On the performance of Kernel Density Estimation using Density Matrices

Density estimation methods can be used to solve a variety of statistical and machine learning challenges. They can be used to tackle a variety of problems, including anomaly detection, generative models, semi-supervised learning, compression, and text-to-speech. A popular technique to find density e...

Full description

Autores:
Osorio Ramírez, Juan Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80040
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80040
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::518 - Análisis numérico
Density matrix
Kernel Density Estimation
Random Fourier Features
Quantum System
Matriz de Densidad
Matriz de Densidad
Estimación Kernel de Densidad
Características Aleatorias de Fourier
Sistema Cuántico
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
Description
Summary:Density estimation methods can be used to solve a variety of statistical and machine learning challenges. They can be used to tackle a variety of problems, including anomaly detection, generative models, semi-supervised learning, compression, and text-to-speech. A popular technique to find density estimates for new samples in a non parametric set up is Kernel Density Estimation, a method which suffers from costly evaluations especially for large data sets and higher dimensions. In this thesis we want to compare the performance of the novel method Kernel Density Estimation using Density Matrices introduced by González et al. [9] against other state-of-the-art fast procedures for estimating the probability density function in different sets of complex synthetic scenarios. Our experimental results show that this novel method is a competitive strategy to calculate density estimates among its competitors and also show advantages when performing on large data sets and high dimensions.