensidadEstimación Kernel de DensidadCaracterísticas Aleatorias de FourierSistema CuánticoOn the performance of Kernel Density Estimation using Density MatricesSobre el rendimiento de la estimación de densidad usando matrices de densidadTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPFabio A González, Alejandro Gallego, Santiago Toledo-Cortés, and Vladimir Vargas- Calderón. Learning with density matrices and random features. arXiv preprint arXiv:2102.04394, 2021.EspecializadaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/80040/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80040/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALTesis de pregrado EstadísticaTesis de pregrado EstadísticaMain thesis document.application/pdf31904351https://repositorio.unal.edu.co/bitstream/unal/80040/2/Tesis%20de%20pregrado%20Estad%c3%adstica4d42f9184d6084f285b04540cb3a7a28MD52THUMBNAILTesis de pregrado Estadística.jpgTesis de pregrado Estadística.jpgGenerated Thumbnailimage/jpeg4280https://repositorio.unal.edu.co/bitstream/unal/80040/4/Tesis%20de%20pregrado%20Estad%c3%adstica.jpg129fda3f8c7ce320537678f2bfcd60b5MD54unal/80040oai:repositorio.unal.edu.co:unal/800402023-07-26 23:03:34.497Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |