Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes
Ilustraciones, mapas
- Autores:
-
Naranjo Bedoya, Karolina
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85472
- Palabra clave:
- 500 - Ciencias naturales y matemáticas
Drainage basin
Landslide
Debris flow
Susceptibility
Landscape evolution
Cuenca de drenaje
Deslizamiento
Avenida torrencial
Evolución del paisaje.
Geomorfología
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_c403c45a406a9054db426e2bf12d9ee9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85472 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes |
dc.title.translated.spa.fl_str_mv |
Aproximación al análisis de las condiciones de susceptibilidad a deslizamientos y avenidas torrenciales en relación con la evolución del paisaje en el norte de los Andes colombianos |
title |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes |
spellingShingle |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes 500 - Ciencias naturales y matemáticas Drainage basin Landslide Debris flow Susceptibility Landscape evolution Cuenca de drenaje Deslizamiento Avenida torrencial Evolución del paisaje. Geomorfología |
title_short |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes |
title_full |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes |
title_fullStr |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes |
title_full_unstemmed |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes |
title_sort |
Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes |
dc.creator.fl_str_mv |
Naranjo Bedoya, Karolina |
dc.contributor.advisor.none.fl_str_mv |
Aristizábal Giraldo, Edier Vicente Holbling, Daneil |
dc.contributor.author.none.fl_str_mv |
Naranjo Bedoya, Karolina |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Geología Ambiental - GEA |
dc.contributor.orcid.spa.fl_str_mv |
Karolina Naranjo Bedoya [0000-0002-6484-0709] |
dc.contributor.researchgate.spa.fl_str_mv |
Karolina Naranjo Bedoya |
dc.subject.ddc.spa.fl_str_mv |
500 - Ciencias naturales y matemáticas |
topic |
500 - Ciencias naturales y matemáticas Drainage basin Landslide Debris flow Susceptibility Landscape evolution Cuenca de drenaje Deslizamiento Avenida torrencial Evolución del paisaje. Geomorfología |
dc.subject.proposal.eng.fl_str_mv |
Drainage basin Landslide Debris flow Susceptibility Landscape evolution |
dc.subject.proposal.spa.fl_str_mv |
Cuenca de drenaje Deslizamiento Avenida torrencial Evolución del paisaje. |
dc.subject.wikidata.none.fl_str_mv |
Geomorfología |
description |
Ilustraciones, mapas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-26T20:30:20Z |
dc.date.available.none.fl_str_mv |
2024-01-26T20:30:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
DataPaper Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85472 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85472 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., and Hodges, K. V. (2020). Climate controls on erosion in tectonically active landscapes. Science advances, 6:1–10. Aguirre, V. (2020). Suspenden búsqueda de desaparecidos en Dabeiba y declaran camposanto la zona de la emergencia. Ahmed, M. F., Ali, M. Z., Rogers, J. D., and Khan, M. S. (2019). A study of knickpoint surveys and their likely association with landslides along the Hunza River longitudinal profile. Environmental Earth Sciences, 78:1–15. Anselin, L. (1988). Spatial econometrics: methods and models, volume 4. Springer Science & Business Media. Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2):93–115. Arango, M. I., Aristizábal, E., and Gómez, F. (2020). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105:983–1012. Arias, L. A. (1995). El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Facultad de Ingeniería Universidad de Antioquia, (10):9– 24. Aristizábal, E., Arango, M., Gómez, F., López, S., De Villeros, A., and Riaño, A. (2020). Hazard Analysis of Hydrometeorological Concatenated Processes in the Colombian Andes. In Fernandes, F., Malheiro, A., and Chamin´e, H., editors, Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge, chapter 2, pages 7–10. Springer. Aristizábal, E. and Sánchez, O. (2019). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters. Aristizábal, E. and Yokota, S. (2006). Geomorfología aplicada a la ocurrencia de deslizamientos en el Valle de Aburrá. Dyna, 73(149):5–16. Aristizábal, E. and Yokota, S. (2008). Evolución Geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa. Boletín de Ciencias de la Tierra, 24:5–18. Beeson, H. W. and McCoy, S. W. (2020). Geomorphic signatures of the transient fluvial response to tilting. Earth Surface Dynamics, 8:123–159. Beeson, H. W., McCoy, S. W., and Keen-Zebert, A. (2017). Geometric disequilibrium of river basins produces long-lived transient landscapes. Earth and Planetary Science Letters, 475(October):34–43. Bigi, A., Hasbargen, L. E., Montanari, A., and Paola, C. (2006). Knickpoints and hillslope failures: Interactions in a steady-state experimental landscape. Special Paper of the Geological Society of America, 398:295–307. Bishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19(4):449–473. Bishop, P. (2007). Long-term landscape evolution: linking tectonics and surface processes. Earth Surface Processes and Landforms, 34:329–365. Botero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de la Facultad de Minas, (57):94. Boulton, S. J. (2020). Geomorphic Response to Differential Uplift: River Long Profiles and Knickpoints From Guadalcanal and Makira (Solomon Islands). Frontiers in Earth Science, 8:1–23. Bourgois, J., Azéma, J., Tournon, J., Bellon, H., Calle, B., Parra, E., Toussaint, J.-F., Glacon, G., Feinberg, H., De Wever, P., and Origlia, I. (1982). Ages et structures des comlplexes basiques et ultrabasiques de la fa¸cade pacifique entre 3°N et 12°N (Colombie, Panamá et Costa-Rica). Bulletin De La Société Géologique De Française, 7(3):545–554. Brunsden, D. (2002). Geomorphological roulette for engineers and planners: Some insights into an old game. Quarterly Journal of Engineering Geology and Hydrogeology, 35:101–142. Brunsdon, C., Fotheringham, A. S., and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28(4):281– 298. Buchely, F., Parra, E., Castillo, H., Gonzalez, F., Davila, C., and Romero, O. (2009). Realización de la cartografía geológica y muestreo geoquímico en las planchas 144, 145, 128, 129, 113 y 114 (1580 km2). Technical report, INGEOMINAS, Bogotá. Bull, W. B. (2009). Tectonically Active Landscapes. Wiley. Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379:505–510. Busnelli, J. and Horta, L. R. (2014). Morfometría de cuencas Montanas y Metamorfosis fluvial, Tucumán. Revista de la Asociación Geológica Argentina, 71(1):11–20. Bustamante, C., Archanjo, C. J., Cardona, A., and Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America, 128(11-12):1762–1779 Bustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., and Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277:199–209. Bustos, X., Bermúdez, M. A., Toro, G. M., Bernet, M., Rojas, O., and Marín, M. I. (2013). Caracterización de superficies de erosión mediante geomorfología cuantitativa, Altiplano Antioqueño, Cordillera Central de Colombia. Terra, 46:43–67. Caballero, J., Rendón, A., Gallego, J., and Uasapud, N. (2016). Inter-Andean Cauca River Canyon. In Hermelin, M., editor, Landscapes and Landforms of Colombia, World Geomorphological Landscapes, chapter 13, pages 155–166. Springer, 1st edition. Calle, B. and González, H. (1982). Geología y Geoquímica de la Plancha 186 Riosucio. Technical report, INGEOMINAS, Medellín. Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In Pei, J., Tseng, V. S., Cao, L., Motoda, H., and Xu, G., editors, Advances in Knowledge Discovery and Data Mining, pages 160–172, Berlin, Heidelberg. Springer Berlin Heidelberg. Campforts, B., Shobe, C., Steer, P., Vanmaercke, M., Lague, D., and Braun, J. (2020). HyLands 1 . 0 : a Hybrid Landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution. Geoscientific Model Development, pages 1–36. Cárdenas, C. (2005). Erupción del volcán Nevado de Ruiz de 1985. In Hermelín, M. and EAFIT, F. e. U., editors, Desastres de origen natural en Colombia 1979-2004, chapter 4, pages 39–54. Medellín, 1 edition. Cardona, A., Valencia, V., Weber, M., Duque, J., Montes, C., Ojeda, G., Reiners, P., Domanik, K., Nicolescu, S., and Villagomez, D. (2011). Transient cenozoic tectonic stages in the southern margin of the caribbean plate: U-th/he thermochronological constraints from eocene plutonic rocks in the Santa Marta massif and serranía de Jarara, northern Colombia. Geologica Acta, pages 445–469. Castillo, M., Bishop, P., and Jansen, J. D. (2013). Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland. Geomorphology, 180-181:1–9 Cediel, F., Shaw, R., and Cáceres, C. (2003). Tectonic assembly of the Northern Andean Block. In Bartolini, C., Buffler, R., and Blickwede, J., editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, number 79, chapter 37, pages 815–848. Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., and Prieto, G. A. (2015). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1):16–27. Chicangana, G. (2005). The Romeral Fault System: A shear and deformed extinct subduction zone between oceanic and continental lithospheres in northwestern South America. Earth Sciences Research Journal, 9(1):51–66. Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., and Chiaradia, M. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202-203:382–394. Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., and Harris, P. (2023). A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis, 55(1):155–178. Corrêa, F., de Fátima, D., de Morisson, M., and de Oliveira, C. (2019). Neotectonics in the South American passive margin: Evidence of Late Quaternary uplifting in the northern Paraiba Basin (NE Brazil). Geomorphology, 325:1–16. Cortés, M. and Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403:29–58. Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106:571–581. CRED and UNISDR (2017). Economic Losses, Poverty Disasters 1998-2017. Technical report. Dadson, S. J., Hovius, N., Hongey, C., Dade, W. B., Meng-long, H., Willett, S. D., Jyr-ching, H., Ming-Jame, H., Meng-Chiang, C., Stark, C. P., Lague, D., and Jiun-Chuan, L. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967):648–651. Dahlquist, M. P., West, A. J., and Li, G. (2018). Landslide-driven drainage divide migration. Geology, 46(5):403–406. Das, S., Sarkar, S., and Kanungo, D. P. (2023). A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Natural Hazards, 115(1):23–72. De Greiff, P., Hermelin, M., and Rend´on, D. (2004). Procesos erosivos en la Microcuenca Andina: El valle del alto del Río Medellín, Cordillera Central, Antioquia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(109):24–33. Dolui, G., Das, K., Chatterjee, N. D., and Bhattcharya, R. K. (2022). Multi-criteria-based Morphometric Prioritization for Soil Erosion Susceptibility and Denudation Rate Assessment of Purulia District, India. In Kumar, P., Islam, A., Sankar, G., Bera, B., and Ghosh, S., editors, Drainage Basin Dynamics. An Introduction to Morphology, Landscape and Modelling, chapter 22, page 574. Springer. Duque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1):71–84. Egholm, D. L., Knudsen, M. F., and Sandiford, M. (2013). Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature, 498:475–478. Ego, F., Sébrier, M., Lavenu, A., Yepes, H., and Egues, A. (1996). Quaternary state of stress in the Northern Andes and the restraining bend model for the Ecuadorian Andes. Tectonophysics, 259:101–116 Ego, F., Sébrier, M., and Yepes, H. (1995). Is the Cauca-Patia and Romeral Fault System left or rightlateral? Geophysical Research Letters, 22(1):33–36. El País (2023). Encuentran otro cuerpo sin vida tras devastadora avalancha en Quetame. Faniran, A. (1968). The index of drainage intensity—a provisional new drainage factor. Australian journal of science, 31:328–330. Feininger, T. and Botero, G. (1982). The Antioquian Batholith, Colombia. Publicaciones geológicas especiales del Ingeominas, (12):1–50. Fernandes, F. and Dietrich, E. (1997). Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments. Water Resources Research, 33(6):1307–1318. Feuillet, T., Coquin, J., Mercier, D., Cossart, E., Decaulne, A., Jónsson, H. P., and Sæ- mundssonthorsteinn, T. (2014). Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: Do paraglacial factors vary over space? Progress in Physical Geography, 38(3):354–377. Figueiredo, P. M., Rockwell, T. K., Cabral, J., and Ponte, C. (2019). Morphotectonics in a low tectonic rate area: Analysis of the southern Portuguese Atlantic coastal region. Geomorphology, 326:132–151. Flores, E., Qupenéhervé, G., Bachofer, F., Shahzad, F., and Maerker, M. (2015). Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data. Geomorphology, 248:427–439. Forte, A. M. and Whipple, K. X. (2018). Criteria and tools for determining drainage divide stability. Earth and Planetary Science Letters, 493:102–117. Fotheringham, A. S., Charlton, M. E., and Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11):1905–1927. Fotheringham, A. S. and Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 18:303–329. Fotheringham, S., Brunsdon, C., and Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley Galadini, F. (2006). Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the Central Apennines (central Italy). Geomorphology, 82(3-4):201–228. Gallego, J. (2018). Assessment of recent tectonic activity of the Sabanalarga Fault System, Western Antioquia – Colombia. Master thesis, University of Bern. Gallen, S., Wegmann, K., Franke, K. L., Hughes, S., Lewis, R. Q., Lyons, N., Paris, P., Ross, K., Bauer, J. B., and Witt, A. C. (2011). Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes. Earth Surface Processes and Landforms, 36:1254–1267. García, C. (2007). Datación por fotoluminiscencia de algunas formaciones superficiales del Llano de Ovejas, Cordillera Central, Antioquia. PhD thesis, Universidad EAFIT. Garcia, C. and Hermelin, M. (2004). Cálculo preliminar de la tasa de meteorización del batolito antioqueño, Cordillera Central, Colombia. Revista Brasileira de Geomorfologia, 5(1). García, H., Machuca, S., and Medina, E. (2019). Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia). Landslides, 16:597–609. García, H., Machuca, S., Velandia, F., and Audemard, F. (2020). Along-strike variations in recent tectonic activity in the Santander Massif: New insights on landscape evolution in the Northern Andes. Journal of South American Earth Sciences, 98:1–22. García, H. and Velandia, F. (2020). Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): Regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology, 349:1–25. Garcia, Y. C., Martinez, J. I., Velez, M. I., Yokoyama, Y., Battarbee, R. W., and Suter, F. D. (2011). Palynofacies analysis of the late Holocene San Nicolás terrace of the Cauca paleolake and paleohydrology of northern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 299:298–308. Garrote, J., Cox, R., Swann, C., and Ellis, M. (2006). Tectonic geomorphology of the southeastern Mississippi Embayment in northern Mississippi, USA. Geological Society of America Bulletin, 118(9/10):1160–1170. Giardino, M., Ratto, S., Palomba, M., Alberto, W., Armand, M., and Cignetti, M. (2013). The Debris Flows Inventory of the Aosta Valley Region: An Integrated Natural Hazards Assessment. In Margottini, C., editor, The second world landslide forum, pages 127–134. Springer Verlag Glade, R. C., Shobe, C. M., Anderson, R. S., and Tucker, G. E. (2019). Canyon shape and erosion dynamics governed by channel-hillslope feedbacks. Geology, 47:650–654. Gómez, J. and Montes, N. (2020). Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Technical report, Servicio Geológico Colombiano, Bogotá. González, H. (2001). Mapa geológico del Departamento de Antioquia Escala 1:400.000. Memoria explicativa. Technical report, INGEOMINAS. Diaz & López (1987). Morfometría de redes fluviales: revisión crítica de los parámetros más utilizados y aplicación al Alto Guadalquivir. Papeles de geografía, 12:47–62. González, H. and Londoño, A. C. (2002). Catálogo de las unidades litoestratigráficas de Colombia, Monzodiorita de la Horqueta (Stock de La Horqueta) Nmdh, Cordillera Occidental Departamento de Antioquia. Technical report, Ingeominas, Bogotá. Gravelius, H. (1941). Flusskunde. Guerit, L., Goren, L., Dominguez, S., Malavieille, J., and Castelltort, S. (2018). Landscape ‘stress’ and reorganization from χ-maps: Insights from experimental drainage networks in oblique collision setting. Earth Surface Processes and Landforms, 43(15):3152–3163. Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. USGS Professional Paper, page 59. Hack, J. (1973). Stream-profile analysis and stream-gradient index. J.Res.Us Geol.Surv., 1(4):421–429. Hermelín, M. (1982). EL origen del Valle de Aburrá. Evolución de las ideas. Boletín Ciencias de la Tierra, (7-8):47–65. Hermelín, M. (2005). Introducción. In Hermelin, M. and Fondo editorial Universidad EAFIT, editors, Desastres de origen natural en Colombia 1979-2004, chapter 1, pages 11–16. Medellín, 1 edition. Hermelin, M. (2016). Geomorphological Landscapes and Landforms of Colombia. In Hermelin, M., editor, Landscapes and Landforms of Colombia, World Geomorphological Landscapes, chapter 1, pages 1–21. Springer. Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., and Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006):927–931. Horton, R. E. (1932). Drainage basin characteristics. Eos, Transactions American Geophysical Union, 13(1):350–361. Horton, R. E. (1945). Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. GSA Bulletin, 56(3):275–370. Hovius, N. and Stark, C. P. (2006). Landslide-driven erosion and topographic evolution of active mountain belts. In Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R., editor, Landslides from Massive Rock Slope Failure, pages 573–590. Springer, Dordrecht. Howard, A. D. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7):2261–2285. Hunter, B. (2009). The contribution of large, slow-moving landslides to landscape evolution. PhD thesis, University of Oregon. Hurst, M. D., Grieve, S. W., Clubb, F. J., and Mudd, S. M. (2019). Detection of channelhillslope coupling along a tectonic gradient. Earth and Planetary Science Letters, 522:30– 39. IGAC (2010). Convenio interadministrativo No. 4085-2009 para la generación de la Cartografía del Departamento de Antioquia, suscrita entre el Departamento de Antioquia, el Instituto Geográfico Agustín Codazzi –IGAC-, el Municipio de Medellín, el Área Metropolitana del Valle de Aburrá. Technical report. Jaiswara, N. K., Kotluri, S. K., Pandey, P., and Pandey, A. K. (2020). MATLAB functions for extracting Hypsometry, Stream-length gradient index, Steepness index, Chi gradient of channel and Swath profiles from Digital Elevation Model (DEM) and other spatial data for landscape characterisation. Applied Computing and Geosciences, 7:1–12. Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., and León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330-331:194–210. Jomthanachai, S., Wong, W. P., and Khaw, K. W. (2022). An application of machine learning regression to feature selection: a study of logistics performance and economic attribute. Neural Computing and Applications, 34:15781–15805. Keller, E. A. and Pinter, N. (2002). Active Tectonics Earthwakes, Uplift, and Landscape. Prentice Hall, New Jersey, second edition. Keller, E. A. and Rockwelf, T. K. (1984). Tectonic geomorphology, Quaternary chronology, and Paleoseismicity. In Costa, J. and Fleisher, P., editors, Developments and Applications of Geomorphology, chapter 7, pages 203–239. Springer, Berlin. Kellogg, J., Franco, G., and Mora-P´aez, H. (2019). Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy. In Horton, B. K. and Folguera, A., editors, Andean Tectonics, chapter 4, pages 69–102. Elsevier. Kirby, E. and Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29(5):415–418. Kirby, E. and Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44:54–75. Korup, O. (2006). Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand. Journal of Geophysical Research: Earth Surface, 111(1):1–18. Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T. (2007). Giant landslides, topography, and erosion. Earth and Planetary Science Letters, 261:578–589. Korup, O., Densmore, A. L., and Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120:77–90. Korup, O., Schmidt, J., and McSaveney, M. J. (2005). Regional relief characteristics and denudation pattern of the western Southern Alps, New Zealand. Geomorphology, 71:402– 423. Koutsos, T. M., Menexes, G. C., and Mamolos, A. P. (2021). The use of crop yield autocorrelation data as a sustainable approach to adjust agronomic inputs. Sustainability, 13:1–18. Lague, D. (2014). The stream power river incision model: Evidence, theory and beyond. Earth Surface Processes and Landforms, 39(1):38–61. Lalinde, C., González, A., and Caballero, H. (2009). Evidencia Paleosísmica en el Segmento de la Falla de Sopetrán o San Jerónimo Segmento 5. Boletín de Geología, 31(2):23–34. Lane, E. (1954). The Importance of Fluvial Morphology in Hydraulic Engineering. Technical report, Engineering laboratories, Colorado. Lara, M., Salazar-Franco, A. M., and Silva-Tamayo, J. C. (2018). Provenance of the Cenozoic siliciclastic intramontane Amag´a Formation: Implications for the early Miocene collision between Central and South America. Sedimentary Geology, 373:147–162. Larsen, I. J. and Montgomery, D. R. (2012). Landslide erosion coupled to tectonics and river incision. Nature Geoscience, 5(7):468–473. Lavé, J. and Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105(B3):5735–5770. Leiva, O., Moya, H., Trejos, G., and Carvajal, J. (2012). Propuesta Metodológica Sistemática Para La Generación De Mapas Geomorfológicos Analíticos Aplicados a La Zonificación De Amenaza Por Movimientos En Masa Escala 1:100.000. Technical report, Servicio Geológico Colombiano, Bogotá. León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., and Pardo-Trujillo, A. (2018). Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca-South America Interactions. Tectonics, 37(1):119–139. Leopold, P., Heiss, G., Petschko, H., Bell, R., and Glade, T. (2011). Susceptibility maps for landslides using different modelling approaches. In Margottini, C., Canuti, P., and Sassa, K., editors, Proceedings of the Second World Landslide Forum, pages 1–5, Rome. Springer. Lindsay, J. (2014). The Whitebox Geospatial Analysis Tools project and open-access GIS. In Proceedings of the GIS Research UK 22nd Annual Conference. The University of Glasgow. López, M. C. and Toro-Toro, M. (2020). Stratigraphy and Tectonics of the Neogene and Quaternary of the Cauca Basin of Colombia. In Gómez, J. and Pinilla-Pachon, A., editors, The geology of Colombia, volume 4, chapter 1, pages 1–42. Servicio Geológico Colombiano, Bogotá, publication edition. Lu, B., Yang, W., Ge, Y., and Harris, P. (2018). Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment and Urban Systems, 71:41–57. Mackey, B. H. (2009). The contribution of large, slow-moving landslides to landscape evolution. PhD thesis, University of Oregon. Mejía, M. (1984). Geología y geoquímica de las Planchas 130 (Santa Fé de Antioquia) y 146 (Medellín Occidental). Technical report, Ingeominas, Medellín. Melton, M. A. (1957). An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology. Mendez, C. (2022). Introduction to GWR and MGWR. Miller, V. (1953). A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area. Technical Report, 3:271–300 Molin, P., Pazzaglia, F., and Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, Southern Italy. American Journal of Science, 304:559–589. Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., and Valencia, V. (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research, 117(B04105):1–25. Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J., Valencia, V., Ayala, C., Pérez Angel, L., Rodriguez-Parra, L., Ramirez, V., et al. (2015). Middle miocene closure of the central american seaway. Science, 348(6231):226–229. Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V., and Jaramillo, C. (2010). Clockwise rotation of the santa marta massif and simultaneous paleogene to neogene deformation of the plato-san jorge and cesar-ranchería basins. Journal of South American Earth Sciences, 29(4):832–848. Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., and Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198:1–25. Montes, N. E. and Sandoval, A. (2001). Base de datos de fallas activas de colombia recopilación bibliográfica. Technical report, Bogotá. Montgomery, D. R. (2001). Slope distributions, threshold hillslopes, and steady-state topography. American Journal of Science, 301(4-5):432–454. Montgomery, D. R. and Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201(3-4):481– 489. Mora, A., Villagómez, D., Parra, M., Caballero, V., Spikings, R., Horton, B. K., Mora Bohórquez, J., Ketcham, R., and Arias, J. (2020). Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications. In Gómez, J. and Mateus-Zabala, D., editors, The Geology of Colombia, volume 3, chapter 4, pages 89–121. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, Bogotá. Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J. R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., and Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89:76–91. Moran, P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1-2):17–23. Mudd, S. M. (2017). Detection of transience in eroding landscapes. Earth Surface Processes and Landforms, 42:24–41. Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W., and Valters, D. A. (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. Journal of Geophysical Research: Earth Surface, 119(2):138–152. Mudd, S. M., Clubb, F. J., Gailleton, B., and Hurst, M. D. (2018). How concave are river channels? Earth Surface Dynamics Discussions, 6(2):1–34. Nivia, A., Gálvis G., N., and Maya S., M. (1992). Geología de la plancha 242-Zarzal. ´ Technical report, INGEOMINAS. Nones, M. (2020). On the main components of landscape evolution modelling of river systems. Acta Geophysica, 68:459–475. Noriega, S. (2016). Geomorfología tectónica del noroccidente de la Cordillera Central, Andes del Norte - Colombia. Tesis de maestría, Universidad Nacional de Colombia. Noriega, S., Restrepo, S., Vinasco, C., Bermúdez, M., and Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351:1–18. Noriega-Londoño, S., Jaraba, D., Ruiz, M., Marín-Cerón, M., and Restrepo-Moreno, S. (2022). Magnetic fabric of deformed quaternary sediments: contributions to the understanding of the neotectonic activity in the surroundings of the Aburrá Valley, Central Cordillera, Colombia. Boletín Geológico, 49(1):103–123. Obaid, A. K. and Allen, M. B. (2019). Landscape expressions of tectonics in the Zagros fold-and-thrust belt. Tectonophysics, 766:20–30. Oguchi, T. (1997). Drainage Density and Relative Relief in Humid Steep Mountains with Frequent Slope Failure. Earth Surface Processes and Landforms, 22(2):107–120. Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8(4):263–277. Ordóñez, O., Pimentel, M. M., and Laux, J. (2007). Edades U-Pb del Batolito Antioqueño. Boletín Ciencias de la Tierra, (22):129–130. Ouimet, W. B., Whipple, K. X., Royden, L. H., Sun, Z., and Chen, Z. (2007). The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Bulletin of the Geological Society of America, 119:1462–1476. Page, W. (1986). Seismic Geology and Seismicity of Northwestern Colombia. Technical report, Integral - ISA, California. Paris, G., Machette, M. N., Dart, R. L., and Kathleen, M. (2000). Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions. Technical report. Pérez, J. V., Azañón, J. M., and Azor, A. (2009). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35:1214–1223. Pérez-Consuegra, N., Hoyos, N., Restrepo, J. C., Escobar, J., and Hoke, G. D. (2021a). Contrasting climate controls on the hydrology of the mountainous Cauca River and its associated sedimentary basin: Implications for interpreting the sedimentary record. Geomorphology, 377:1–13. Pérez-Consuegra, N., Ott, R. F., Hoke, G. D., Galve, J. P., Pérez-Peña, V., and Mora, A. (2021b). Neogene variations in slab geometry drive topographic change and drainage reorganization in the Northern Andes of Colombia. Global and Planetary Change, 206:1– 18. Pérez-Peña, J. V., Al-Awabdeh, M., Azañón, J. M., Galve, J. P., Booth-Rea, G., and Notti, D. (2017). SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Computers and Geosciences, 104:135– 150. Pérez-Peña, J. V., Azor, A., Azañón, J. M., and Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119:74–87. Perron, J. T. and Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38:570–576. Petley, D. (2012). Global patterns of loss of life from landslides. 40:927–930. Piacentini, D., Troiani, F., Servizi, T., Nesci, O., and Veneri, F. (2020). SLIX: A GIS toolbox to support along-stream knickzones detection through the computation and mapping of the stream length-gradient (SL) index. International Journal of Geo-Information, 9(2):1– 15 Ponza, A., Pazzaglia, F. J., and Picotti, V. (2010). Thrust-fold activity at the mountain front of the Northern Apennines (Italy) from quantitative landscape analysis. Geomorphology, 123:211–231. Radaideh, O. M. and Mosar, J. (2019). Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics, 768:1–29 Rendón, D., Toro, G., and Hermelin, M. (2006). Modelo cronoestratigráfico para el emplazamiento de los depósitos de vertiente en el Valle de Aburrá. Boletín de Ciencias de la Tierra, 18:103–118. Restrepo, J. J., Ordoñez-Carmona, O., Martens, U., and Correa, A. M. (2009). Terrenos, complejos y provincias en la Cordillera Central de Colombia. Ingeniería, Investigación y Desarrollo, 9(2):49–56. Restrepo, J. J. and Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3):189–193. Restrepo, S., Foster, D., Bernet, M., Min, K., and Noriega, S. (2019). Morphotectonic and Orogenic Development of the Northern Andes of Colombia: A Low-Temperature Thermochronology Perspective. In Cediel, F. and Shaw, R., editors, Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction, chapter 11, pages 749–832. Springer. Restrepo-Moreno, S. A., Foster, D. A., Stockli, D. F., and Parra-Sánchez, L. N. (2009). Longterm erosion and exhumation of the ”Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1- 2):1–12. Rey, S., Arribas-Bel, D., and Wolf, L. (2020). Geographic data science with python. Rey, S. J. and Anselin, L. (2007). PySAL: A Python Library of Spatial Analytical Methods. The Review of Regional Studies, 37(1) Reyes-Harker, A., Ruiz-Valdivieso, C. F., Mora, A., Ramírez-Arias, J. C., Rodriguez, G., De La Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B. K., Saylor, J. E., Silva, A., Valencia, V., Stockli, D., and Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia, volume 99. Rodríguez G., G. and Zapata G., G. (2012). Características del plutonismo Mioceno superior en el segmento Norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente Colombiano. Boletín de Ciencias de la Tierra, (31):5–22. Rowe, F. and Arribas-Bel, D. (2023). Spatial Modelling for Data Scientists. Ruiz, D. and Aristizábal, E. (2018). Landslide susceptibility assessment in mountainous and tropical scarce-data regions using remote sensing data: A case study in the Colombian Andes. Saenz, E. (2003). Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master thesis, Shimane University. Sassolas-Serrayet, T., Cattin, R., and Ferry, M. (2018). The shape of watersheds. Nature Communications, 9(1):1–8. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America., 67(1):56. Scotti, V. N., Molin, P., Faccenna, C., Soligo, M., and Casas-Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology, 206:37–57. Seeber, L. and Gornitz, V. (1983). River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics, 92:335–367. Sepúlveda, S. A. and Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Sciences, 15:1821–1833. SGC (2015). Mapa Geológico de Colombia 2015. Escala 1:1.000.000. Shahzad, F. and Gloaguen, R. (2011). TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis. Computers and Geosciences, 37:250–260. Sharma, G., Champati, P. K., and Mohanty, S. (2018). Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology, 301:108–120. Sierra, G., Estrada, J. J., and Macdonald, W. (1995). Estudio paleomagnético en rocas terciarias de la cuenca del Rio Cauca, departamento de Caldas : implicaciones tectónicas. Revista Universidad EAFIT, 31(100):79–109. Silva Tamayo, J. C., Sierra, G. M., and Correa, L. G. (2008). Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes. Journal of South American Earth Sciences, 26:369–382. Sklar, L. and Dietrich, E. (1998). River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107:237–260. Smart, J. S. and Surkan, A. J. (1967). The relation between mainstream length and area in drainage basins. Water Resources Research, 3(4):963–974. Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9):655–668. Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. 112:1250–1263. Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J. (2003). Channel response to tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology, 53:97–127. Sorensen, C. S. and Yanites, B. J. (2019). Latitudinal trends in modern fluvial erosional efficiency along the Andes. Geomorphology, 329:170–183. Sousa, L., Vargas, E., Sousa, R., and Chaminé, H. (2020). Hydrological Risks in Natural Hazards Focused on the Role of the Water: Studies on Landslides. In Fernandes, F., Malheiro, A., and Chaminé, H., editors, Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge, chapter 9, pages 43–47. Springer. Strahler, A. (1952). Hypsometric (Area-Altitude) analysis of erosional topography. Geological Society Of America Bulletin, 63(11):1117–1142. Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology. Strahler, A. N. (1997). Quantitative geomorphology, pages 898–912. Springer Berlin Heidelberg, Berlin, Heidelberg. Struth, L. (2016). Evolution of fluvial drainage during mountain building in the Eastern Cordillera of the Colombian Andes. PhD thesis, Universitat Autónoma de Barcelona. Struth, L., Giachetta, E., Willett, S. D., Owen, L. A., and Tesón, E. (2020). Quaternary drainage network reorganization in the Colombian Eastern Cordillera plateau. Earth Surface Processes and Landforms, 45:1789–1804. Suter, F., Martínez, J. I., and Vélez, M. I. (2011). Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity? Sedimentary Geology, 235:188–199. Suter, F., Sartori, M., Neuwerth, R., and Gorin, G. (2008). Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics, 460:134–157. Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., and Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444:139– 149. Taboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., and Rivera, C. (2000). Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics, 19(5):787–813. Tacconi , C., Segoni, S., Casagli, N., and Catani, F. (2016). Geomorphic indexing of landslide dams evolution. Engineering Geology, 208:1–10. Thapa, R. and Estoque, R. (2012). Geographically Weighted Regression in Geospatial Analysis. In Murayama, Y., editor, Progress in Geospatial Analysis, chapter 6, pages 85–96. Springer Japan. Toro, G. E., Rendón, D. A., and Montes, L. (2008). Levantamiento de los andes en el norte de la Cordillera Central de Colombia: Una aproximación geomorfólogica, estructural y cronológica (trazas de fisión). Boletín Ciencias de la Tierra, (22):125–126. Toussaint, J. F. and Restrepo, J. J. (1994). The Colombian Andes During Cretaceous Times. Cretaceous Tectonics of the Andes, pages 61–100. UNGRD (2020). Avanza respuesta del Gobierno Nacional ante avenida torrencial que afectó al municipio de Piedecuesta, Santander. Vargas, C. A. and Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3):2025–2046. Villagómez, D. and Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia : Early Cretaceous – Tertiary evolution of the Northern Andes. Lithos, 160-161:228–249. Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3):875–896. Vinasco, C. (2019). The Romeral Shear Zone. In Cediel, F. and Shaw, R., editors, Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction, chapter 12, pages 833–8376. Springer. Voight, B. (1990). The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. Journal of Volcanology and Geothermal Research, 44:349–386. Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., and Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13):6616–6623. Wang, Y., Zheng, D., Zhang, H., Li, C., Xiao, L., Li, Y., and Hao, Y. (2019). The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan Plateau: Inference from bedrock channel profiles. Tectonophysics, 759(March):15–29. Wang, Z., Cui, P., an Yu, G., and Zhang, K. (2012). Stability of landslide dams and development of knickpoints. Environmental Earth Sciences, 65:1067–1080. Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and Ouimet, W. B. (2017). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122:248–273. Whipple, K. X. and Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104(B8):17661–17674. Whipple, K. X. and Tucker, G. E. (2002). Implications of sediment-flux-dependent river incision models for landscape evolution. Journal of Geophysical Research, 107(B2):1–20. Wilches-Chaux, G. (2005). El terremoto, la avalancha y los deslizamientos de la cuenca del río Páez (Cauca), 1994. In Hermelin, M. and EAFIT, F. e. U., editors, Desastres de origen natural en Colombia 1979-2004, chapter 10, pages 121–134. Medellín, Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W. A. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1(1):61–66. Willett, S. (2017). Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms [Forum Comment]. Geological Society of America, 45(8):e421. Willett, S. D., McCoy, S. W., Taylor Perron, J., Goren, L., and Chia-Yu, C. (2014). Dynamic reorganization of River Basins. Science, 343:1117–1127 Willett, S. D., Slingerland, R., and Hovius, N. (2001). Uplift, shortening, and steady state topography in active mountain belts. American Journal of Science, 301:455–485. Wistuba, M. (2014). Slope-Channel Coupling as a Factor in the Evolution of Mountains. Springer, Poland. Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Special Paper of the Geological Society of America, 398:55–74. Wood, J. L., Harrison, S., Reinhardt, L., and Taylor, F. E. (2020). Landslide databases for climate change detection and attribution. Geomorphology, 355:1–15. Yang, R., Willett, S. D., and Goren, L. (2015). In situ low-relief landscape formation as a result of river network disruption. Nature, 520:526–529. Yang, S. H., Liao, J. J., Pan, Y. W., and Shih, P. T. Y. (2020). Landslide site delineation from geometric signatures derived with the Hilbert-Huang transform for cases in Southern Taiwan. Open Geosciences, 12(1):928–945. Yen-Chieh, C., Quocheng, S., and Kuang-Yu, C. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56:109–137. Zapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., and Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203:1–18 Zhao, R., Zhan, L., Yao, M., and Yang, L. (2020). A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustainable Cities and Society, 56:1–9. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Medio Ambiente y Desarrollo |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85472/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85472/4/1116803116.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85472/5/1116803116.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a d5c5da408d6837e350bbae6de03904f0 edb82b55a18a2c99576ca339ad229638 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089467417329664 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aristizábal Giraldo, Edier Vicentefc0f511b018ee39d8c368b91780e0fa7Holbling, Daneil580805e193bed9e0b28d184e41baf055Naranjo Bedoya, Karolina9fef888305ce7c12e731f64a6ad6d61dGrupo de Investigación en Geología Ambiental - GEAKarolina Naranjo Bedoya [0000-0002-6484-0709]Karolina Naranjo Bedoya2024-01-26T20:30:20Z2024-01-26T20:30:20Z2023https://repositorio.unal.edu.co/handle/unal/85472Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, mapasEl análisis de las condiciones de susceptibilidad por deslizamientos y avenidas torrenciales es un tema importante para desarrollar diferentes estrategias que permitan mejorar el ordenamiento territorial. Estos procesos son recurrentes en los Andes colombianos afectando personas cada año además de generar pérdidas económicas. El análisis del paisaje requiere la cuantificación de las características topográficas. Este estudio utiliza las redes de drenaje como la forma en que se conecta la morfogénesis con la morfodinámica. Se utilizó un conjunto de 25 índices morfométricos y herramientas de análisis geoespacial para caracterizar 168 cuencas hidrográficas del norte de los Andes colombianos, con el fin de identificar patrones anómalos en su distribución y examinarlos en función de los inventarios de deslizamientos y avenidas torrenciales recolectados. Se encuentra que los índices asociados a las clases de Textura del Drenaje y Características del Relieve son los que mejor separan los grupos de cuencas de acuerdo a su localización espacial, también se encuentran diferencias morfométricas entre las cuencas de drenaje ubicadas en la Cordillera Central y Cordillera Occidental, así como en los afluentes directos del río Cauca muestran características segregadas al conjunto de datos. Por último, el norte de los Andes colombianos presenta un paisaje activo con cuencas hidrográficas desequilibradas y divisorias asimétricas, donde predominan los deslizamientos recientes en lugar de los antiguos en las divisorias. La geomorfología tiene un papel esencial en el análisis y la comprensión de los desastres naturales. Esta tesis permitió investigar la susceptibilidad de las cuencas hidrográficas a desarrollar estos procesos a partir de una mirada a escalas mayores de tiempo y espacio que involucra el estudio de la evolución del paisaje. (Tomado de la fuente)The analysis of landslide and debris flow susceptibility conditions is an important topic to develop different strategies to enhance land-use planning. These processes are recurrent in the Colombian Andes affecting people each year in addition to economic losses. Landscape analysis requires the quantification of topographic characteristics. This study uses drainage networks as the route that connects morphogenesis with morphodynamics. A set of 25 morphometric indices and geospatial analysis tools were used to characterize 168 watersheds in the northern Colombian Andes to identify anomaly patterns in their distribution and to examine them in terms of inventories of landslides and debris flows collected. Indices associated with the Drainage Texture and Relief Characteristics classes are found to best separate groups of watersheds according to their spatial location, morphometric differences are found between the basin drainage located in the Central and Western Cordillera, as well as direct tributaries of the Cauca River show segregated characteristics to the data set. Finally, the northern Colombian Andes exhibits an active landscape with unbalanced watersheds and asymmetric divides, where recent landslides rather than ancient landslides predominate in the divides. Geomorphology has an essential role in the analysis and comprehension of natural disasters. This thesis allowed to investigate the susceptibility of watersheds to develop these processes from a look at larger scales of time and space that involves the study of the evolution of the landscape.MaestríaMaestría en Medio Ambiente y DesarrolloGeomorfometría y evolución del paisajeÁrea Curricular de Medio Ambiente133 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Medio Ambiente y DesarrolloFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín500 - Ciencias naturales y matemáticasDrainage basinLandslideDebris flowSusceptibilityLandscape evolutionCuenca de drenajeDeslizamientoAvenida torrencialEvolución del paisaje.GeomorfologíaApproach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian AndesAproximación al análisis de las condiciones de susceptibilidad a deslizamientos y avenidas torrenciales en relación con la evolución del paisaje en el norte de los Andes colombianosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAdams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., and Hodges, K. V. (2020). Climate controls on erosion in tectonically active landscapes. Science advances, 6:1–10.Aguirre, V. (2020). Suspenden búsqueda de desaparecidos en Dabeiba y declaran camposanto la zona de la emergencia.Ahmed, M. F., Ali, M. Z., Rogers, J. D., and Khan, M. S. (2019). A study of knickpoint surveys and their likely association with landslides along the Hunza River longitudinal profile. Environmental Earth Sciences, 78:1–15.Anselin, L. (1988). Spatial econometrics: methods and models, volume 4. Springer Science & Business Media.Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2):93–115.Arango, M. I., Aristizábal, E., and Gómez, F. (2020). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105:983–1012.Arias, L. A. (1995). El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Facultad de Ingeniería Universidad de Antioquia, (10):9– 24.Aristizábal, E., Arango, M., Gómez, F., López, S., De Villeros, A., and Riaño, A. (2020). Hazard Analysis of Hydrometeorological Concatenated Processes in the Colombian Andes. In Fernandes, F., Malheiro, A., and Chamin´e, H., editors, Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge, chapter 2, pages 7–10. Springer.Aristizábal, E. and Sánchez, O. (2019). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters.Aristizábal, E. and Yokota, S. (2006). Geomorfología aplicada a la ocurrencia de deslizamientos en el Valle de Aburrá. Dyna, 73(149):5–16.Aristizábal, E. and Yokota, S. (2008). Evolución Geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa. Boletín de Ciencias de la Tierra, 24:5–18.Beeson, H. W. and McCoy, S. W. (2020). Geomorphic signatures of the transient fluvial response to tilting. Earth Surface Dynamics, 8:123–159.Beeson, H. W., McCoy, S. W., and Keen-Zebert, A. (2017). Geometric disequilibrium of river basins produces long-lived transient landscapes. Earth and Planetary Science Letters, 475(October):34–43.Bigi, A., Hasbargen, L. E., Montanari, A., and Paola, C. (2006). Knickpoints and hillslope failures: Interactions in a steady-state experimental landscape. Special Paper of the Geological Society of America, 398:295–307.Bishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19(4):449–473.Bishop, P. (2007). Long-term landscape evolution: linking tectonics and surface processes. Earth Surface Processes and Landforms, 34:329–365.Botero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de la Facultad de Minas, (57):94.Boulton, S. J. (2020). Geomorphic Response to Differential Uplift: River Long Profiles and Knickpoints From Guadalcanal and Makira (Solomon Islands). Frontiers in Earth Science, 8:1–23.Bourgois, J., Azéma, J., Tournon, J., Bellon, H., Calle, B., Parra, E., Toussaint, J.-F., Glacon, G., Feinberg, H., De Wever, P., and Origlia, I. (1982). Ages et structures des comlplexes basiques et ultrabasiques de la fa¸cade pacifique entre 3°N et 12°N (Colombie, Panamá et Costa-Rica). Bulletin De La Société Géologique De Française, 7(3):545–554.Brunsden, D. (2002). Geomorphological roulette for engineers and planners: Some insights into an old game. Quarterly Journal of Engineering Geology and Hydrogeology, 35:101–142.Brunsdon, C., Fotheringham, A. S., and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28(4):281– 298.Buchely, F., Parra, E., Castillo, H., Gonzalez, F., Davila, C., and Romero, O. (2009). Realización de la cartografía geológica y muestreo geoquímico en las planchas 144, 145, 128, 129, 113 y 114 (1580 km2). Technical report, INGEOMINAS, Bogotá.Bull, W. B. (2009). Tectonically Active Landscapes. Wiley.Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379:505–510.Busnelli, J. and Horta, L. R. (2014). Morfometría de cuencas Montanas y Metamorfosis fluvial, Tucumán. Revista de la Asociación Geológica Argentina, 71(1):11–20.Bustamante, C., Archanjo, C. J., Cardona, A., and Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America, 128(11-12):1762–1779Bustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., and Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277:199–209.Bustos, X., Bermúdez, M. A., Toro, G. M., Bernet, M., Rojas, O., and Marín, M. I. (2013). Caracterización de superficies de erosión mediante geomorfología cuantitativa, Altiplano Antioqueño, Cordillera Central de Colombia. Terra, 46:43–67.Caballero, J., Rendón, A., Gallego, J., and Uasapud, N. (2016). Inter-Andean Cauca River Canyon. In Hermelin, M., editor, Landscapes and Landforms of Colombia, World Geomorphological Landscapes, chapter 13, pages 155–166. Springer, 1st edition.Calle, B. and González, H. (1982). Geología y Geoquímica de la Plancha 186 Riosucio. Technical report, INGEOMINAS, Medellín.Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In Pei, J., Tseng, V. S., Cao, L., Motoda, H., and Xu, G., editors, Advances in Knowledge Discovery and Data Mining, pages 160–172, Berlin, Heidelberg. Springer Berlin Heidelberg.Campforts, B., Shobe, C., Steer, P., Vanmaercke, M., Lague, D., and Braun, J. (2020). HyLands 1 . 0 : a Hybrid Landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution. Geoscientific Model Development, pages 1–36.Cárdenas, C. (2005). Erupción del volcán Nevado de Ruiz de 1985. In Hermelín, M. and EAFIT, F. e. U., editors, Desastres de origen natural en Colombia 1979-2004, chapter 4, pages 39–54. Medellín, 1 edition.Cardona, A., Valencia, V., Weber, M., Duque, J., Montes, C., Ojeda, G., Reiners, P., Domanik, K., Nicolescu, S., and Villagomez, D. (2011). Transient cenozoic tectonic stages in the southern margin of the caribbean plate: U-th/he thermochronological constraints from eocene plutonic rocks in the Santa Marta massif and serranía de Jarara, northern Colombia. Geologica Acta, pages 445–469.Castillo, M., Bishop, P., and Jansen, J. D. (2013). Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland. Geomorphology, 180-181:1–9Cediel, F., Shaw, R., and Cáceres, C. (2003). Tectonic assembly of the Northern Andean Block. In Bartolini, C., Buffler, R., and Blickwede, J., editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, number 79, chapter 37, pages 815–848.Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., and Prieto, G. A. (2015). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1):16–27.Chicangana, G. (2005). The Romeral Fault System: A shear and deformed extinct subduction zone between oceanic and continental lithospheres in northwestern South America. Earth Sciences Research Journal, 9(1):51–66.Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., and Chiaradia, M. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202-203:382–394.Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., and Harris, P. (2023). A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis, 55(1):155–178.Corrêa, F., de Fátima, D., de Morisson, M., and de Oliveira, C. (2019). Neotectonics in the South American passive margin: Evidence of Late Quaternary uplifting in the northern Paraiba Basin (NE Brazil). Geomorphology, 325:1–16.Cortés, M. and Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403:29–58.Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106:571–581.CRED and UNISDR (2017). Economic Losses, Poverty Disasters 1998-2017. Technical report.Dadson, S. J., Hovius, N., Hongey, C., Dade, W. B., Meng-long, H., Willett, S. D., Jyr-ching, H., Ming-Jame, H., Meng-Chiang, C., Stark, C. P., Lague, D., and Jiun-Chuan, L. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967):648–651.Dahlquist, M. P., West, A. J., and Li, G. (2018). Landslide-driven drainage divide migration. Geology, 46(5):403–406.Das, S., Sarkar, S., and Kanungo, D. P. (2023). A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Natural Hazards, 115(1):23–72.De Greiff, P., Hermelin, M., and Rend´on, D. (2004). Procesos erosivos en la Microcuenca Andina: El valle del alto del Río Medellín, Cordillera Central, Antioquia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(109):24–33.Dolui, G., Das, K., Chatterjee, N. D., and Bhattcharya, R. K. (2022). Multi-criteria-based Morphometric Prioritization for Soil Erosion Susceptibility and Denudation Rate Assessment of Purulia District, India. In Kumar, P., Islam, A., Sankar, G., Bera, B., and Ghosh, S., editors, Drainage Basin Dynamics. An Introduction to Morphology, Landscape and Modelling, chapter 22, page 574. Springer.Duque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1):71–84.Egholm, D. L., Knudsen, M. F., and Sandiford, M. (2013). Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature, 498:475–478.Ego, F., Sébrier, M., Lavenu, A., Yepes, H., and Egues, A. (1996). Quaternary state of stress in the Northern Andes and the restraining bend model for the Ecuadorian Andes. Tectonophysics, 259:101–116Ego, F., Sébrier, M., and Yepes, H. (1995). Is the Cauca-Patia and Romeral Fault System left or rightlateral? Geophysical Research Letters, 22(1):33–36.El País (2023). Encuentran otro cuerpo sin vida tras devastadora avalancha en Quetame.Faniran, A. (1968). The index of drainage intensity—a provisional new drainage factor. Australian journal of science, 31:328–330.Feininger, T. and Botero, G. (1982). The Antioquian Batholith, Colombia. Publicaciones geológicas especiales del Ingeominas, (12):1–50.Fernandes, F. and Dietrich, E. (1997). Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments. Water Resources Research, 33(6):1307–1318.Feuillet, T., Coquin, J., Mercier, D., Cossart, E., Decaulne, A., Jónsson, H. P., and Sæ- mundssonthorsteinn, T. (2014). Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: Do paraglacial factors vary over space? Progress in Physical Geography, 38(3):354–377.Figueiredo, P. M., Rockwell, T. K., Cabral, J., and Ponte, C. (2019). Morphotectonics in a low tectonic rate area: Analysis of the southern Portuguese Atlantic coastal region. Geomorphology, 326:132–151.Flores, E., Qupenéhervé, G., Bachofer, F., Shahzad, F., and Maerker, M. (2015). Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data. Geomorphology, 248:427–439.Forte, A. M. and Whipple, K. X. (2018). Criteria and tools for determining drainage divide stability. Earth and Planetary Science Letters, 493:102–117.Fotheringham, A. S., Charlton, M. E., and Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11):1905–1927.Fotheringham, A. S. and Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 18:303–329.Fotheringham, S., Brunsdon, C., and Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. WileyGaladini, F. (2006). Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the Central Apennines (central Italy). Geomorphology, 82(3-4):201–228.Gallego, J. (2018). Assessment of recent tectonic activity of the Sabanalarga Fault System, Western Antioquia – Colombia. Master thesis, University of Bern.Gallen, S., Wegmann, K., Franke, K. L., Hughes, S., Lewis, R. Q., Lyons, N., Paris, P., Ross, K., Bauer, J. B., and Witt, A. C. (2011). Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes. Earth Surface Processes and Landforms, 36:1254–1267.García, C. (2007). Datación por fotoluminiscencia de algunas formaciones superficiales del Llano de Ovejas, Cordillera Central, Antioquia. PhD thesis, Universidad EAFIT.Garcia, C. and Hermelin, M. (2004). Cálculo preliminar de la tasa de meteorización del batolito antioqueño, Cordillera Central, Colombia. Revista Brasileira de Geomorfologia, 5(1).García, H., Machuca, S., and Medina, E. (2019). Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia). Landslides, 16:597–609.García, H., Machuca, S., Velandia, F., and Audemard, F. (2020). Along-strike variations in recent tectonic activity in the Santander Massif: New insights on landscape evolution in the Northern Andes. Journal of South American Earth Sciences, 98:1–22.García, H. and Velandia, F. (2020). Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): Regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology, 349:1–25.Garcia, Y. C., Martinez, J. I., Velez, M. I., Yokoyama, Y., Battarbee, R. W., and Suter, F. D. (2011). Palynofacies analysis of the late Holocene San Nicolás terrace of the Cauca paleolake and paleohydrology of northern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 299:298–308.Garrote, J., Cox, R., Swann, C., and Ellis, M. (2006). Tectonic geomorphology of the southeastern Mississippi Embayment in northern Mississippi, USA. Geological Society of America Bulletin, 118(9/10):1160–1170.Giardino, M., Ratto, S., Palomba, M., Alberto, W., Armand, M., and Cignetti, M. (2013). The Debris Flows Inventory of the Aosta Valley Region: An Integrated Natural Hazards Assessment. In Margottini, C., editor, The second world landslide forum, pages 127–134. Springer VerlagGlade, R. C., Shobe, C. M., Anderson, R. S., and Tucker, G. E. (2019). Canyon shape and erosion dynamics governed by channel-hillslope feedbacks. Geology, 47:650–654.Gómez, J. and Montes, N. (2020). Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Technical report, Servicio Geológico Colombiano, Bogotá.González, H. (2001). Mapa geológico del Departamento de Antioquia Escala 1:400.000. Memoria explicativa. Technical report, INGEOMINAS.Diaz & López (1987). Morfometría de redes fluviales: revisión crítica de los parámetros más utilizados y aplicación al Alto Guadalquivir. Papeles de geografía, 12:47–62.González, H. and Londoño, A. C. (2002). Catálogo de las unidades litoestratigráficas de Colombia, Monzodiorita de la Horqueta (Stock de La Horqueta) Nmdh, Cordillera Occidental Departamento de Antioquia. Technical report, Ingeominas, Bogotá.Gravelius, H. (1941). Flusskunde.Guerit, L., Goren, L., Dominguez, S., Malavieille, J., and Castelltort, S. (2018). Landscape ‘stress’ and reorganization from χ-maps: Insights from experimental drainage networks in oblique collision setting. Earth Surface Processes and Landforms, 43(15):3152–3163.Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. USGS Professional Paper, page 59.Hack, J. (1973). Stream-profile analysis and stream-gradient index. J.Res.Us Geol.Surv., 1(4):421–429.Hermelín, M. (1982). EL origen del Valle de Aburrá. Evolución de las ideas. Boletín Ciencias de la Tierra, (7-8):47–65.Hermelín, M. (2005). Introducción. In Hermelin, M. and Fondo editorial Universidad EAFIT, editors, Desastres de origen natural en Colombia 1979-2004, chapter 1, pages 11–16. Medellín, 1 edition.Hermelin, M. (2016). Geomorphological Landscapes and Landforms of Colombia. In Hermelin, M., editor, Landscapes and Landforms of Colombia, World Geomorphological Landscapes, chapter 1, pages 1–21. Springer.Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., and Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006):927–931.Horton, R. E. (1932). Drainage basin characteristics. Eos, Transactions American Geophysical Union, 13(1):350–361.Horton, R. E. (1945). Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. GSA Bulletin, 56(3):275–370.Hovius, N. and Stark, C. P. (2006). Landslide-driven erosion and topographic evolution of active mountain belts. In Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R., editor, Landslides from Massive Rock Slope Failure, pages 573–590. Springer, Dordrecht.Howard, A. D. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7):2261–2285.Hunter, B. (2009). The contribution of large, slow-moving landslides to landscape evolution. PhD thesis, University of Oregon.Hurst, M. D., Grieve, S. W., Clubb, F. J., and Mudd, S. M. (2019). Detection of channelhillslope coupling along a tectonic gradient. Earth and Planetary Science Letters, 522:30– 39.IGAC (2010). Convenio interadministrativo No. 4085-2009 para la generación de la Cartografía del Departamento de Antioquia, suscrita entre el Departamento de Antioquia, el Instituto Geográfico Agustín Codazzi –IGAC-, el Municipio de Medellín, el Área Metropolitana del Valle de Aburrá. Technical report.Jaiswara, N. K., Kotluri, S. K., Pandey, P., and Pandey, A. K. (2020). MATLAB functions for extracting Hypsometry, Stream-length gradient index, Steepness index, Chi gradient of channel and Swath profiles from Digital Elevation Model (DEM) and other spatial data for landscape characterisation. Applied Computing and Geosciences, 7:1–12.Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., and León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330-331:194–210.Jomthanachai, S., Wong, W. P., and Khaw, K. W. (2022). An application of machine learning regression to feature selection: a study of logistics performance and economic attribute. Neural Computing and Applications, 34:15781–15805.Keller, E. A. and Pinter, N. (2002). Active Tectonics Earthwakes, Uplift, and Landscape. Prentice Hall, New Jersey, second edition.Keller, E. A. and Rockwelf, T. K. (1984). Tectonic geomorphology, Quaternary chronology, and Paleoseismicity. In Costa, J. and Fleisher, P., editors, Developments and Applications of Geomorphology, chapter 7, pages 203–239. Springer, Berlin.Kellogg, J., Franco, G., and Mora-P´aez, H. (2019). Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy. In Horton, B. K. and Folguera, A., editors, Andean Tectonics, chapter 4, pages 69–102. Elsevier.Kirby, E. and Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29(5):415–418.Kirby, E. and Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44:54–75.Korup, O. (2006). Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand. Journal of Geophysical Research: Earth Surface, 111(1):1–18.Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T. (2007). Giant landslides, topography, and erosion. Earth and Planetary Science Letters, 261:578–589.Korup, O., Densmore, A. L., and Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120:77–90.Korup, O., Schmidt, J., and McSaveney, M. J. (2005). Regional relief characteristics and denudation pattern of the western Southern Alps, New Zealand. Geomorphology, 71:402– 423.Koutsos, T. M., Menexes, G. C., and Mamolos, A. P. (2021). The use of crop yield autocorrelation data as a sustainable approach to adjust agronomic inputs. Sustainability, 13:1–18.Lague, D. (2014). The stream power river incision model: Evidence, theory and beyond. Earth Surface Processes and Landforms, 39(1):38–61.Lalinde, C., González, A., and Caballero, H. (2009). Evidencia Paleosísmica en el Segmento de la Falla de Sopetrán o San Jerónimo Segmento 5. Boletín de Geología, 31(2):23–34.Lane, E. (1954). The Importance of Fluvial Morphology in Hydraulic Engineering. Technical report, Engineering laboratories, Colorado.Lara, M., Salazar-Franco, A. M., and Silva-Tamayo, J. C. (2018). Provenance of the Cenozoic siliciclastic intramontane Amag´a Formation: Implications for the early Miocene collision between Central and South America. Sedimentary Geology, 373:147–162.Larsen, I. J. and Montgomery, D. R. (2012). Landslide erosion coupled to tectonics and river incision. Nature Geoscience, 5(7):468–473.Lavé, J. and Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105(B3):5735–5770.Leiva, O., Moya, H., Trejos, G., and Carvajal, J. (2012). Propuesta Metodológica Sistemática Para La Generación De Mapas Geomorfológicos Analíticos Aplicados a La Zonificación De Amenaza Por Movimientos En Masa Escala 1:100.000. Technical report, Servicio Geológico Colombiano, Bogotá.León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., and Pardo-Trujillo, A. (2018). Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca-South America Interactions. Tectonics, 37(1):119–139.Leopold, P., Heiss, G., Petschko, H., Bell, R., and Glade, T. (2011). Susceptibility maps for landslides using different modelling approaches. In Margottini, C., Canuti, P., and Sassa, K., editors, Proceedings of the Second World Landslide Forum, pages 1–5, Rome. Springer.Lindsay, J. (2014). The Whitebox Geospatial Analysis Tools project and open-access GIS. In Proceedings of the GIS Research UK 22nd Annual Conference. The University of Glasgow.López, M. C. and Toro-Toro, M. (2020). Stratigraphy and Tectonics of the Neogene and Quaternary of the Cauca Basin of Colombia. In Gómez, J. and Pinilla-Pachon, A., editors, The geology of Colombia, volume 4, chapter 1, pages 1–42. Servicio Geológico Colombiano, Bogotá, publication edition.Lu, B., Yang, W., Ge, Y., and Harris, P. (2018). Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment and Urban Systems, 71:41–57.Mackey, B. H. (2009). The contribution of large, slow-moving landslides to landscape evolution. PhD thesis, University of Oregon.Mejía, M. (1984). Geología y geoquímica de las Planchas 130 (Santa Fé de Antioquia) y 146 (Medellín Occidental). Technical report, Ingeominas, Medellín.Melton, M. A. (1957). An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology.Mendez, C. (2022). Introduction to GWR and MGWR.Miller, V. (1953). A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area. Technical Report, 3:271–300Molin, P., Pazzaglia, F., and Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, Southern Italy. American Journal of Science, 304:559–589.Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., and Valencia, V. (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research, 117(B04105):1–25.Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J., Valencia, V., Ayala, C., Pérez Angel, L., Rodriguez-Parra, L., Ramirez, V., et al. (2015). Middle miocene closure of the central american seaway. Science, 348(6231):226–229.Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V., and Jaramillo, C. (2010). Clockwise rotation of the santa marta massif and simultaneous paleogene to neogene deformation of the plato-san jorge and cesar-ranchería basins. Journal of South American Earth Sciences, 29(4):832–848.Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., and Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198:1–25.Montes, N. E. and Sandoval, A. (2001). Base de datos de fallas activas de colombia recopilación bibliográfica. Technical report, Bogotá.Montgomery, D. R. (2001). Slope distributions, threshold hillslopes, and steady-state topography. American Journal of Science, 301(4-5):432–454.Montgomery, D. R. and Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201(3-4):481– 489.Mora, A., Villagómez, D., Parra, M., Caballero, V., Spikings, R., Horton, B. K., Mora Bohórquez, J., Ketcham, R., and Arias, J. (2020). Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications. In Gómez, J. and Mateus-Zabala, D., editors, The Geology of Colombia, volume 3, chapter 4, pages 89–121. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, Bogotá.Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J. R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., and Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89:76–91.Moran, P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1-2):17–23.Mudd, S. M. (2017). Detection of transience in eroding landscapes. Earth Surface Processes and Landforms, 42:24–41.Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W., and Valters, D. A. (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. Journal of Geophysical Research: Earth Surface, 119(2):138–152.Mudd, S. M., Clubb, F. J., Gailleton, B., and Hurst, M. D. (2018). How concave are river channels? Earth Surface Dynamics Discussions, 6(2):1–34.Nivia, A., Gálvis G., N., and Maya S., M. (1992). Geología de la plancha 242-Zarzal. ´ Technical report, INGEOMINAS.Nones, M. (2020). On the main components of landscape evolution modelling of river systems. Acta Geophysica, 68:459–475.Noriega, S. (2016). Geomorfología tectónica del noroccidente de la Cordillera Central, Andes del Norte - Colombia. Tesis de maestría, Universidad Nacional de Colombia.Noriega, S., Restrepo, S., Vinasco, C., Bermúdez, M., and Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351:1–18.Noriega-Londoño, S., Jaraba, D., Ruiz, M., Marín-Cerón, M., and Restrepo-Moreno, S. (2022). Magnetic fabric of deformed quaternary sediments: contributions to the understanding of the neotectonic activity in the surroundings of the Aburrá Valley, Central Cordillera, Colombia. Boletín Geológico, 49(1):103–123.Obaid, A. K. and Allen, M. B. (2019). Landscape expressions of tectonics in the Zagros fold-and-thrust belt. Tectonophysics, 766:20–30.Oguchi, T. (1997). Drainage Density and Relative Relief in Humid Steep Mountains with Frequent Slope Failure. Earth Surface Processes and Landforms, 22(2):107–120.Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8(4):263–277.Ordóñez, O., Pimentel, M. M., and Laux, J. (2007). Edades U-Pb del Batolito Antioqueño. Boletín Ciencias de la Tierra, (22):129–130.Ouimet, W. B., Whipple, K. X., Royden, L. H., Sun, Z., and Chen, Z. (2007). The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Bulletin of the Geological Society of America, 119:1462–1476.Page, W. (1986). Seismic Geology and Seismicity of Northwestern Colombia. Technical report, Integral - ISA, California.Paris, G., Machette, M. N., Dart, R. L., and Kathleen, M. (2000). Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions. Technical report.Pérez, J. V., Azañón, J. M., and Azor, A. (2009). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35:1214–1223.Pérez-Consuegra, N., Hoyos, N., Restrepo, J. C., Escobar, J., and Hoke, G. D. (2021a). Contrasting climate controls on the hydrology of the mountainous Cauca River and its associated sedimentary basin: Implications for interpreting the sedimentary record. Geomorphology, 377:1–13.Pérez-Consuegra, N., Ott, R. F., Hoke, G. D., Galve, J. P., Pérez-Peña, V., and Mora, A. (2021b). Neogene variations in slab geometry drive topographic change and drainage reorganization in the Northern Andes of Colombia. Global and Planetary Change, 206:1– 18.Pérez-Peña, J. V., Al-Awabdeh, M., Azañón, J. M., Galve, J. P., Booth-Rea, G., and Notti, D. (2017). SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Computers and Geosciences, 104:135– 150.Pérez-Peña, J. V., Azor, A., Azañón, J. M., and Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119:74–87.Perron, J. T. and Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38:570–576.Petley, D. (2012). Global patterns of loss of life from landslides. 40:927–930.Piacentini, D., Troiani, F., Servizi, T., Nesci, O., and Veneri, F. (2020). SLIX: A GIS toolbox to support along-stream knickzones detection through the computation and mapping of the stream length-gradient (SL) index. International Journal of Geo-Information, 9(2):1– 15Ponza, A., Pazzaglia, F. J., and Picotti, V. (2010). Thrust-fold activity at the mountain front of the Northern Apennines (Italy) from quantitative landscape analysis. Geomorphology, 123:211–231.Radaideh, O. M. and Mosar, J. (2019). Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics, 768:1–29Rendón, D., Toro, G., and Hermelin, M. (2006). Modelo cronoestratigráfico para el emplazamiento de los depósitos de vertiente en el Valle de Aburrá. Boletín de Ciencias de la Tierra, 18:103–118.Restrepo, J. J., Ordoñez-Carmona, O., Martens, U., and Correa, A. M. (2009). Terrenos, complejos y provincias en la Cordillera Central de Colombia. Ingeniería, Investigación y Desarrollo, 9(2):49–56.Restrepo, J. J. and Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3):189–193.Restrepo, S., Foster, D., Bernet, M., Min, K., and Noriega, S. (2019). Morphotectonic and Orogenic Development of the Northern Andes of Colombia: A Low-Temperature Thermochronology Perspective. In Cediel, F. and Shaw, R., editors, Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction, chapter 11, pages 749–832. Springer.Restrepo-Moreno, S. A., Foster, D. A., Stockli, D. F., and Parra-Sánchez, L. N. (2009). Longterm erosion and exhumation of the ”Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1- 2):1–12.Rey, S., Arribas-Bel, D., and Wolf, L. (2020). Geographic data science with python.Rey, S. J. and Anselin, L. (2007). PySAL: A Python Library of Spatial Analytical Methods. The Review of Regional Studies, 37(1)Reyes-Harker, A., Ruiz-Valdivieso, C. F., Mora, A., Ramírez-Arias, J. C., Rodriguez, G., De La Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B. K., Saylor, J. E., Silva, A., Valencia, V., Stockli, D., and Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia, volume 99.Rodríguez G., G. and Zapata G., G. (2012). Características del plutonismo Mioceno superior en el segmento Norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente Colombiano. Boletín de Ciencias de la Tierra, (31):5–22.Rowe, F. and Arribas-Bel, D. (2023). Spatial Modelling for Data Scientists.Ruiz, D. and Aristizábal, E. (2018). Landslide susceptibility assessment in mountainous and tropical scarce-data regions using remote sensing data: A case study in the Colombian Andes.Saenz, E. (2003). Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master thesis, Shimane University.Sassolas-Serrayet, T., Cattin, R., and Ferry, M. (2018). The shape of watersheds. Nature Communications, 9(1):1–8.Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America., 67(1):56.Scotti, V. N., Molin, P., Faccenna, C., Soligo, M., and Casas-Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology, 206:37–57.Seeber, L. and Gornitz, V. (1983). River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics, 92:335–367.Sepúlveda, S. A. and Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Sciences, 15:1821–1833.SGC (2015). Mapa Geológico de Colombia 2015. Escala 1:1.000.000.Shahzad, F. and Gloaguen, R. (2011). TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis. Computers and Geosciences, 37:250–260.Sharma, G., Champati, P. K., and Mohanty, S. (2018). Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology, 301:108–120.Sierra, G., Estrada, J. J., and Macdonald, W. (1995). Estudio paleomagnético en rocas terciarias de la cuenca del Rio Cauca, departamento de Caldas : implicaciones tectónicas. Revista Universidad EAFIT, 31(100):79–109.Silva Tamayo, J. C., Sierra, G. M., and Correa, L. G. (2008). Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes. Journal of South American Earth Sciences, 26:369–382.Sklar, L. and Dietrich, E. (1998). River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107:237–260.Smart, J. S. and Surkan, A. J. (1967). The relation between mainstream length and area in drainage basins. Water Resources Research, 3(4):963–974.Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9):655–668.Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. 112:1250–1263.Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J. (2003). Channel response to tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology, 53:97–127.Sorensen, C. S. and Yanites, B. J. (2019). Latitudinal trends in modern fluvial erosional efficiency along the Andes. Geomorphology, 329:170–183.Sousa, L., Vargas, E., Sousa, R., and Chaminé, H. (2020). Hydrological Risks in Natural Hazards Focused on the Role of the Water: Studies on Landslides. In Fernandes, F., Malheiro, A., and Chaminé, H., editors, Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge, chapter 9, pages 43–47. Springer.Strahler, A. (1952). Hypsometric (Area-Altitude) analysis of erosional topography. Geological Society Of America Bulletin, 63(11):1117–1142.Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology.Strahler, A. N. (1997). Quantitative geomorphology, pages 898–912. Springer Berlin Heidelberg, Berlin, Heidelberg.Struth, L. (2016). Evolution of fluvial drainage during mountain building in the Eastern Cordillera of the Colombian Andes. PhD thesis, Universitat Autónoma de Barcelona.Struth, L., Giachetta, E., Willett, S. D., Owen, L. A., and Tesón, E. (2020). Quaternary drainage network reorganization in the Colombian Eastern Cordillera plateau. Earth Surface Processes and Landforms, 45:1789–1804.Suter, F., Martínez, J. I., and Vélez, M. I. (2011). Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity? Sedimentary Geology, 235:188–199.Suter, F., Sartori, M., Neuwerth, R., and Gorin, G. (2008). Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics, 460:134–157.Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., and Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444:139– 149.Taboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., and Rivera, C. (2000). Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics, 19(5):787–813.Tacconi , C., Segoni, S., Casagli, N., and Catani, F. (2016). Geomorphic indexing of landslide dams evolution. Engineering Geology, 208:1–10.Thapa, R. and Estoque, R. (2012). Geographically Weighted Regression in Geospatial Analysis. In Murayama, Y., editor, Progress in Geospatial Analysis, chapter 6, pages 85–96. Springer Japan.Toro, G. E., Rendón, D. A., and Montes, L. (2008). Levantamiento de los andes en el norte de la Cordillera Central de Colombia: Una aproximación geomorfólogica, estructural y cronológica (trazas de fisión). Boletín Ciencias de la Tierra, (22):125–126.Toussaint, J. F. and Restrepo, J. J. (1994). The Colombian Andes During Cretaceous Times. Cretaceous Tectonics of the Andes, pages 61–100.UNGRD (2020). Avanza respuesta del Gobierno Nacional ante avenida torrencial que afectó al municipio de Piedecuesta, Santander.Vargas, C. A. and Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3):2025–2046.Villagómez, D. and Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia : Early Cretaceous – Tertiary evolution of the Northern Andes. Lithos, 160-161:228–249.Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3):875–896.Vinasco, C. (2019). The Romeral Shear Zone. In Cediel, F. and Shaw, R., editors, Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction, chapter 12, pages 833–8376. Springer.Voight, B. (1990). The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. Journal of Volcanology and Geothermal Research, 44:349–386.Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., and Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13):6616–6623.Wang, Y., Zheng, D., Zhang, H., Li, C., Xiao, L., Li, Y., and Hao, Y. (2019). The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan Plateau: Inference from bedrock channel profiles. Tectonophysics, 759(March):15–29.Wang, Z., Cui, P., an Yu, G., and Zhang, K. (2012). Stability of landslide dams and development of knickpoints. Environmental Earth Sciences, 65:1067–1080.Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and Ouimet, W. B. (2017). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122:248–273.Whipple, K. X. and Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104(B8):17661–17674.Whipple, K. X. and Tucker, G. E. (2002). Implications of sediment-flux-dependent river incision models for landscape evolution. Journal of Geophysical Research, 107(B2):1–20.Wilches-Chaux, G. (2005). El terremoto, la avalancha y los deslizamientos de la cuenca del río Páez (Cauca), 1994. In Hermelin, M. and EAFIT, F. e. U., editors, Desastres de origen natural en Colombia 1979-2004, chapter 10, pages 121–134. Medellín,Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W. A. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1(1):61–66.Willett, S. (2017). Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms [Forum Comment]. Geological Society of America, 45(8):e421.Willett, S. D., McCoy, S. W., Taylor Perron, J., Goren, L., and Chia-Yu, C. (2014). Dynamic reorganization of River Basins. Science, 343:1117–1127Willett, S. D., Slingerland, R., and Hovius, N. (2001). Uplift, shortening, and steady state topography in active mountain belts. American Journal of Science, 301:455–485.Wistuba, M. (2014). Slope-Channel Coupling as a Factor in the Evolution of Mountains. Springer, Poland.Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Special Paper of the Geological Society of America, 398:55–74.Wood, J. L., Harrison, S., Reinhardt, L., and Taylor, F. E. (2020). Landslide databases for climate change detection and attribution. Geomorphology, 355:1–15.Yang, R., Willett, S. D., and Goren, L. (2015). In situ low-relief landscape formation as a result of river network disruption. Nature, 520:526–529.Yang, S. H., Liao, J. J., Pan, Y. W., and Shih, P. T. Y. (2020). Landslide site delineation from geometric signatures derived with the Hilbert-Huang transform for cases in Southern Taiwan. Open Geosciences, 12(1):928–945.Yen-Chieh, C., Quocheng, S., and Kuang-Yu, C. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56:109–137.Zapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., and Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203:1–18Zhao, R., Zhan, L., Yao, M., and Yang, L. (2020). A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustainable Cities and Society, 56:1–9.EstudiantesGrupos comunitariosInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85472/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1116803116.2023.pdf1116803116.2023.pdfTesis de Maestría en Medio Ambiente y Desarrolloapplication/pdf185425561https://repositorio.unal.edu.co/bitstream/unal/85472/4/1116803116.2023.pdfd5c5da408d6837e350bbae6de03904f0MD54THUMBNAIL1116803116.2023.pdf.jpg1116803116.2023.pdf.jpgGenerated Thumbnailimage/jpeg5024https://repositorio.unal.edu.co/bitstream/unal/85472/5/1116803116.2023.pdf.jpgedb82b55a18a2c99576ca339ad229638MD55unal/85472oai:repositorio.unal.edu.co:unal/854722024-01-26 23:03:59.346Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |