Automated detection of photoreceptors in in-vivo retinal images

The inclusion of adaptive optics (AO) into ophthalmic imaging technology has allowed the study of histological elements of retina in-vivo, such as photoreceptors, retinal pigment epithelium (RPE) cells, retinal nerve fiber layer and ganglion cells. The high-resolution images obtained with ophthalmic...

Full description

Autores:
Rangel-Fonseca, Piero
Gomez-Vieyra, Armando
Malacara-Hernandez, Daniel
Wilson-Herran, Mario Cesar
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/60471
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/60471
http://bdigital.unal.edu.co/58803/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Photoreceptor
adaptive optics
image processing
Fotorreceptores
óptica adaptativa
procesamiento de imágenes
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c447fa4befe18c285a947139330f8f38
oai_identifier_str oai:repositorio.unal.edu.co:unal/60471
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Automated detection of photoreceptors in in-vivo retinal images
title Automated detection of photoreceptors in in-vivo retinal images
spellingShingle Automated detection of photoreceptors in in-vivo retinal images
62 Ingeniería y operaciones afines / Engineering
Photoreceptor
adaptive optics
image processing
Fotorreceptores
óptica adaptativa
procesamiento de imágenes
title_short Automated detection of photoreceptors in in-vivo retinal images
title_full Automated detection of photoreceptors in in-vivo retinal images
title_fullStr Automated detection of photoreceptors in in-vivo retinal images
title_full_unstemmed Automated detection of photoreceptors in in-vivo retinal images
title_sort Automated detection of photoreceptors in in-vivo retinal images
dc.creator.fl_str_mv Rangel-Fonseca, Piero
Gomez-Vieyra, Armando
Malacara-Hernandez, Daniel
Wilson-Herran, Mario Cesar
dc.contributor.author.spa.fl_str_mv Rangel-Fonseca, Piero
Gomez-Vieyra, Armando
Malacara-Hernandez, Daniel
Wilson-Herran, Mario Cesar
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Photoreceptor
adaptive optics
image processing
Fotorreceptores
óptica adaptativa
procesamiento de imágenes
dc.subject.proposal.spa.fl_str_mv Photoreceptor
adaptive optics
image processing
Fotorreceptores
óptica adaptativa
procesamiento de imágenes
description The inclusion of adaptive optics (AO) into ophthalmic imaging technology has allowed the study of histological elements of retina in-vivo, such as photoreceptors, retinal pigment epithelium (RPE) cells, retinal nerve fiber layer and ganglion cells. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the tissue under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells and characterize the RPE mosaic. In this work, an algorithm is presented for the detection of photoreceptors. The algorithm has been tested in synthetic and real images acquired with an Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) and compared with the one developed by Li and Roorda. It is shown that both algorithms have similar performance on synthetic and cones-only images, but the one here proposed shows more accurate measurements when it is used for cones-rods detection in real images.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-10-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T18:23:44Z
dc.date.available.spa.fl_str_mv 2019-07-02T18:23:44Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2346-2183
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/60471
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/58803/
identifier_str_mv ISSN: 2346-2183
url https://repositorio.unal.edu.co/handle/unal/60471
http://bdigital.unal.edu.co/58803/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/54578
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.references.spa.fl_str_mv Rangel-Fonseca, Piero and Gomez-Vieyra, Armando and Malacara-Hernandez, Daniel and Wilson-Herran, Mario Cesar (2016) Automated detection of photoreceptors in in-vivo retinal images. DYNA, 83 (199). pp. 57-62. ISSN 2346-2183
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas.
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/60471/1/54578-309076-2-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/60471/2/54578-309076-2-PB.pdf.jpg
bitstream.checksum.fl_str_mv 2bb45ce8c01ebeb2868407b4ae1fe7b4
53fa62fc5223a850f8ed62eb22ab3149
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089747275972608
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rangel-Fonseca, Piero2334d348-cd30-4a54-a850-1b497e7976e1300Gomez-Vieyra, Armando0cae6c59-f2ba-43f3-a56d-5beb4c8c16f1300Malacara-Hernandez, Daniela0a13cf4-e9e9-45fb-b5da-ba59cdaa02bd300Wilson-Herran, Mario Cesare7607bc7-aa5c-42eb-a799-c50f2824f4ec3002019-07-02T18:23:44Z2019-07-02T18:23:44Z2016-10-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60471http://bdigital.unal.edu.co/58803/The inclusion of adaptive optics (AO) into ophthalmic imaging technology has allowed the study of histological elements of retina in-vivo, such as photoreceptors, retinal pigment epithelium (RPE) cells, retinal nerve fiber layer and ganglion cells. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the tissue under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells and characterize the RPE mosaic. In this work, an algorithm is presented for the detection of photoreceptors. The algorithm has been tested in synthetic and real images acquired with an Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) and compared with the one developed by Li and Roorda. It is shown that both algorithms have similar performance on synthetic and cones-only images, but the one here proposed shows more accurate measurements when it is used for cones-rods detection in real images.La inclusión de la óptica adaptativa (adaptive optics, AO) en la tecnología de imágenes oftálmicas ha permitido el estudio in-vivo de los elementos histológicos de retina, como los fotorreceptores, células del epitelio pigmentario de la retina (retinal pigment ephitelium, RPE), la capa de fibras nerviosas de la retina y células ganglionares. Las imágenes de alta resolución obtenidas con dispositivos oftálmicos con AO son ricos en información, que es difícil y/o tediosa de cuantificar por medio de métodos manuales. Por lo tanto, se requieren herramientas de análisis automatizadas robustas que puedan proporcionar información cuantitativa reproducible del tejido bajo examen. Algoritmos automatizados han sido desarrollados para detectar la posición de células individuales fotorreceptoras y caracterizar el mosaico RPE. En este trabajo, se presenta un algoritmo para la detección de los fotorreceptores. El algoritmo ha sido probado en imágenes sintéticas y reales adquiridas con un oftalmoscopio de barrido láser con óptica adaptativa (Adaptive Optics Scanning Laser Ophthalmoscope, AOSLO) y comparado con el desarrollado por Li y Roorda. Se muestra que ambos algoritmos tienen un rendimiento similar en imágenes sintéticas e imágenes con sólo conos, pero el algoritmo propuesto muestra mediciones más precisas cuando se utiliza para la detección de conos-bastones en imágenes reales.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/54578Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaRangel-Fonseca, Piero and Gomez-Vieyra, Armando and Malacara-Hernandez, Daniel and Wilson-Herran, Mario Cesar (2016) Automated detection of photoreceptors in in-vivo retinal images. DYNA, 83 (199). pp. 57-62. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringPhotoreceptoradaptive opticsimage processingFotorreceptoresóptica adaptativaprocesamiento de imágenesAutomated detection of photoreceptors in in-vivo retinal imagesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL54578-309076-2-PB.pdfapplication/pdf730057https://repositorio.unal.edu.co/bitstream/unal/60471/1/54578-309076-2-PB.pdf2bb45ce8c01ebeb2868407b4ae1fe7b4MD51THUMBNAIL54578-309076-2-PB.pdf.jpg54578-309076-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg9477https://repositorio.unal.edu.co/bitstream/unal/60471/2/54578-309076-2-PB.pdf.jpg53fa62fc5223a850f8ed62eb22ab3149MD52unal/60471oai:repositorio.unal.edu.co:unal/604712023-04-07 23:04:27.37Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co