On the performance of Kernel Density Estimation using Density Matrices
Density estimation methods can be used to solve a variety of statistical and machine learning challenges. They can be used to tackle a variety of problems, including anomaly detection, generative models, semi-supervised learning, compression, and text-to-speech. A popular technique to find density e...
- Autores:
-
Osorio Ramírez, Juan Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80040
- Palabra clave:
- 510 - Matemáticas::518 - Análisis numérico
Density matrix
Kernel Density Estimation
Random Fourier Features
Quantum System
Matriz de Densidad
Matriz de Densidad
Estimación Kernel de Densidad
Características Aleatorias de Fourier
Sistema Cuántico
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
Summary: | Density estimation methods can be used to solve a variety of statistical and machine learning challenges. They can be used to tackle a variety of problems, including anomaly detection, generative models, semi-supervised learning, compression, and text-to-speech. A popular technique to find density estimates for new samples in a non parametric set up is Kernel Density Estimation, a method which suffers from costly evaluations especially for large data sets and higher dimensions. In this thesis we want to compare the performance of the novel method Kernel Density Estimation using Density Matrices introduced by González et al. [9] against other state-of-the-art fast procedures for estimating the probability density function in different sets of complex synthetic scenarios. Our experimental results show that this novel method is a competitive strategy to calculate density estimates among its competitors and also show advantages when performing on large data sets and high dimensions. |
---|