Decays of heavy mesons: a theoretical perspective using effective field theories

ilustraciones, diagramas

Autores:
Barón Ospina, David Alejandro
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85546
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85546
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
Espectrocopia de meson
Física nuclear
Meson spectroscopy
Nuclear physics
Effective field theory
Heavy mesons
Flavor physics
NRQCD
Charmonium
Final state interactions
Teoría efectiva de campo
Mesones pesados
Física del sabor
Charmonia
Interacciones de estados finales
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c389ba3f6f152fb7068efbc549dacf8a
oai_identifier_str oai:repositorio.unal.edu.co:unal/85546
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Decays of heavy mesons: a theoretical perspective using effective field theories
dc.title.translated.spa.fl_str_mv Desintegración de mesones pesados: una perspectiva teórica usando teorías efectivas de campos
title Decays of heavy mesons: a theoretical perspective using effective field theories
spellingShingle Decays of heavy mesons: a theoretical perspective using effective field theories
530 - Física
Espectrocopia de meson
Física nuclear
Meson spectroscopy
Nuclear physics
Effective field theory
Heavy mesons
Flavor physics
NRQCD
Charmonium
Final state interactions
Teoría efectiva de campo
Mesones pesados
Física del sabor
Charmonia
Interacciones de estados finales
title_short Decays of heavy mesons: a theoretical perspective using effective field theories
title_full Decays of heavy mesons: a theoretical perspective using effective field theories
title_fullStr Decays of heavy mesons: a theoretical perspective using effective field theories
title_full_unstemmed Decays of heavy mesons: a theoretical perspective using effective field theories
title_sort Decays of heavy mesons: a theoretical perspective using effective field theories
dc.creator.fl_str_mv Barón Ospina, David Alejandro
dc.contributor.advisor.none.fl_str_mv Milanés Carreño, Diego Alejandro
Camargo Magalhães, Patricia
dc.contributor.author.none.fl_str_mv Barón Ospina, David Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Partículas Fenyx-Un
dc.subject.ddc.spa.fl_str_mv 530 - Física
topic 530 - Física
Espectrocopia de meson
Física nuclear
Meson spectroscopy
Nuclear physics
Effective field theory
Heavy mesons
Flavor physics
NRQCD
Charmonium
Final state interactions
Teoría efectiva de campo
Mesones pesados
Física del sabor
Charmonia
Interacciones de estados finales
dc.subject.lemb.spa.fl_str_mv Espectrocopia de meson
Física nuclear
dc.subject.lemb.eng.fl_str_mv Meson spectroscopy
Nuclear physics
dc.subject.proposal.eng.fl_str_mv Effective field theory
Heavy mesons
Flavor physics
NRQCD
Charmonium
Final state interactions
dc.subject.proposal.spa.fl_str_mv Teoría efectiva de campo
Mesones pesados
Física del sabor
Charmonia
Interacciones de estados finales
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-30T21:10:28Z
dc.date.available.none.fl_str_mv 2024-01-30T21:10:28Z
dc.date.issued.none.fl_str_mv 2024-01-30
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85546
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85546
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv L. Chau. Quark Mixing in Weak Interactions. Phys. Rept., 95:1–94, 1983.
R. Tourinho Aoude, P. C. Magalhães, A. C. dos Reis, and M. R. Robilotta. Multi-Meson Model applied to D+ →K+K−K+. PoS, CHARM2016:086, 2016.
R. T. Aoude, P. C. Magalhães, A. C. Dos Reis, and M. R. Robilotta. Multimeson model for the D+ →K+K−K+ decay amplitude. Phys. Rev. D, 98(5):056021, 2018.
F. Maltoni. Quarkonium phenomenology: Tesi Di Dottorato in Fisica. PhD thesis, 1999.
M. Beneke, F. Maltoni, and I. Z. Rothstein. QCD analysis of inclusive B decay into charmonium. Phys. Rev. D, 59:054003, 1999.
R. Aaij et al. Study of charmonium production in b-hadron decays and first evidence for the decay B0s →φφφ. Eur. Phys. J. C, 77(9):609, 2017.
R. Aaij et al. Dalitz plot analysis of the D+ →K−K+K+ decay. JHEP, 04:063, 2019.
P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.
M.D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press, 3 2014.
M.E. Peskin and D.V. Schroeder. An Introduction to quantum field theory. Addison- Wesley, Reading, USA, 1995.
M. Srednicki. Quantum field theory. Cambridge University Press, 1 2007.
D.J. Gross and F. Wilczek. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett., 30:1343–1346, 1973.
D.J. Gross and F. Wilczek. Asymptotically Free Gauge Theories - I. Phys. Rev. D, 8:3633–3652, 1973.
H.D. Politzer. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett., 30:1346–1349, 1973.
S. Weinberg. Phenomenological Lagrangians. Physica A, 96(1-2):327–340, 1979.
J. Gasser and H. Leutwyler. Chiral Perturbation Theory to One Loop. Annals Phys., 158:142, 1984.
J. Gasser and H. Leutwyler. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark. Nucl. Phys. B, 250:465–516, 1985.
J. Goldstone. Field Theories with Superconductor Solutions. Nuovo Cim., 19:154–164, 1961.
J Goldstone, A. Salam, and S.Weinberg. Broken Symmetries. Phys. Rev., 127:965–970, 1962.
M. Gell-Mann. Symmetries of baryons and mesons. Phys. Rev., 125:1067–1084, 1962.
S.R. Coleman, J. Wess, and B Zumino. Structure of phenomenological Lagrangians. 1. Phys. Rev., 177:2239–2247, 1969.
C.G. Callan, S.R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological Lagrangians. 2. Phys. Rev., 177:2247–2250, 1969.
G. Ecker, J. Gasser, A. Pich, and E. de Rafael. The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys. B, 321:311–342, 1989.
H.D. Politzer and M.B. Wise. Effective Field Theory Approach to Processes Involving Both Light and Heavy Fields. Phys. Lett. B, 208:504–507, 1988.
N. Isgur and M.B. Wise. Weak Decays of Heavy Mesons in the Static Quark Approximation. Phys. Lett. B, 232:113–117, 1989.
M.B. Wise. Chiral perturbation theory for hadrons containing a heavy quark. Phys. Rev. D, 45(7):2188, 1992.
P. Cho. Chiral perturbation theory for hadrons containing a heavy quark. the sequel. Physics Letters B, 285(1-2):145–152, Jul 1992.
G.T. Bodwin, E. Braaten, and G.P. Lepage. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev. D, 51:1125–1171, 1995. [Erratum: Phys.Rev.D 55, 5853 (1997)].
A.A. Petrov and A.E. Blechman. Effective Field Theories. WSP, 2016.
S. Scherer. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 27:277, 2003.
E.E Jenkins, A.V. Manohar, and M.B. Wise. Chiral perturbation theory for vector mesons. Phys. Rev. Lett., 75:2272–2275, 1995.
P. C. Magalhães, A. C. dos Reis, and M. R. Robilotta. Multibody decay analyses: A new phenomenological model for meson-meson subamplitudes. Phys. Rev. D, 102(7):076012, 2020.
V. Shtabovenko, R. Mertig, and F. Orellana. Feyncalc 9.3: New features and improvements. Computer Physics Communications, 256:107478, Nov 2020.
T. Mannel, W. Roberts, and Z. Ryzak. A Derivation of the heavy quark effective Lagrangian from QCD. Nucl. Phys. B, 368:204–217, 1992.
A.V. Manohar and M.B. Wise. Heavy quark physics, volume 10. 2000.
E. Braaten. Introduction to the NRQCD factorization approach to heavy quarkonium. In 3rd International Workshop on Particle Physics Phenomenology, 11 1996.
E. Braaten and Y. Chen. Helicity decomposition for inclusivejproduction. Physical Review D, 54(5):3216–3227, Sep 1996.
E. Braaten and Y. Chen. Dimensional regularization in quarkonium calculations. Physical Review D, 55(5):2693–2707, Mar 1997.
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, and M.L. Mangano. Nlo production and decay of quarkonium. Nuclear Physics B, 514(1-2):245–309, Mar 1998.
X. Wang. Inclusive charmonium production via ϒ decayand break-down of nonrelativistic QCD factorization in double quarkonia processes. PhD thesis, U. Hamburg (main), 2018.
M. Ablikim et al. Amplitude analysis and branching fraction measurement of D+s → K+K−π+. Phys. Rev. D, 104(1):012016, 2021.
B. Bajc, S. Fajfer, and R. J. Oakes. An Effective model for charmed meson semileptonic decays. Phys. Rev. D, 53:4957–4963, 1996.
G. Buchalla, A.J. Buras, and M.E. Lautenbacher. Weak decays beyond leading logarithms. Reviews of Modern Physics, 68(4):1125–1244, Oct 1996.
P. Artoisenet. Quarkonium production phenomenology. PhD thesis, Louvain U., CP3, 2009.
V. Shtabovenko, R. Mertig, and F. Orellana. New developments in feyncalc 9.0. Computer Physics Communications, 207:432–444, Oct 2016.
R. Mertig, M. Böhm, and A. Denner. Feyn calc - computer-algebraic calculation of feynman amplitudes. Computer Physics Communications, 64(3):345–359, 1991.
N. Brambilla, H.S. Chung, V. Shtabovenko, and A. Vairo. FeynOnium: Using FeynCalc for automatic calculations in Nonrelativistic Effective Field Theories. JHEP, 11:130, 2020.
L. Bergstrom and P. Ernstrom. QCD corrections to direct B—> J / psi decays. Phys. Lett. B, 328:153–161, 1994.
C. S. Kim and A.D. Martin. On the Determination of V(ub) and V(cb) From Semileptonic B Decays. Phys. Lett. B, 225:186–190, 1989.
C.R. Harris et al. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.
The mpmath development team. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0), 2023. http://mpmath.org/.
S. Barsuk, E. Kou, and A. Usachov. Test of nrqcd with charmonium production in inclusive b-hadron decays. LAL 17-051, jul 2017.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 72 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85546/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85546/2/1015467708.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85546/3/1015467708.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
de8f9170259973ac7f750906d2f5d8ba
b6bb2b745d0ea2db70e1e33a065ed307
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090052769153024
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Milanés Carreño, Diego Alejandro0cb1fc6bacb170f2b17b9f31777bf004Camargo Magalhães, Patriciab8a4fabecb3216c1210a9599b808009cBarón Ospina, David Alejandro7ce9ae4dcc8686ac49f7eccec396298dGrupo de Partículas Fenyx-Un2024-01-30T21:10:28Z2024-01-30T21:10:28Z2024-01-30https://repositorio.unal.edu.co/handle/unal/85546Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThis document presents study cases of the decay and production of hadrons with $c$-quark content from the point of view of effective field theories. A theoretical review of the $D^{+}_S\rightarrow K^+K^-K^+$ and $B\rightarrow H(c\Bar{c})\;X$ decays is shown. The $D^{+}_S\rightarrow 3K$ $W$-radiation topology, also known as external $W$-emission, is introduced and visualized using Dalitz plots. The document continues with a review of non-relativistic quantum chromodynamics (NRQCD) factorization for charmonium production and its complementary computation tools, threshold expansion, and covariant projectors to finish with a fitting of the long-distance matrix elements (LDMEs) present in the inclusive decay rate of $B$ mesons into $\chi_{c}$ states, employing literature results at next to leading order (NLO) in QCD and theoretical uncertainties management. The resulting amplitude for the $D^{+}_S\rightarrow 3K$ decay coincides with the decay channel phenomenological knowledge, by the presence of the tail of $f_0(980)$ at the beginning of the phase space and the dominance of the $\phi(1020)$ resonant structures. Additionally, the model implemented has the freedom to be adjusted with future fittings. For the $B\rightarrow H(c\Bar{c})\;X$ decay is performed a fitting on the LDMEs present in $\chi_{c}$ states production using the experimental value of their branching fractions. A similar procedure is performed with the ratio of the branching fractions, however, a proper way of constraining the experimental data and handling the theoretical predictions is still needed. (Texto tomado de la fuente)Este documento presenta casos de estudio del desintegración y producción de hadrones con contenido de quark $c$ desde el punto de vista de las teorías de campo efectivas. Se muestra una revisión teórica de las desintegraciones $D^{+}_S\rightarrow K^+K^-K^+$ y $B\rightarrow H(c\Bar{c})\;X$. Se introduce y visualiza la topología de radiación del $W$ en la desintegración $D^{+}_S\rightarrow 3K$, también conocida como topologia de emisión del $W$ externa, utilizando gráficos de Dalitz. El documento continúa con una revisión de la factorización de cromodinámica cuántica no relativista (NRQCD) para la producción de charmonia y sus herramientas de cálculo complementarias, la expansión en el umbral y los proyectores covariantes, para finalizar con un ajuste de los elementos de matriz de larga distancia (LDMEs) presentes en la tasa de desintegración inclusiva de mesones $B$ en estados $\chi_{c}$, empleando resultados de la literatura al siguiente orden perturbativo (NLO) en QCD y la estimación de incertidumbres teóricas. La amplitud resultante para $D^{+}_S\rightarrow 3K$ coincide con el conocimiento fenomenológico del canal de desintegración, por la presencia de la cola del meson $f_0(980)$ al inicio del espacio de fase y el dominio de las estructuras resonantes del meson $\phi(1020)$. Además, el modelo implementado tiene la libertad de ser ajustado con futuros datos experimentales. Para la desintegración $B\rightarrow H(c\Bar{c})\;X$ se realiza un ajuste en los LDMEs presentes en la producción de estados $\chi_{c}$ utilizando el valor experimental de sus anchos de desintegración. Se realiza un procedimiento similar con las ratas de los anchos de desintegración, sin embargo, aún se necesita una forma adecuada de restringir los datos experimentales y manejar las predicciones teóricas.MaestríaMagíster en Ciencias - Físicaxiv, 72 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaEspectrocopia de mesonFísica nuclearMeson spectroscopyNuclear physicsEffective field theoryHeavy mesonsFlavor physicsNRQCDCharmoniumFinal state interactionsTeoría efectiva de campoMesones pesadosFísica del saborCharmoniaInteracciones de estados finalesDecays of heavy mesons: a theoretical perspective using effective field theoriesDesintegración de mesones pesados: una perspectiva teórica usando teorías efectivas de camposTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TML. Chau. Quark Mixing in Weak Interactions. Phys. Rept., 95:1–94, 1983.R. Tourinho Aoude, P. C. Magalhães, A. C. dos Reis, and M. R. Robilotta. Multi-Meson Model applied to D+ →K+K−K+. PoS, CHARM2016:086, 2016.R. T. Aoude, P. C. Magalhães, A. C. Dos Reis, and M. R. Robilotta. Multimeson model for the D+ →K+K−K+ decay amplitude. Phys. Rev. D, 98(5):056021, 2018.F. Maltoni. Quarkonium phenomenology: Tesi Di Dottorato in Fisica. PhD thesis, 1999.M. Beneke, F. Maltoni, and I. Z. Rothstein. QCD analysis of inclusive B decay into charmonium. Phys. Rev. D, 59:054003, 1999.R. Aaij et al. Study of charmonium production in b-hadron decays and first evidence for the decay B0s →φφφ. Eur. Phys. J. C, 77(9):609, 2017.R. Aaij et al. Dalitz plot analysis of the D+ →K−K+K+ decay. JHEP, 04:063, 2019.P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.M.D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press, 3 2014.M.E. Peskin and D.V. Schroeder. An Introduction to quantum field theory. Addison- Wesley, Reading, USA, 1995.M. Srednicki. Quantum field theory. Cambridge University Press, 1 2007.D.J. Gross and F. Wilczek. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett., 30:1343–1346, 1973.D.J. Gross and F. Wilczek. Asymptotically Free Gauge Theories - I. Phys. Rev. D, 8:3633–3652, 1973.H.D. Politzer. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett., 30:1346–1349, 1973.S. Weinberg. Phenomenological Lagrangians. Physica A, 96(1-2):327–340, 1979.J. Gasser and H. Leutwyler. Chiral Perturbation Theory to One Loop. Annals Phys., 158:142, 1984.J. Gasser and H. Leutwyler. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark. Nucl. Phys. B, 250:465–516, 1985.J. Goldstone. Field Theories with Superconductor Solutions. Nuovo Cim., 19:154–164, 1961.J Goldstone, A. Salam, and S.Weinberg. Broken Symmetries. Phys. Rev., 127:965–970, 1962.M. Gell-Mann. Symmetries of baryons and mesons. Phys. Rev., 125:1067–1084, 1962.S.R. Coleman, J. Wess, and B Zumino. Structure of phenomenological Lagrangians. 1. Phys. Rev., 177:2239–2247, 1969.C.G. Callan, S.R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological Lagrangians. 2. Phys. Rev., 177:2247–2250, 1969.G. Ecker, J. Gasser, A. Pich, and E. de Rafael. The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys. B, 321:311–342, 1989.H.D. Politzer and M.B. Wise. Effective Field Theory Approach to Processes Involving Both Light and Heavy Fields. Phys. Lett. B, 208:504–507, 1988.N. Isgur and M.B. Wise. Weak Decays of Heavy Mesons in the Static Quark Approximation. Phys. Lett. B, 232:113–117, 1989.M.B. Wise. Chiral perturbation theory for hadrons containing a heavy quark. Phys. Rev. D, 45(7):2188, 1992.P. Cho. Chiral perturbation theory for hadrons containing a heavy quark. the sequel. Physics Letters B, 285(1-2):145–152, Jul 1992.G.T. Bodwin, E. Braaten, and G.P. Lepage. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev. D, 51:1125–1171, 1995. [Erratum: Phys.Rev.D 55, 5853 (1997)].A.A. Petrov and A.E. Blechman. Effective Field Theories. WSP, 2016.S. Scherer. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 27:277, 2003.E.E Jenkins, A.V. Manohar, and M.B. Wise. Chiral perturbation theory for vector mesons. Phys. Rev. Lett., 75:2272–2275, 1995.P. C. Magalhães, A. C. dos Reis, and M. R. Robilotta. Multibody decay analyses: A new phenomenological model for meson-meson subamplitudes. Phys. Rev. D, 102(7):076012, 2020.V. Shtabovenko, R. Mertig, and F. Orellana. Feyncalc 9.3: New features and improvements. Computer Physics Communications, 256:107478, Nov 2020.T. Mannel, W. Roberts, and Z. Ryzak. A Derivation of the heavy quark effective Lagrangian from QCD. Nucl. Phys. B, 368:204–217, 1992.A.V. Manohar and M.B. Wise. Heavy quark physics, volume 10. 2000.E. Braaten. Introduction to the NRQCD factorization approach to heavy quarkonium. In 3rd International Workshop on Particle Physics Phenomenology, 11 1996.E. Braaten and Y. Chen. Helicity decomposition for inclusivejproduction. Physical Review D, 54(5):3216–3227, Sep 1996.E. Braaten and Y. Chen. Dimensional regularization in quarkonium calculations. Physical Review D, 55(5):2693–2707, Mar 1997.A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, and M.L. Mangano. Nlo production and decay of quarkonium. Nuclear Physics B, 514(1-2):245–309, Mar 1998.X. Wang. Inclusive charmonium production via ϒ decayand break-down of nonrelativistic QCD factorization in double quarkonia processes. PhD thesis, U. Hamburg (main), 2018.M. Ablikim et al. Amplitude analysis and branching fraction measurement of D+s → K+K−π+. Phys. Rev. D, 104(1):012016, 2021.B. Bajc, S. Fajfer, and R. J. Oakes. An Effective model for charmed meson semileptonic decays. Phys. Rev. D, 53:4957–4963, 1996.G. Buchalla, A.J. Buras, and M.E. Lautenbacher. Weak decays beyond leading logarithms. Reviews of Modern Physics, 68(4):1125–1244, Oct 1996.P. Artoisenet. Quarkonium production phenomenology. PhD thesis, Louvain U., CP3, 2009.V. Shtabovenko, R. Mertig, and F. Orellana. New developments in feyncalc 9.0. Computer Physics Communications, 207:432–444, Oct 2016.R. Mertig, M. Böhm, and A. Denner. Feyn calc - computer-algebraic calculation of feynman amplitudes. Computer Physics Communications, 64(3):345–359, 1991.N. Brambilla, H.S. Chung, V. Shtabovenko, and A. Vairo. FeynOnium: Using FeynCalc for automatic calculations in Nonrelativistic Effective Field Theories. JHEP, 11:130, 2020.L. Bergstrom and P. Ernstrom. QCD corrections to direct B—> J / psi decays. Phys. Lett. B, 328:153–161, 1994.C. S. Kim and A.D. Martin. On the Determination of V(ub) and V(cb) From Semileptonic B Decays. Phys. Lett. B, 225:186–190, 1989.C.R. Harris et al. Array programming with NumPy. Nature, 585(7825):357–362, September 2020.The mpmath development team. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0), 2023. http://mpmath.org/.S. Barsuk, E. Kou, and A. Usachov. Test of nrqcd with charmonium production in inclusive b-hadron decays. LAL 17-051, jul 2017.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85546/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015467708.2024.pdf1015467708.2024.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf4064901https://repositorio.unal.edu.co/bitstream/unal/85546/2/1015467708.2024.pdfde8f9170259973ac7f750906d2f5d8baMD52THUMBNAIL1015467708.2024.pdf.jpg1015467708.2024.pdf.jpgGenerated Thumbnailimage/jpeg5877https://repositorio.unal.edu.co/bitstream/unal/85546/3/1015467708.2024.pdf.jpgb6bb2b745d0ea2db70e1e33a065ed307MD53unal/85546oai:repositorio.unal.edu.co:unal/855462024-08-22 23:10:23.441Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=