Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO

ilustraciones, fotografías

Autores:
Lanchero Díaz, Angela Patricia
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84076
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84076
https://repositorio.unal.edu.co/
Palabra clave:
Nanoestructuras
Oxidos
Compuestos de Cic
Nanostructures
Zinc compounds
Oxides
Oxido de Zinc (ZnO)
Espintrónica
Manganeso (Mn)
Memristor
DMS
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_c2b70ebacf2749fe1ff51043b830570d
oai_identifier_str oai:repositorio.unal.edu.co:unal/84076
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
dc.title.translated.eng.fl_str_mv Synthesis and study of the effect of Mn on the structural and electrical properties of ZnO nanostructures
title Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
spellingShingle Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
Nanoestructuras
Oxidos
Compuestos de Cic
Nanostructures
Zinc compounds
Oxides
Oxido de Zinc (ZnO)
Espintrónica
Manganeso (Mn)
Memristor
DMS
title_short Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
title_full Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
title_fullStr Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
title_full_unstemmed Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
title_sort Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
dc.creator.fl_str_mv Lanchero Díaz, Angela Patricia
dc.contributor.advisor.none.fl_str_mv Dussán Cuenca, Anderson
dc.contributor.author.none.fl_str_mv Lanchero Díaz, Angela Patricia
dc.contributor.researchgroup.spa.fl_str_mv Materiales Nanoestructurados y Sus Aplicaciones
dc.subject.lemb.spa.fl_str_mv Nanoestructuras
Oxidos
Compuestos de Cic
topic Nanoestructuras
Oxidos
Compuestos de Cic
Nanostructures
Zinc compounds
Oxides
Oxido de Zinc (ZnO)
Espintrónica
Manganeso (Mn)
Memristor
DMS
dc.subject.lemb.eng.fl_str_mv Nanostructures
Zinc compounds
dc.subject.lemb.seng.fl_str_mv Oxides
dc.subject.proposal.spa.fl_str_mv Oxido de Zinc (ZnO)
Espintrónica
Manganeso (Mn)
Memristor
dc.subject.proposal.none.fl_str_mv DMS
description ilustraciones, fotografías
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-26T21:14:37Z
dc.date.available.none.fl_str_mv 2023-06-26T21:14:37Z
dc.date.issued.none.fl_str_mv 2023-04-26
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84076
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84076
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Dussán A, Quiroz H, Calderón J. Nanomateriales que revolucionan la tecnología. 2020.
Yakout SM. Spintronics: Future Technology for New Data Storage and Communication Devices. Journal of Superconductivity and Novel Magnetism 2020; 33: 2557–2580.
Jiménez García NF, Ortiz Álvarez H, Toro Carvajal L. Obtención de películas de ZnO impurificadas con Mn mediante la combinación de las técnicas Baño Químico y SILAR. Ciencias Básicas2019 2019; 17: 112–123.
Florez Galvan L. Correlación entre las propiedades estructurales y ópticas del óxido de zinc nanoestructurado dopado con cobalto. Montería, Colombia, 2020.
Rajalakshmi R, Angappane S. Synthesis, characterization and photoresponse study of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. Materials Science and Engineering: B 2013; 178: 1068–1075.
Ahmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.
Mimouni R, Kamoun O, Yumak A, et al. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. J Alloys Compd 2015; 645: 100–111.
Zhang H fu, Liu R jin, Liu H fa, et al. Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering. Mater Lett 2010; 64: 605–607.
Rajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.
Sapkota KR, Chen W, Maloney FS, et al. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires. Sci Rep; 6. Epub ahead of print 14 October 2016. DOI: 10.1038/srep35036.
Céspedes Montoya E, Prieto de Castro C. Ferromagnetism in wide band gap materials Mn-ZnO and Mn-Si3 N4 thin films. Universidad Autónoma de Madrid , 2009.
Mattox DM. Physical Sputtering and Sputter Deposition (Sputtering). Handbook of Physical Vapor Deposition (PVD) Processing 1998; 343–405.
Adachi H, Wasa K. Thin Films and Nanomaterials. Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS: Second Edition 2012; 3–39.
Mangematin V, Walsh S. The future of nanotechnologies. Technovation 2012; 32: 157–160.
NNI Budget | National Nanotechnology Initiative, https://www.nano.gov/about-nni/what/funding (accessed 9 December 2021).
Khan S, Mansoor S, Rafi Z, et al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 2021; 118008.
Ageev OA, Zamburg EG, Kolomiytsev AS, et al. Formation of elements of integrated acousto-optic cell based on LiNbO 3 films by methods of nanotechnology. J Phys Conf Ser 2015; 643: 012031.
Neupane GP, Ma W, Yildirim T, et al. 2D organic semiconductors, the future of green nanotechnology. Nano Materials Science 2019; 1: 246–259.
Wang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine 2021; 34: 102387.
Singh PK, Goyal M. Nanotechnology in Automobiles - A OEMS Viewpoint. IOP Conf Ser Mater Sci Eng 2020; 988: 012070.
Usman M, Farooq M, Wakeel A, et al. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment 2020; 721: 137778
Padilla-Vaca F, Mendoza-Macías CL, Franco B, et al. El mundo micro en el mundo nano: importancia y desarrollo de nanomateriales para el combate de las enfermedades causadas por bacterias, protozoarios y hongos. Mundo Nano Revista Interdisciplinaria en Nanociencias y Nanotecnología 2018; 11: 15–27.
Yu H, Li P, Zhang L, et al. Application of optical fiber nanotechnology in power communication transmission. Alexandria Engineering Journal 2020; 59: 5019–5030.
Genet C, Errabi K, Gauthier C. Which model of technology transfer for nanotechnology? A comparison with biotech and microelectronics. Technovation 2012; 32: 205–215.
Boixeda P, Feltes F, Santiago JL, et al. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies. Actas Dermosifiliogr 2015; 106: 168–179.
Dong Y, Wu X, Chen X, et al. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomedicine & Pharmacotherapy 2021; 137: 111236.
Gogotsi Y. Nanomaterials handbook. CRC/Taylor & Francis, https://www.academia.edu/25149005/Nanomaterials_handbook (2006, accessed 9 December 2021).
Ou R, Zeng Z, Ning X, et al. Improved photocatalytic performance of N-doped ZnO/graphene/ZnO sandwich composites. Appl Surf Sci 2021; 151856.
Kim D, Leem JY. Morphology modification of ZnO nanosheets and ZnO nanorods via thermal dissipation system for UV photoresponse improvement. Mater Sci Semicond Process 2022; 138: 106286.
Yang C, Xiong F, Zhang Y, et al. Growth of ZnO/Bi2S3 electron transport layer films to improve the efficiency and stability of organic solar cells. Opt Mater (Amst) 2021; 111791.
Gao W, Liu Y, Dong J. Immobilized ZnO based nanostructures and their environmental applications. Progress in Natural Science: Materials International. Epub ahead of print 13 November 2021. DOI: 10.1016/J.PNSC.2021.10.006.
Ruan HB, Fang L, Li DC, et al. Effect of dopant concentration on the structural, electrical and optical properties of Mn-doped ZnO films. Thin Solid Films 2011; 519: 5078–5081.
Change YQ, Wang PW, Tang RH, et al. Synthesis and Room Temperature Ferromagnetism of Flower-shaped Mn Doped ZnO Nanostructures. J Mater Sci Technol 2011; 27: 513–517.
Ilyas U, Rawat RS, Roshan G, et al. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Appl Surf Sci 2011; 258: 890–897.
Morkoç H, Özgür Ü. Zinc Oxide: Fundamentals, Materials and Device Technology. Germany, https://b-ok.lat/book/604672/d7395a?dsource=recommend (2009, accessed 10 December 2021).
Ghica D, Vlaicu ID, Stefan M, et al. Tailoring the Dopant Distribution in ZnO:Mn Nanocrystals. Scientific Reports 2019 9:1 2019; 9: 1–12.
Karmakar R, Neogi SK, Banerjee A, et al. Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film. Appl Surf Sci 2012; 263: 671–677.
Toufiq AM, Hussain R, Shah A, et al. The influence of Mn doping on the structural and optical properties of ZnO nanostructures. Physica B Condens Matter 2021; 604: 412731.
Gorrie CW, Sigdel AK, Berry JJ, et al. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide. Thin Solid Films 2010; 519: 190–196.
Chikoidze E, Dumont Y, Jomard F, et al. Electrical and optical properties of ZnO:Mn thin films grown by MOCVD. Thin Solid Films 2007; 515: 8519–8523.
Ma Y, Gao H, Huang R, et al. Green emission in Fe- and Mn-doped ZnO nanowires studied by magneto-photoluminescence. J Lumin 2022; 241: 118521.
Gallegos M v., Luna CR, Peluso MA, et al. Effect of Mn in ZnO using DFT calculations: Magnetic and electronic changes. J Alloys Compd 2019; 795: 254–260.
Rajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.
Lekoui F, Amrani R, Filali W, et al. Investigation of the effects of thermal annealing on the structural, morphological and optical properties of nanostructured Mn doped ZnO thin films. Opt Mater (Amst); 118. Epub ahead of print 1 August 2021. DOI: 10.1016/J.OPTMAT.2021.111236.
Theodoropoulou NA, Hebard AF, Norton DP, et al. Ferromagnetism in Co- and Mn-doped ZnO. Solid State Electron 2003; 47: 2231–2235.
Ahmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.
Óxido de ZINC | ZnO - PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-oxide (accessed 10 December 2021).
ZnO - an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/materials-science/zno (accessed 10 December 2021).
Özgür U, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by MBE. In: Molecular Beam Epitaxy: From Research to Mass Production. Elsevier, 2012, pp. 369–416.
Schleife A, Fuchs F, Furthmüller J, et al. First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys Rev B Condens Matter Mater Phys; 73. Epub ahead of print 2006. DOI: 10.1103/PhysRevB.73.245212.
Kovalenko M, Bovgyra O, Franiv A, et al. Electronic structure of ZnO thin films doped with group III elements. Mater Today Proc 2019; 35: 604–608.
Varshni Y. Temperature Dependence of the energy gap in semiconductors. Physica 34 1967; 149–154.
Singh D, Varshni YP. Debye temperatures for hexagonal crystals. Ottawa, Canadá, 1981.
Caglar M, Ilican S, Caglar Y, et al. Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl Surf Sci 2009; 255: 4491–4496.
Nasir MF, Zainol MN, Hannas M, et al. Electrical properties of undoped zinc oxide nanostructures at different annealing temperature. In: AIP Conference Proceedings. American Institute of Physics Inc., 2016. Epub ahead of print 6 July 2016. DOI: 10.1063/1.4948886.
Quesada A, García MA, Costa-Krämer JL, et al. Semiconductores magnéticos diluidos: Materiales para la espintrónica. Revista Española de Física, http://www.rsef.org (2007).
Abdel-Galil A, Balboul MR, Sharaf A. Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors. Physica B Condens Matter 2015; 477: 20–28.
Albella J. Láminas delgadas y recubrimientos: Preparación, propiedades y aplicaciones. Madrid, España, 2003.
Nunn W, Truttmann TK, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J Mater Res 2021; 36: 4846–4864.
Özgür Ü, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In: Molecular Beam Epitaxy. Elsevier, 2018, pp. 343–375.
Mahmood A, Naeem A. Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications. In: Recent Applications in Sol-Gel Synthesis. InTech, 2017. Epub ahead of print 5 July 2017. DOI: 10.5772/67857.
Petr Vašina T, Boisse -Laporte Supervisor Ganciu Examinator J Janča Supervisor A-M Pointu President A Ricard Reporter J Vlček CM. Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition at Orsay, members of commission. 2005.
Bonafos C, Khomenkhova L, Gourbilleau F, et al. Nano-composite MOx materials for NVMs. Metal Oxides for Non-volatile Memory: Materials, Technology and Applications 2022; 201–244.
Cullity BD (Bernard D. Elements of x-ray diffraction. Addison-Wesley Publishing Company, Inc, 1978.
Waseda Y, Matsubara E, Shinoda K. X-Ray Diffraction Crystallography X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. 2011.
Harrington GF, Santiso J. Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics 2021 47:4 2021; 47: 141–163.
García L. Introducción al Método Rietveld. Centro de Investigación en Energía, 2007.
Quiroz H. Estudio de las propiedades físicas del TiO2:Co como un semiconductor magnético diluido para aplicaciones en espintrónica. 2019.
Ipohorski M, Bozzano PB. Microscopía Electrónica de Barrido en la caracterización de Materiales. Cienc Invest; 63, http://aargentinapciencias.org/wp-content/uploads/2018/01/RevistasCeI/tomo63-3/5-Microscopia-Electronica-De-Barrido-En-La-Caracterizacion-De-Materiales-cei63-3-2013-5.pdf (2013, accessed 17 January 2022).
Inkson BJ. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In: Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier Inc., 2016, pp. 17–43.
Microscopio electrónico escaneando Historia y Principios y capacidades, https://hmong.es/wiki/Scanning_electron_microscope (accessed 4 December 2022).
Scheuer C, Boot E, Carse N, et al. Current–voltage characteristic. Physical Education and Sport for Children and Youth with Special Needs Researches – Best Practices – Situation 2021; 343–354.
Estrella JC. Mediciones eléctricas por el método de cuatro puntas en películas delgadas de interés fotovoltáico. Instituto Politécnico Nacional, https://tesis.ipn.mx/bitstream/handle/123456789/18560/Mediciones%20Electricas%20por%20el%20metodo%20de%20cuatro%20puntas%20en%20peliculas%20delgadas%20de%20interes%20fotovoltaico.pdf?sequence=1&isAllowed=y (2016, accessed 17 January 2022).
Seña Gaibao NJ. Caracterización eléctrica y estudio de las propiedades de transporte del compuesto Cu2ZnSnSe4 para ser usado como capa absorbente en celdas solares. 2013.
Terán CL. Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor. 2022.
Panowicz R, Miedzińska D, Palka N, et al. The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure Cratering of Cosmical Bodies View project Blast waves protective structures View project The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure, https://www.researchgate.net/publication/228895610 (2011).
Confocal Microscope | What is Confocal Raman Microscopy? https://www.edinst.com/blog/what-is-confocal-raman-microscopy/ (accessed 5 December 2022).
Huggett JM, Shaw HF. Field emission scanning electron microscopy — a high-resolution technique for the study of clay minerals in sediments. Clay Miner 1997; 32: 197–203.
Álvarez Romero C, Doménech Carbó MT. Aplicación de la técnica de microscopia electrónica de barrido de emisión de campo con haz de iones focalizado-microanálisis de rayos x a colecciones numismáticas. Valencia, 2016.
Sinha Ray S. Structure and Morphology Characterization Techniques. In: Clay-Containing Polymer Nanocomposites. Elsevier, 2013, pp. 39–66.
X-ray Fluorescence – Rigaku EDXRF, https://www.rigakuedxrf.com/x-ray-fluorescence/ (accessed 5 December 2022).
Thomson T. Magnetic properties of metallic thin films. In: Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties. Elsevier Ltd., 2013, pp. 454–546.
Buschow KHJ;, de Boer FR. Measurement Techniques. In: Physics of Magnetism and Magnetic Materials. 2003, pp. 85–89.
Yang S, Zhang Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method. J Magn Magn Mater 2013; 334: 52–58.
Wang ZH, Geng DY, Zhang ZD. Room-temperature ferromagnetism and optical properties of Zn1-xMnxO nanoparticles. Solid State Commun 2009; 149: 682–684.
FERNANDEZ NAVARRO JM. Nucleación y cristalización en vidrios. 1968.
Blasco J. Modelización compacta de las características de conducción de dispositivos de conmutación resistiva. Universitat Autonoma de Barcelo, 2017.
Sanca GA. Estudio de integración de dispositivos RS con tecnologías CMOS para aplicaciones en ambientes hostiles. Universidad Nacional de San Martín , 2020.
Sawa A. Resistive switching in transition metal oxides. NUMBER 2008; 11: 28.
Lee S, Lee JS, Park JB, et al. Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells. APL Mater; 2. Epub ahead of print 2 June 2014. DOI: 10.1063/1.4884215.
Sharma M, Bera K, Mishra R, et al. Structural, Magnetic, and Optical Properties of Mn2+ Doping in ZnO Thin Films. Surfaces 2021, Vol 4, Pages 268-278 2021; 4: 268–278.
Dietl T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. IOS Press, www.sciencemag.orgwww.sciencemag.org (2000).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv viii, 65 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84076/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84076/4/1074417215.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
d7e9230ef739277ec8996858fffb108f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886528388956160
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dussán Cuenca, Anderson393dbd423635d474564f566b8ee5f549Lanchero Díaz, Angela Patriciafdf45e76bcc516cd106a125bd671d85fMateriales Nanoestructurados y Sus Aplicaciones2023-06-26T21:14:37Z2023-06-26T21:14:37Z2023-04-26https://repositorio.unal.edu.co/handle/unal/84076Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografíasEste trabajo presenta el estudio del efecto de sobre las propiedades estructurales, morfológicas, eléctricas y magnéticas de películas delgadas de depositadas por el método “DC magnetron co-sputtering”, variando algunos parámetros de síntesis como la concentración de Mn, la temperatura del sustrato, así como la utilización de sustratos de diferente naturaleza (Vidrio borosilicato, ITO, Titanio y Silicio orientado). A partir de la caracterización por difracción de rayos X (XRD, por sus siglas en inglés) y espectroscopía RAMAN se identificó la formación de una estructura cristalina hexagonal en fase wurtzita cuyo plano preferencial de crecimiento fue [002] a lo largo del eje c, la temperatura de depósito y el sustrato orientado favorece la cristalización, mientras que el incremento en la cantidad de Mn afecto la cristalización, fenómeno asociado con estrés de la matriz semiconductora. La caracterización a través de microscopía SEM, FESEM y AFM mostraron la formación granular en la superficie de la película, la inclusión de Mn (potencia del “target” = 25 W) mostró un incremento en el tamaño del grano, a altas concentraciones se evidenció la formación de “clusters”. La caracterización eléctrica se realizó a partir de curvas I-V, donde se observó conmutación resistiva (RS, “resistive switching”) unipolar y bipolar interfacial, explicado a partir del modelo de barrera Schottky; este comportamiento está determinado por los parámetros de síntesis como la temperatura y la concentración de Mn. La magnetometría de muestra vibrante (VSM, por sus siglas en inglés) mostró histéresis asociada con ferromagnetismo para muestras depositadas con temperatura de sustrato = 150 °, potencia de = 25 ; la magnetización fue medida a 150 K, cuando se incrementa la temperatura de magnetización se observa una histéresis similar a la cintura de avispa, este resultado se asoció a la combinación de dos fases magnéticas (paramagnética y ferromagnética) presentes en la muestra. La información obtenida confirma la posibilidad fabricar semiconductores magnéticos diluidos (DMS, por sus siglas en inglés) a partir del : con potencial para aplicaciones en dispositivos espintrónicos. (Texto tomado de la fuente)This work presents the study of the effect of Mn on the structural, morphological, electrical and magnetic properties of ZnO thin films deposited by the DC magnetron co-sputtering method, with variations in some synthesis parameters such as Mn concentration, substrate temperature, as well as the use of substrates of different nature (borosilicate glass, ITO, titanium and oriented silicon). From the characterization by X-ray diffraction (XRD) and RAMAN spectroscopy it was identified the formation of a hexagonal crystalline structure in wurtzite phase whose preferential growth plane was [002] along the c axis, the deposition temperature and the oriented substrate favored crystallization, while the increase in the amount of Mn affected the crystallization, a phenomenon associated with stress of the semiconductor matrix. Characterization through SEM, FESEM and AFM microscopy showed granular formation on the surface of the film thin, the addition of Mn (power target = 25 W) showed an increase in grain size, at high Mn concentrations the formation of "clusters" was evidenced. The electrical characterization was performed from I-V curves, where unipolar and bipolar interfacial resistive switching (RS) was observed, explained from the Schottky barrier model; this behavior is determined by the synthesis parameters such as temperature and Mn concentration. Vibrating sample magnetometry (VSM) showed hysteresis associated with ferromagnetism for samples deposited with substrate temperature Ts=150 C, Mn power 25 W; the magnetization was measured at 150 K, when the magnetization temperature is increased a hysteresis similar to wasp waist was observed; this result was associated to the combination of two magnetic phases (paramagnetic and ferromagnetic) present in the sample. The information obtained confirms the possibility of fabricating dilute magnetic semiconductors (DMS) from ZnO:Mn with potential for applications in spintronic devices.MaestríaMagíster en Ciencias - Físicaviii, 65 páginasapplication/pdfSíntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnOSynthesis and study of the effect of Mn on the structural and electrical properties of ZnO nanostructuresTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede BogotáDussán A, Quiroz H, Calderón J. Nanomateriales que revolucionan la tecnología. 2020.Yakout SM. Spintronics: Future Technology for New Data Storage and Communication Devices. Journal of Superconductivity and Novel Magnetism 2020; 33: 2557–2580.Jiménez García NF, Ortiz Álvarez H, Toro Carvajal L. Obtención de películas de ZnO impurificadas con Mn mediante la combinación de las técnicas Baño Químico y SILAR. Ciencias Básicas2019 2019; 17: 112–123.Florez Galvan L. Correlación entre las propiedades estructurales y ópticas del óxido de zinc nanoestructurado dopado con cobalto. Montería, Colombia, 2020.Rajalakshmi R, Angappane S. Synthesis, characterization and photoresponse study of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. Materials Science and Engineering: B 2013; 178: 1068–1075.Ahmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.Mimouni R, Kamoun O, Yumak A, et al. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. J Alloys Compd 2015; 645: 100–111.Zhang H fu, Liu R jin, Liu H fa, et al. Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering. Mater Lett 2010; 64: 605–607.Rajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.Sapkota KR, Chen W, Maloney FS, et al. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires. Sci Rep; 6. Epub ahead of print 14 October 2016. DOI: 10.1038/srep35036.Céspedes Montoya E, Prieto de Castro C. Ferromagnetism in wide band gap materials Mn-ZnO and Mn-Si3 N4 thin films. Universidad Autónoma de Madrid , 2009.Mattox DM. Physical Sputtering and Sputter Deposition (Sputtering). Handbook of Physical Vapor Deposition (PVD) Processing 1998; 343–405.Adachi H, Wasa K. Thin Films and Nanomaterials. Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS: Second Edition 2012; 3–39.Mangematin V, Walsh S. The future of nanotechnologies. Technovation 2012; 32: 157–160.NNI Budget | National Nanotechnology Initiative, https://www.nano.gov/about-nni/what/funding (accessed 9 December 2021).Khan S, Mansoor S, Rafi Z, et al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 2021; 118008.Ageev OA, Zamburg EG, Kolomiytsev AS, et al. Formation of elements of integrated acousto-optic cell based on LiNbO 3 films by methods of nanotechnology. J Phys Conf Ser 2015; 643: 012031.Neupane GP, Ma W, Yildirim T, et al. 2D organic semiconductors, the future of green nanotechnology. Nano Materials Science 2019; 1: 246–259.Wang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine 2021; 34: 102387.Singh PK, Goyal M. Nanotechnology in Automobiles - A OEMS Viewpoint. IOP Conf Ser Mater Sci Eng 2020; 988: 012070.Usman M, Farooq M, Wakeel A, et al. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment 2020; 721: 137778Padilla-Vaca F, Mendoza-Macías CL, Franco B, et al. El mundo micro en el mundo nano: importancia y desarrollo de nanomateriales para el combate de las enfermedades causadas por bacterias, protozoarios y hongos. Mundo Nano Revista Interdisciplinaria en Nanociencias y Nanotecnología 2018; 11: 15–27.Yu H, Li P, Zhang L, et al. Application of optical fiber nanotechnology in power communication transmission. Alexandria Engineering Journal 2020; 59: 5019–5030.Genet C, Errabi K, Gauthier C. Which model of technology transfer for nanotechnology? A comparison with biotech and microelectronics. Technovation 2012; 32: 205–215.Boixeda P, Feltes F, Santiago JL, et al. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies. Actas Dermosifiliogr 2015; 106: 168–179.Dong Y, Wu X, Chen X, et al. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomedicine & Pharmacotherapy 2021; 137: 111236.Gogotsi Y. Nanomaterials handbook. CRC/Taylor & Francis, https://www.academia.edu/25149005/Nanomaterials_handbook (2006, accessed 9 December 2021).Ou R, Zeng Z, Ning X, et al. Improved photocatalytic performance of N-doped ZnO/graphene/ZnO sandwich composites. Appl Surf Sci 2021; 151856.Kim D, Leem JY. Morphology modification of ZnO nanosheets and ZnO nanorods via thermal dissipation system for UV photoresponse improvement. Mater Sci Semicond Process 2022; 138: 106286.Yang C, Xiong F, Zhang Y, et al. Growth of ZnO/Bi2S3 electron transport layer films to improve the efficiency and stability of organic solar cells. Opt Mater (Amst) 2021; 111791.Gao W, Liu Y, Dong J. Immobilized ZnO based nanostructures and their environmental applications. Progress in Natural Science: Materials International. Epub ahead of print 13 November 2021. DOI: 10.1016/J.PNSC.2021.10.006.Ruan HB, Fang L, Li DC, et al. Effect of dopant concentration on the structural, electrical and optical properties of Mn-doped ZnO films. Thin Solid Films 2011; 519: 5078–5081.Change YQ, Wang PW, Tang RH, et al. Synthesis and Room Temperature Ferromagnetism of Flower-shaped Mn Doped ZnO Nanostructures. J Mater Sci Technol 2011; 27: 513–517.Ilyas U, Rawat RS, Roshan G, et al. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Appl Surf Sci 2011; 258: 890–897.Morkoç H, Özgür Ü. Zinc Oxide: Fundamentals, Materials and Device Technology. Germany, https://b-ok.lat/book/604672/d7395a?dsource=recommend (2009, accessed 10 December 2021).Ghica D, Vlaicu ID, Stefan M, et al. Tailoring the Dopant Distribution in ZnO:Mn Nanocrystals. Scientific Reports 2019 9:1 2019; 9: 1–12.Karmakar R, Neogi SK, Banerjee A, et al. Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film. Appl Surf Sci 2012; 263: 671–677.Toufiq AM, Hussain R, Shah A, et al. The influence of Mn doping on the structural and optical properties of ZnO nanostructures. Physica B Condens Matter 2021; 604: 412731.Gorrie CW, Sigdel AK, Berry JJ, et al. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide. Thin Solid Films 2010; 519: 190–196.Chikoidze E, Dumont Y, Jomard F, et al. Electrical and optical properties of ZnO:Mn thin films grown by MOCVD. Thin Solid Films 2007; 515: 8519–8523.Ma Y, Gao H, Huang R, et al. Green emission in Fe- and Mn-doped ZnO nanowires studied by magneto-photoluminescence. J Lumin 2022; 241: 118521.Gallegos M v., Luna CR, Peluso MA, et al. Effect of Mn in ZnO using DFT calculations: Magnetic and electronic changes. J Alloys Compd 2019; 795: 254–260.Rajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.Lekoui F, Amrani R, Filali W, et al. Investigation of the effects of thermal annealing on the structural, morphological and optical properties of nanostructured Mn doped ZnO thin films. Opt Mater (Amst); 118. Epub ahead of print 1 August 2021. DOI: 10.1016/J.OPTMAT.2021.111236.Theodoropoulou NA, Hebard AF, Norton DP, et al. Ferromagnetism in Co- and Mn-doped ZnO. Solid State Electron 2003; 47: 2231–2235.Ahmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.Óxido de ZINC | ZnO - PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-oxide (accessed 10 December 2021).ZnO - an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/materials-science/zno (accessed 10 December 2021).Özgür U, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by MBE. In: Molecular Beam Epitaxy: From Research to Mass Production. Elsevier, 2012, pp. 369–416.Schleife A, Fuchs F, Furthmüller J, et al. First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys Rev B Condens Matter Mater Phys; 73. Epub ahead of print 2006. DOI: 10.1103/PhysRevB.73.245212.Kovalenko M, Bovgyra O, Franiv A, et al. Electronic structure of ZnO thin films doped with group III elements. Mater Today Proc 2019; 35: 604–608.Varshni Y. Temperature Dependence of the energy gap in semiconductors. Physica 34 1967; 149–154.Singh D, Varshni YP. Debye temperatures for hexagonal crystals. Ottawa, Canadá, 1981.Caglar M, Ilican S, Caglar Y, et al. Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl Surf Sci 2009; 255: 4491–4496.Nasir MF, Zainol MN, Hannas M, et al. Electrical properties of undoped zinc oxide nanostructures at different annealing temperature. In: AIP Conference Proceedings. American Institute of Physics Inc., 2016. Epub ahead of print 6 July 2016. DOI: 10.1063/1.4948886.Quesada A, García MA, Costa-Krämer JL, et al. Semiconductores magnéticos diluidos: Materiales para la espintrónica. Revista Española de Física, http://www.rsef.org (2007).Abdel-Galil A, Balboul MR, Sharaf A. Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors. Physica B Condens Matter 2015; 477: 20–28.Albella J. Láminas delgadas y recubrimientos: Preparación, propiedades y aplicaciones. Madrid, España, 2003.Nunn W, Truttmann TK, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J Mater Res 2021; 36: 4846–4864.Özgür Ü, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In: Molecular Beam Epitaxy. Elsevier, 2018, pp. 343–375.Mahmood A, Naeem A. Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications. In: Recent Applications in Sol-Gel Synthesis. InTech, 2017. Epub ahead of print 5 July 2017. DOI: 10.5772/67857.Petr Vašina T, Boisse -Laporte Supervisor Ganciu Examinator J Janča Supervisor A-M Pointu President A Ricard Reporter J Vlček CM. Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition at Orsay, members of commission. 2005.Bonafos C, Khomenkhova L, Gourbilleau F, et al. Nano-composite MOx materials for NVMs. Metal Oxides for Non-volatile Memory: Materials, Technology and Applications 2022; 201–244.Cullity BD (Bernard D. Elements of x-ray diffraction. Addison-Wesley Publishing Company, Inc, 1978.Waseda Y, Matsubara E, Shinoda K. X-Ray Diffraction Crystallography X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. 2011.Harrington GF, Santiso J. Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics 2021 47:4 2021; 47: 141–163.García L. Introducción al Método Rietveld. Centro de Investigación en Energía, 2007.Quiroz H. Estudio de las propiedades físicas del TiO2:Co como un semiconductor magnético diluido para aplicaciones en espintrónica. 2019.Ipohorski M, Bozzano PB. Microscopía Electrónica de Barrido en la caracterización de Materiales. Cienc Invest; 63, http://aargentinapciencias.org/wp-content/uploads/2018/01/RevistasCeI/tomo63-3/5-Microscopia-Electronica-De-Barrido-En-La-Caracterizacion-De-Materiales-cei63-3-2013-5.pdf (2013, accessed 17 January 2022).Inkson BJ. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In: Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier Inc., 2016, pp. 17–43.Microscopio electrónico escaneando Historia y Principios y capacidades, https://hmong.es/wiki/Scanning_electron_microscope (accessed 4 December 2022).Scheuer C, Boot E, Carse N, et al. Current–voltage characteristic. Physical Education and Sport for Children and Youth with Special Needs Researches – Best Practices – Situation 2021; 343–354.Estrella JC. Mediciones eléctricas por el método de cuatro puntas en películas delgadas de interés fotovoltáico. Instituto Politécnico Nacional, https://tesis.ipn.mx/bitstream/handle/123456789/18560/Mediciones%20Electricas%20por%20el%20metodo%20de%20cuatro%20puntas%20en%20peliculas%20delgadas%20de%20interes%20fotovoltaico.pdf?sequence=1&isAllowed=y (2016, accessed 17 January 2022).Seña Gaibao NJ. Caracterización eléctrica y estudio de las propiedades de transporte del compuesto Cu2ZnSnSe4 para ser usado como capa absorbente en celdas solares. 2013.Terán CL. Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor. 2022.Panowicz R, Miedzińska D, Palka N, et al. The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure Cratering of Cosmical Bodies View project Blast waves protective structures View project The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure, https://www.researchgate.net/publication/228895610 (2011).Confocal Microscope | What is Confocal Raman Microscopy? https://www.edinst.com/blog/what-is-confocal-raman-microscopy/ (accessed 5 December 2022).Huggett JM, Shaw HF. Field emission scanning electron microscopy — a high-resolution technique for the study of clay minerals in sediments. Clay Miner 1997; 32: 197–203.Álvarez Romero C, Doménech Carbó MT. Aplicación de la técnica de microscopia electrónica de barrido de emisión de campo con haz de iones focalizado-microanálisis de rayos x a colecciones numismáticas. Valencia, 2016.Sinha Ray S. Structure and Morphology Characterization Techniques. In: Clay-Containing Polymer Nanocomposites. Elsevier, 2013, pp. 39–66.X-ray Fluorescence – Rigaku EDXRF, https://www.rigakuedxrf.com/x-ray-fluorescence/ (accessed 5 December 2022).Thomson T. Magnetic properties of metallic thin films. In: Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties. Elsevier Ltd., 2013, pp. 454–546.Buschow KHJ;, de Boer FR. Measurement Techniques. In: Physics of Magnetism and Magnetic Materials. 2003, pp. 85–89.Yang S, Zhang Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method. J Magn Magn Mater 2013; 334: 52–58.Wang ZH, Geng DY, Zhang ZD. Room-temperature ferromagnetism and optical properties of Zn1-xMnxO nanoparticles. Solid State Commun 2009; 149: 682–684.FERNANDEZ NAVARRO JM. Nucleación y cristalización en vidrios. 1968.Blasco J. Modelización compacta de las características de conducción de dispositivos de conmutación resistiva. Universitat Autonoma de Barcelo, 2017.Sanca GA. Estudio de integración de dispositivos RS con tecnologías CMOS para aplicaciones en ambientes hostiles. Universidad Nacional de San Martín , 2020.Sawa A. Resistive switching in transition metal oxides. NUMBER 2008; 11: 28.Lee S, Lee JS, Park JB, et al. Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells. APL Mater; 2. Epub ahead of print 2 June 2014. DOI: 10.1063/1.4884215.Sharma M, Bera K, Mishra R, et al. Structural, Magnetic, and Optical Properties of Mn2+ Doping in ZnO Thin Films. Surfaces 2021, Vol 4, Pages 268-278 2021; 4: 268–278.Dietl T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. IOS Press, www.sciencemag.orgwww.sciencemag.org (2000).NanoestructurasOxidosCompuestos de CicNanostructuresZinc compoundsOxidesOxido de Zinc (ZnO)EspintrónicaManganeso (Mn)MemristorDMSInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84076/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1074417215.2023.pdf1074417215.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf3733517https://repositorio.unal.edu.co/bitstream/unal/84076/4/1074417215.2023.pdfd7e9230ef739277ec8996858fffb108fMD54unal/84076oai:repositorio.unal.edu.co:unal/840762023-06-26 16:22:49.782Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=