Automated detection of photoreceptors in in-vivo retinal images
The inclusion of adaptive optics (AO) into ophthalmic imaging technology has allowed the study of histological elements of retina in-vivo, such as photoreceptors, retinal pigment epithelium (RPE) cells, retinal nerve fiber layer and ganglion cells. The high-resolution images obtained with ophthalmic...
- Autores:
-
Rangel-Fonseca, Piero
Gomez-Vieyra, Armando
Malacara-Hernandez, Daniel
Wilson-Herran, Mario Cesar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60471
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60471
http://bdigital.unal.edu.co/58803/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Photoreceptor
adaptive optics
image processing
Fotorreceptores
óptica adaptativa
procesamiento de imágenes
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_c447fa4befe18c285a947139330f8f38 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60471 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Automated detection of photoreceptors in in-vivo retinal images |
title |
Automated detection of photoreceptors in in-vivo retinal images |
spellingShingle |
Automated detection of photoreceptors in in-vivo retinal images 62 Ingeniería y operaciones afines / Engineering Photoreceptor adaptive optics image processing Fotorreceptores óptica adaptativa procesamiento de imágenes |
title_short |
Automated detection of photoreceptors in in-vivo retinal images |
title_full |
Automated detection of photoreceptors in in-vivo retinal images |
title_fullStr |
Automated detection of photoreceptors in in-vivo retinal images |
title_full_unstemmed |
Automated detection of photoreceptors in in-vivo retinal images |
title_sort |
Automated detection of photoreceptors in in-vivo retinal images |
dc.creator.fl_str_mv |
Rangel-Fonseca, Piero Gomez-Vieyra, Armando Malacara-Hernandez, Daniel Wilson-Herran, Mario Cesar |
dc.contributor.author.spa.fl_str_mv |
Rangel-Fonseca, Piero Gomez-Vieyra, Armando Malacara-Hernandez, Daniel Wilson-Herran, Mario Cesar |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Photoreceptor adaptive optics image processing Fotorreceptores óptica adaptativa procesamiento de imágenes |
dc.subject.proposal.spa.fl_str_mv |
Photoreceptor adaptive optics image processing Fotorreceptores óptica adaptativa procesamiento de imágenes |
description |
The inclusion of adaptive optics (AO) into ophthalmic imaging technology has allowed the study of histological elements of retina in-vivo, such as photoreceptors, retinal pigment epithelium (RPE) cells, retinal nerve fiber layer and ganglion cells. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the tissue under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells and characterize the RPE mosaic. In this work, an algorithm is presented for the detection of photoreceptors. The algorithm has been tested in synthetic and real images acquired with an Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) and compared with the one developed by Li and Roorda. It is shown that both algorithms have similar performance on synthetic and cones-only images, but the one here proposed shows more accurate measurements when it is used for cones-rods detection in real images. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-10-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T18:23:44Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T18:23:44Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60471 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58803/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60471 http://bdigital.unal.edu.co/58803/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/54578 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Rangel-Fonseca, Piero and Gomez-Vieyra, Armando and Malacara-Hernandez, Daniel and Wilson-Herran, Mario Cesar (2016) Automated detection of photoreceptors in in-vivo retinal images. DYNA, 83 (199). pp. 57-62. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60471/1/54578-309076-2-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60471/2/54578-309076-2-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
2bb45ce8c01ebeb2868407b4ae1fe7b4 53fa62fc5223a850f8ed62eb22ab3149 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089747275972608 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rangel-Fonseca, Piero2334d348-cd30-4a54-a850-1b497e7976e1300Gomez-Vieyra, Armando0cae6c59-f2ba-43f3-a56d-5beb4c8c16f1300Malacara-Hernandez, Daniela0a13cf4-e9e9-45fb-b5da-ba59cdaa02bd300Wilson-Herran, Mario Cesare7607bc7-aa5c-42eb-a799-c50f2824f4ec3002019-07-02T18:23:44Z2019-07-02T18:23:44Z2016-10-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60471http://bdigital.unal.edu.co/58803/The inclusion of adaptive optics (AO) into ophthalmic imaging technology has allowed the study of histological elements of retina in-vivo, such as photoreceptors, retinal pigment epithelium (RPE) cells, retinal nerve fiber layer and ganglion cells. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the tissue under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells and characterize the RPE mosaic. In this work, an algorithm is presented for the detection of photoreceptors. The algorithm has been tested in synthetic and real images acquired with an Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) and compared with the one developed by Li and Roorda. It is shown that both algorithms have similar performance on synthetic and cones-only images, but the one here proposed shows more accurate measurements when it is used for cones-rods detection in real images.La inclusión de la óptica adaptativa (adaptive optics, AO) en la tecnología de imágenes oftálmicas ha permitido el estudio in-vivo de los elementos histológicos de retina, como los fotorreceptores, células del epitelio pigmentario de la retina (retinal pigment ephitelium, RPE), la capa de fibras nerviosas de la retina y células ganglionares. Las imágenes de alta resolución obtenidas con dispositivos oftálmicos con AO son ricos en información, que es difícil y/o tediosa de cuantificar por medio de métodos manuales. Por lo tanto, se requieren herramientas de análisis automatizadas robustas que puedan proporcionar información cuantitativa reproducible del tejido bajo examen. Algoritmos automatizados han sido desarrollados para detectar la posición de células individuales fotorreceptoras y caracterizar el mosaico RPE. En este trabajo, se presenta un algoritmo para la detección de los fotorreceptores. El algoritmo ha sido probado en imágenes sintéticas y reales adquiridas con un oftalmoscopio de barrido láser con óptica adaptativa (Adaptive Optics Scanning Laser Ophthalmoscope, AOSLO) y comparado con el desarrollado por Li y Roorda. Se muestra que ambos algoritmos tienen un rendimiento similar en imágenes sintéticas e imágenes con sólo conos, pero el algoritmo propuesto muestra mediciones más precisas cuando se utiliza para la detección de conos-bastones en imágenes reales.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/54578Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaRangel-Fonseca, Piero and Gomez-Vieyra, Armando and Malacara-Hernandez, Daniel and Wilson-Herran, Mario Cesar (2016) Automated detection of photoreceptors in in-vivo retinal images. DYNA, 83 (199). pp. 57-62. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringPhotoreceptoradaptive opticsimage processingFotorreceptoresóptica adaptativaprocesamiento de imágenesAutomated detection of photoreceptors in in-vivo retinal imagesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL54578-309076-2-PB.pdfapplication/pdf730057https://repositorio.unal.edu.co/bitstream/unal/60471/1/54578-309076-2-PB.pdf2bb45ce8c01ebeb2868407b4ae1fe7b4MD51THUMBNAIL54578-309076-2-PB.pdf.jpg54578-309076-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg9477https://repositorio.unal.edu.co/bitstream/unal/60471/2/54578-309076-2-PB.pdf.jpg53fa62fc5223a850f8ed62eb22ab3149MD52unal/60471oai:repositorio.unal.edu.co:unal/604712023-04-07 23:04:27.37Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |