Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans
ilustraciones, gráficas, tablas
- Autores:
-
Sánchez Legarda, Yeison David
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81123
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales
Deep Learning
Retinal Diseases
Tomography, Optical
Aprendizaje profundo
Enfermedades de la Retina
Tomografía Óptica
Computer vision
Deep learning
Machine learning
Optical coherence tomography scans
Biomarkers segmentation
Retinal diseases classification
Aprendizaje profundo
Tomografía de coherencia óptica
Visión por computador
Aprendizaje de máquinas
Segmentación de biomarcadores
Clasificación de enfermedades retinianas
Redes neuronales generativas adversarias
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_c2b4b07afb100b41c46f76efb5cbbaa2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81123 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans |
dc.title.translated.spa.fl_str_mv |
Enfoque de aprendizaje profundo para identificar enfermedades y biomarcadores en imagenes de tomografía de coherencia óptica |
title |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans |
spellingShingle |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans 000 - Ciencias de la computación, información y obras generales Deep Learning Retinal Diseases Tomography, Optical Aprendizaje profundo Enfermedades de la Retina Tomografía Óptica Computer vision Deep learning Machine learning Optical coherence tomography scans Biomarkers segmentation Retinal diseases classification Aprendizaje profundo Tomografía de coherencia óptica Visión por computador Aprendizaje de máquinas Segmentación de biomarcadores Clasificación de enfermedades retinianas Redes neuronales generativas adversarias |
title_short |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans |
title_full |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans |
title_fullStr |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans |
title_full_unstemmed |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans |
title_sort |
Deep learning approach to identify diseases and biomarkers in optical coherence tomography scans |
dc.creator.fl_str_mv |
Sánchez Legarda, Yeison David |
dc.contributor.advisor.spa.fl_str_mv |
González Osorio, Fabio Augusto Perdomo Charry, Oscar Julian |
dc.contributor.author.spa.fl_str_mv |
Sánchez Legarda, Yeison David |
dc.contributor.researchgroup.spa.fl_str_mv |
Mindlab |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales |
topic |
000 - Ciencias de la computación, información y obras generales Deep Learning Retinal Diseases Tomography, Optical Aprendizaje profundo Enfermedades de la Retina Tomografía Óptica Computer vision Deep learning Machine learning Optical coherence tomography scans Biomarkers segmentation Retinal diseases classification Aprendizaje profundo Tomografía de coherencia óptica Visión por computador Aprendizaje de máquinas Segmentación de biomarcadores Clasificación de enfermedades retinianas Redes neuronales generativas adversarias |
dc.subject.decs.eng.fl_str_mv |
Deep Learning Retinal Diseases Tomography, Optical |
dc.subject.decs.spa.fl_str_mv |
Aprendizaje profundo Enfermedades de la Retina Tomografía Óptica |
dc.subject.proposal.eng.fl_str_mv |
Computer vision Deep learning Machine learning Optical coherence tomography scans Biomarkers segmentation Retinal diseases classification |
dc.subject.proposal.spa.fl_str_mv |
Aprendizaje profundo Tomografía de coherencia óptica Visión por computador Aprendizaje de máquinas Segmentación de biomarcadores Clasificación de enfermedades retinianas Redes neuronales generativas adversarias |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-03T16:30:51Z |
dc.date.available.none.fl_str_mv |
2022-03-03T16:30:51Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81123 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81123 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
J D Moura, J Novo, and M Ortega. Deep Feature Analysis in a Transfer Learning-based Approach for the Automatic Identification of Diabetic Macular Edema. In Proceedings of the International Joint Conference on Neural Networks, volume 2019-July, 2019 B Hassan, T Hassan, B Li, R Ahmed, and O Hassan. Deep ensemble learning based objective grading of macular edema by extracting clinically significant findings from fused retinal imaging modalities. Sensors (Switzerland), 19(13), 2019 Z Xu, W Wang, J Yang, J Zhao, D Ding, F He, D Chen, Z Yang, X Li, W Yu, and Y Chen. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks. British Journal of Ophthalmology, 105(4):561–566, 2021 M R Ibrahim, K M Fathalla, and S M Youssef. HyCAD-OCT: A hybrid computer-aided diagnosis of retinopathy by optical coherence tomography integrating machine learning and feature maps localization. Applied Sciences (Switzerland), 10(14), 2020 A Adel, M M Soliman, N E M Khalifa, and K Mostafa. Automatic Classification of Retinal Eye Diseases from Optical Coherence Tomography using Transfer Learning. In 16th International Computer Engineering Conference, ICENCO 2020, pages 37–42, 2020 Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros, and Others. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22):2402–2410, 2016 Freerk G Venhuizen, Bram van Ginneken, Bart Liefers, Freekje van Asten, Vivian Schreur, Sascha Fauser, Carel Hoyng, Thomas Theelen, and Clara I S´anchez. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomedical Optics Express, 9(4):1545–1569, 2018 Behnam Azimi, Abdolreza Rashno, and Sadegh Fadaei. Fully Convolutional Networks for Fluid Segmentation in Retina Images. In 2020 International Conference on Machine Vision and Image Processing (MVIP), pages 1–7, 2020 Xiaoming Liu, Shaocheng Wang, Ying Zhang, Dong Liu, and Wei Hu. Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning. Neurocomputing, 452:576–591, 2021 Karthik Gopinath and Jayanthi Sivaswamy. Domain knowledge assisted cyst segmentation in OCT retinal images. CoRR, abs/1612.0, 2016 Shekoufeh Gorgi Zadeh, Maximilian W M Wintergerst, Vitalis Wiens, Sarah Thiele, Frank G Holz, Robert P Finger, and Thomas Schultz. CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography BT - Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. pages 65–73, Cham, 2017. Springer International Publishing. Sha Xie, Idowu Paul Okuwobi, Mingchao Li, Yuhan Zhang, Songtao Yuan, and Qiang Chen. Fast and Automated Hyperreflective Foci Segmentation Based on Image Enhancement and Improved 3D U-Net in SD-OCT Volumes with Diabetic Retinopathy. Translational Vision Science Technology, 9(2):21, apr 2020 Thomas Schlegl, Philipp Seeb¨ock, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In International conference on information processing in medical imaging, pages 146–157. Springer, 2017 Lászlá Varga, Attila Kovács, Tamás Grósz, Géza Thury, Flóra Hadarits, Rózsa Dégi, and József Dombi. Automatic segmentation of hyperreflective foci in OCT images. Computer Methods and Programs in Biomedicine, 178:91–103, 2019. Ruwan Tennakoon, Amirali K Gostar, Reza Hoseinnezhad, and Alireza Bab-Hadiashar. Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 1436–1440, 2018 Abdolreza Rashno, Behzad Nazari, Dara D Koozekanani, Paul M Drayna, Saeed Sadri, Hossein Rabbani, and Keshab K Parhi. Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel graph cut in neutrosophic domain. PLOS ONE, 12(10):1–26, 2017 Xiaoming Liu, Dong Liu, Bo Li, and Shaocheng Wang. Deep learning based fluid segmentation in retinal optical coherence tomography images. In International Conference on Intelligent Computing, pages 337–345. Springer, 2019 Shekoufeh Gorgi Zadeh, Maximilian W M Wintergerst, and Thomas Schultz. Intelligent interaction and uncertainty visualization for efficient drusen and retinal layer segmentation in Optical Coherence Tomography. Computers Graphics, 83:51–61, 2019 Rui Zhao, Acner Camino, Jie Wang, Ahmed M Hagag, Yansha Lu, Steven T Bailey, Christina J Flaxel, Thomas S Hwang, David Huang, Dengwang Li, and Yali Jia. Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography. Biomedical Optics Express, 8(11):5049–5064, 2017 Zailiang Chen, Dabao Li, Hailan Shen, Hailan Mo, Ziyang Zeng, and Hao Wei. Automated segmentation of fluid regions in optical coherence tomography B-scan images of age-related macular degeneration. Optics Laser Technology, 122:105830, 2020 Philipp Seeböck, David Romo-Bucheli, Sebastian Waldstein, Hrvoje Bogunovic, Jos´e Ignacio Orlando, Bianca S Gerendas, Georg Langs, and Ursula Schmidt-Erfurth. Using Cyclegans for Effectively Reducing Image Variability Across OCT Devices and Improving Retinal Fluid Segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pages 605–609, 2019. Timothy R Fricke, Nina Tahhan, Serge Resnikoff, Eric Papas, Anthea Burnett, Suit May Ho, Thomas Naduvilath, and Kovin S Naidoo. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling. Ophthalmology, 125(10):1492–1499, 2018 Wen Liu, Yankui Sun, and Qingge Ji. MDAN-UNet: Multi-Scale and Dual Attention Enhanced Nested U-Net Architecture for Segmentation of Optical Coherence Tomography Images, 2020 N Motozawa, G An, S Takagi, S Kitahata, M Mandai, Y Hirami, H Yokota, M Akiba, A Tsujikawa, M Takahashi, and Y Kurimoto. Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes. Ophthalmology and Therapy, 8(4):527–539, 2019 Who. Vision impairment and blindness, 2021 Soichiro Kuwayama, Yuji Ayatsuka, Daisuke Yanagisono, Takaki Uta, Hideaki Usui, Aki Kato, Noriaki Takase, Yuichiro Ogura, and Tsutomu Yasukawa. Automated detection of macular diseases by optical coherence tomography and artificial intelligence machine learning of optical coherence tomography images. Journal of ophthalmology, 2019 I Oguz, L Zhang, M D Abr`amoff, and M Sonka. Optimal retinal cyst segmentation from OCT images. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 9784, 2016 Zubin Mishra, Anushika Ganegoda, Jane Selicha, Ziyuan Wang, SriniVas R Sadda, and Zhihong Hu. Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived Information. Scientific Reports, 10(1):9541, 2020 V Rajinikanth, R Sivakumar, D J Hemanth, S Kadry, J R Mohanty, S Arunmozhi, N S M Raja, and N G Nhu. Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images. Evolutionary Intelligence, 2021 Samina Khalid, M Usman Akram, Taimur Hassan, Amina Jameel, and Tehmina Khalil. Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. Journal of Digital Imaging, 31(4):464–476, 2018 M Treder, J L Lauermann, and N Eter. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256(2):259–265, 2018 A Serener and S Serte. Dry and wet age-related macular degeneration classification using OCT images and deep learning. In 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019 Ali Mohammad Alqudah. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical Biological Engineering Computing, 58(1):41–53, 2020 Daisuke Nagasato, Hitoshi Tabuchi, Hiroki Masumoto, Hiroki Enno, Naofumi Ishitobi, Masahiro Kameoka, Masanori Niki, and Yoshinori Mitamura. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning. PLOS ONE, 14(11):e0223965, nov 2019. Thomas Schlegl, Sebastian M Waldstein, Hrvoje Bogunovic, Franz Endstraßer, Amir Sadeghipour, Ana-Maria Philip, Dominika Podkowinski, Bianca S Gerendas, Georg Langs, and Ursula Schmidt-Erfurth. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 125(4):549–558, 2018. Melinda Katona, Attila Kovács, Lászl´o Varga, Tamás Grósz, József Dombi, Rózsa Dégi, and László G Nyúl. Automatic detection and characterization of biomarkers in OCT images. In International Conference Image Analysis and Recognition, pages 706–714. Springer, 2018 Chenchen Yu, Sha Xie, Sijie Niu, Zexuan Ji, Wen Fan, Songtao Yuan, Qinghuai Liu, and Qiang Chen. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Medical Physics, 46(10):4502–4519, oct 2019 Gabriella Moraes, Dun Jack Fu, Marc Wilson, Hagar Khalid, Siegfried K Wagner, Edward Korot, Daniel Ferraz, Livia Faes, Christopher J Kelly, Terry Spitz, Praveen J Patel, Konstantinos Balaskas, Tiarnan D L Keenan, Pearse A Keane, and Reena Chopra. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology, 128(5):693–705, 2021. Xiayu Xu, Kyungmoo Lee, Li Zhang, Milan Sonka, and Michael D Abrámoff. Stratified Sampling Voxel Classification for Segmentation of Intraretinal and Subretinal Fluid in Longitudinal Clinical OCT Data. IEEE Transactions on Medical Imaging, 34(7):1616–1623, 2015 Abhijit Guha Roy, Sailesh Conjeti, Sri Phani Krishna Karri, Debdoot Sheet, Amin Katouzian, Christian Wachinger, and Nassir Navab. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomedical Optics Express, 8(8):3627–3642, 2017 G N Girish, B Thakur, S R Chowdhury, A R Kothari, and J Rajan. Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model. IEEE Journal of Biomedical and Health Informatics, 23(1):296–304, 2019 K Gopinath and J Sivaswamy. Segmentation of Retinal Cysts From Optical Coherence Tomography Volumes Via Selective Enhancement. IEEE Journal of Biomedical and Health Informatics, 23(1):273–282, 2019 G N Girish, Abhishek R. Kothari, and Jeny Rajan. Marker controlled watershed transform for intra-retinal cysts segmentation from optical coherence tomography B-scans. Pattern Recognition Letters, 139:86–94, 2020 Rhona Asgari, Jos´e Ignacio Orlando, Sebastian Waldstein, Ferdinand Schlanitz, Magdalena Baratsits, Ursula Schmidt-Erfurth, and Hrvoje Bogunovi´c. Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. pages 192–200, Cham, 2019. Springer International Publishing U Schmidt-Erfurth, S M Waldstein, S Klimscha, A Sadeghipour, X Hu, B S Gerendas, A Osborne, and H Bogunovi´c. Prediction of individual disease conversion in early AMD using artificial intelligence. Investigative Ophthalmology and Visual Science, 59(8):3199–3208, 2018 Sina Farsiu, Stephanie J Chiu, Rachelle V O’Connell, Francisco A Folgar, Eric Yuan, Joseph A Izatt, Cynthia A Toth, Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, and Others. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1):162–172, 2014 Christian Simader, Jing Wu, Ana-Maria Glodan, Sebastian M Waldstein, Bianca S Gerendas, Georg Langs, Ursula Schmidt-Erfurth, and OPTIMA Segmentation Challenge. A Multi-vendor Dataset and Standardized Evaluation Framework for Retinal Cyst Segmentation. Investigative Ophthalmology & Visual Science, 56(7):5279, 2015 H Bogunovi´c, F Venhuizen, S Klimscha, S Apostolopoulos, A Bab-Hadiashar, U Bagci, M F Beg, L Bekalo, Q Chen, C Ciller, K Gopinath, A K Gostar, K Jeon, Z Ji, S H Kang, D D Koozekanani, D Lu, D Morley, K K Parhi, H S Park, A Rashno, M Sarunic, S Shaikh, J Sivaswamy, R Tennakoon, S Yadav, S De Zanet, S M Waldstein, B S Gerendas, C Klaver, C I S´anchez, and U Schmidt-Erfurth. RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Transactions on Medical Imaging, 38(8):1858–1874, 2019 Xiaoming Liu, Tianyu Fu, Zhifang Pan, Dong Liu, Wei Hu, and Bo Li. Semi-Supervised Automatic Layer and Fluid Region Segmentation of Retinal Optical Coherence Tomography Images Using Adversarial Learning. In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 2780–2784, 2018 Donghuan Lu, Morgan Heisler, Sieun Lee, Gavin Weiguang Ding, Eduardo Navajas, Marinko V Sarunic, and Mirza Faisal Beg. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical Image Analysis, 54:100–110, 2019 Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina C S Valentim, Huiying Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, and Others. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018 ] Meng-Xiao Li, Su-Qin Yu, Wei Zhang, Hao Zhou, Xun Xu, Tian-Wei Qian, and YongJing Wan. Segmentation of retinal fluid based on deep learning: application of threedimensional fully convolutional neural networks in optical coherence tomography images. International journal of ophthalmology, 12(6):1012, 2019 Hao Wei and Peng Peng. The Segmentation of Retinal Layer and Fluid in SD-OCT Images Using Mutex Dice Loss Based Fully Convolutional Networks. IEEE Access,8:60929–60939, 2020 Nihaal Mehta, Cecilia S Lee, Lu´ısa S M Mendon¸ca, Khadija Raza, Phillip X Braun, Jay S Duker, Nadia K Waheed, and Aaron Y Lee. Model-to-Data Approach for Deep Learning in Optical Coherence Tomography Intraretinal Fluid Segmentation. JAMA Ophthalmology, 138(10):1017–1024, oct 2020 Khaled Alsaih, Mohd Zuki Yusoff, Tong Boon Tang, Ibrahima Faye, and Fabrice Mériaudeau. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans. Computer methods and programs in biomedicine, 195:105566, 2020 K Alsaih, M Z Yusoff, T B Tang, I Faye, and F M´eriaudeau. Retinal Fluids Segmentation Using Volumetric Deep Neural Networks on Optical Coherence Tomography Scans. In 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pages 68–72, 2020 Sung Ho Kang, Hyoung Suk Park, Jaeseong Jang, and Kiwan Jeon. Deep neural networks for the detection and segmentation of the retinal fluid in OCT images. 2018. Kun Gao, Sijie Niu, Zexuan Ji, Menglin Wu, Qiang Chen, Rongbin Xu, Songtao Yuan, Wen Fan, Yuehui Chen, and Jiwen Dong. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SDOCT images. Computer Methods and Programs in Biomedicine, 176:69–80, 2019. Liling Guan, Kai Yu, and Xinjian Chen. Fully automated detection and quantification of multiple retinal lesions in OCT volumes based on deep learning and improved DRLSE. In Proc.SPIE, volume 10949, mar 2019 Retinal Diseases and VISION 2020. Community eye health, 16(46):19–20, 2003 Oscar Julian Perdomo Charry and Fabio Augusto González Osorio. Una revisión sistemática de métodos de aprendizaje profundo aplicados a im´agenes oculares. Ciencia e Ingeniería Neogranadina, 30(1 SE - Art´ıculos):9–26, nov 2019. M Pekala, N Joshi, T Y Alvin Liu, N M Bressler, D Cabrera DeBuc, and P Burlina. Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114:103445, 2019 Giacomo Panozzo and Andrea Mercanti. Optical Coherence Tomography Findings in Myopic Traction Maculopathy. Archives of Ophthalmology, 122(10):1455–1460, oct 2004. Oscar Perdomo, Hernán Rios, Francisco J Rodr, Sebastián Otálora, Fabrice Meriaudeau, Henning Müller, and Fabio A González. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Computer methods and programs in biomedicine, 178:181–189, 2019 Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbel´aez, and Luc Van Gool. Deep Retinal Image Understanding. arXiv, sep 2016 Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. arXiv, apr 2018 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-Image Translation with Conditional Adversarial Networks, 2016 Stephanie J Chiu, Michael J Allingham, Priyatham S Mettu, Scott W Cousins, Joseph AIzatt, and Sina Farsiu. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomedical optics express, 6(4):1172–1194,mar 2015 Daniel Shu Wei Ting, Louis R Pasquale, Lily Peng, John Peter Campbell, Aaron Y Lee, Rajiv Raman, Gavin Siew Wei Tan, Leopold Schmetterer, Pearse A Keane, and Tien Yin Wong. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2):167–175, 2019. Alejandra Daruich, Alexandre Matet, Alexandre Moulin, Laura Kowalczuk, Michaël Nicolas, Alexandre Sellam, Pierre-Raphaël Rothschild, Samy Omri, Emmanuelle Gélizé, Laurent Jonet, Kimberley Delaunay, Yvonne De Kozak, Marianne Berdugo, Min Zhao, Patricia Crisanti, and Francine Behar-Cohen. Mechanisms of macular edema: Beyond the surface. Progress in Retinal and Eye Research, 63:20–68, 2018 Undurti N Das. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Archives of medical science : AMS, 12(5):1142–1157, oct 2016 Mark W Johnson. Etiology and Treatment of Macular Edema. American Journal of Ophthalmology, 147(1):11–21.e1, 2009 Neelakshi Bhagat, Ruben A Grigorian, Arthur Tutela, and Marco A Zarbin. Diabetic Macular Edema: Pathogenesis and Treatment. Survey of Ophthalmology, 54(1):1–32, 2009 Matthias Bolz, Katharina Kriechbaum, Christian Simader, Gabor Deak, Jan Lammer, Clara Treu, Christoph Scholda, Christian Prünte, and Ursula Schmidt-Erfurth. In Vivo Retinal Morphology after Grid Laser Treatment in Diabetic Macular Edema. Ophthalmology, 117(3):538–544, 2010 Maurizio Battaglia Parodi and Francesco Bandello. Branch retinal vein occlusion: classification and treatment. Ophthalmologica, 223(5):298–305, 2009. Marion Funk, Katharina Kriechbaum, Franz Prager, Thomas Benesch, Michael Georgopoulos, Gerhard J Zlabinger, and Ursula Schmidt-Erfurth. Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. Investigative Ophthalmology Visual Science, 50(3):1025–1032, mar 2009 Paris G Tranos, Sanjeewa S Wickremasinghe, Nikos T Stangos, Fotis Topouzis, Ioannis Tsinopoulos, and Carlos E Pavesio. Macular edema. Survey of Ophthalmology, 49(5):470–490, 2004 Marion R Munk, Stefan Sacu, Wolfgang Huf, Florian Sulzbacher, Tamara J Mitterm¨uller, Katharina Eibenberger, Sandra Rezar, Matthias Bolz, Christopher G Kiss, Christian Simader, and Others. Differential diagnosis of macular edema of different pathophysiologic origins by spectral domain optical coherence tomography. Retina, 34(11):2218–2232, 2014 Robert T Atkinson Jr, Arthur J and Colburn, Wayne A and DeGruttola, Victor G and DeMets, David L and Downing, Gregory J and Hoth, Daniel F and Oates, John A and Peck, Carl C and Schooley. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology Therapeutics, 69(3):89–95, mar 2001 Robert M Califf. Biomarker definitions and their applications. Experimental Biology and Medicine, 243(3):213–221, 2018 Tso-Ting Lai, Yi-Ting Hsieh, Chung-May Yang, Tzyy-Chang Ho, and Chang-Hao Yang. Biomarkers of optical coherence tomography in evaluating the treatment outcomes of neovascular age-related macular degeneration: a real-world study. Scientific Reports, 9(1):529, 2019 Changyow C Kwan and Amani A Fawzi. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Current Diabetes Reports, 19(10):95, 2019 Hyungwoo Lee, Hyoik Jang, Youn A Choi, Hyung Chan Kim, and Hyewon Chung. Association Between Soluble CD14 in the Aqueous Humor and Hyperreflective Foci on Optical Coherence Tomography in Patients With Diabetic Macular Edema. Investigative Ophthalmology Visual Science, 59(2):715–721, feb 2018 Glenn Yiu, R Joel Welch, Yinwen Wang, Zhe Wang, Pin-Wen Wang, and Zdenka Haskova. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology Retina, 4(1):67–76, 2020 D Jha, P H Smedsrud, M A Riegler, D Johansen, T D Lange, P Halvorsen, and H D. Johansen. ResUNet++: An Advanced Architecture for Medical Image Segmentation. In 2019 IEEE International Symposium on Multimedia (ISM), pages 225–230, 2019 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xii, 56 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81123/1/1104704188.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81123/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81123/3/1104704188.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
6864d8c419de22945b88345ef37a59b0 8153f7789df02f0a4c9e079953658ab2 5315a673cf8832b80518a8b4484099b0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089593569411072 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto0e9d70b5c1d7448338ca4467ccb27e59Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94Sánchez Legarda, Yeison David4b2487ffd7d0b98eed416dc02b2c2975600Mindlab2022-03-03T16:30:51Z2022-03-03T16:30:51Z2021https://repositorio.unal.edu.co/handle/unal/81123Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasThe most common causes of blindness around the world are retinal diseases, to identify them and not allow to lead to loss of vision for a person an early diagnosis is necessary, nowadays the use of OCT scans to perform this diagnostic has increased due to the capacity to show in detail biomarkers as fluids, drusen, cyst and hyperreflective foci. However the OCT scans analysis is not easy and time consuming even for experts ophthalmologist and in combination with the overload work overload in the healthcare system makes even more difficult to diagnose and follow-up the retinal disease, at this point comes in to help deep learning allowing the automated detection of diseases and biomarkers, With the thesis work “Deep Learning Approach to Identify Diseases and Biomarkers in Optical Coherence Tomography Scans," a method was proposed to OCT scans segmentation to obtain biomarkers which can help the ophthalmologist to check response to treatment or identify a retinal disease, furthermore a deep learning method for check which disease is present in a scan was implemented.Las causas más comunes de ceguera en todo el mundo son las enfermedades de la retina, para identificarlas y no permitir que lleven a la pérdida de la visión de una persona es necesario un diagnóstico temprano, hoy en día el uso de las imágenes OCT para realizar este diagnóstico se ha incrementado debido a la capacidad de mostrar en detalle biomarcadores como fluidos, drusas, quistes y focos hiperreflectivos, sin embargo el análisis de las imágenes OCT no es fácil y consume mucho tiempo incluso para los oftalmólogos expertos lo que combinado con la sobrecarga de trabajo en el sistema de salud hace aún más difícil el diagnóstico y seguimiento de las enfermedades retinales, Con el trabajo de tesis "Deep Learning Approach to Identify Diseases and Biomarkers in Optical Coherence Tomography Scans", se propone un método para la segmentación de imágenes OCT con el fin de obtener biomarcadores que puedan ayudar al oftalmólogo a comprobar la respuesta al tratamiento o identificar una enfermedad de la retina, además se implementó un método de aprendizaje profundo para comprobar qué enfermedad está presente en una imagen. (Texto tomado de la fuente).MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónDeep learningComputer visionMachine learningxii, 56 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generalesDeep LearningRetinal DiseasesTomography, OpticalAprendizaje profundoEnfermedades de la RetinaTomografía ÓpticaComputer visionDeep learningMachine learningOptical coherence tomography scansBiomarkers segmentationRetinal diseases classificationAprendizaje profundoTomografía de coherencia ópticaVisión por computadorAprendizaje de máquinasSegmentación de biomarcadoresClasificación de enfermedades retinianasRedes neuronales generativas adversariasDeep learning approach to identify diseases and biomarkers in optical coherence tomography scansEnfoque de aprendizaje profundo para identificar enfermedades y biomarcadores en imagenes de tomografía de coherencia ópticaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ D Moura, J Novo, and M Ortega. Deep Feature Analysis in a Transfer Learning-based Approach for the Automatic Identification of Diabetic Macular Edema. In Proceedings of the International Joint Conference on Neural Networks, volume 2019-July, 2019B Hassan, T Hassan, B Li, R Ahmed, and O Hassan. Deep ensemble learning based objective grading of macular edema by extracting clinically significant findings from fused retinal imaging modalities. Sensors (Switzerland), 19(13), 2019Z Xu, W Wang, J Yang, J Zhao, D Ding, F He, D Chen, Z Yang, X Li, W Yu, and Y Chen. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks. British Journal of Ophthalmology, 105(4):561–566, 2021M R Ibrahim, K M Fathalla, and S M Youssef. HyCAD-OCT: A hybrid computer-aided diagnosis of retinopathy by optical coherence tomography integrating machine learning and feature maps localization. Applied Sciences (Switzerland), 10(14), 2020A Adel, M M Soliman, N E M Khalifa, and K Mostafa. Automatic Classification of Retinal Eye Diseases from Optical Coherence Tomography using Transfer Learning. In 16th International Computer Engineering Conference, ICENCO 2020, pages 37–42, 2020Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros, and Others. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22):2402–2410, 2016Freerk G Venhuizen, Bram van Ginneken, Bart Liefers, Freekje van Asten, Vivian Schreur, Sascha Fauser, Carel Hoyng, Thomas Theelen, and Clara I S´anchez. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomedical Optics Express, 9(4):1545–1569, 2018Behnam Azimi, Abdolreza Rashno, and Sadegh Fadaei. Fully Convolutional Networks for Fluid Segmentation in Retina Images. In 2020 International Conference on Machine Vision and Image Processing (MVIP), pages 1–7, 2020Xiaoming Liu, Shaocheng Wang, Ying Zhang, Dong Liu, and Wei Hu. Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning. Neurocomputing, 452:576–591, 2021Karthik Gopinath and Jayanthi Sivaswamy. Domain knowledge assisted cyst segmentation in OCT retinal images. CoRR, abs/1612.0, 2016Shekoufeh Gorgi Zadeh, Maximilian W M Wintergerst, Vitalis Wiens, Sarah Thiele, Frank G Holz, Robert P Finger, and Thomas Schultz. CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography BT - Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. pages 65–73, Cham, 2017. Springer International Publishing.Sha Xie, Idowu Paul Okuwobi, Mingchao Li, Yuhan Zhang, Songtao Yuan, and Qiang Chen. Fast and Automated Hyperreflective Foci Segmentation Based on Image Enhancement and Improved 3D U-Net in SD-OCT Volumes with Diabetic Retinopathy. Translational Vision Science Technology, 9(2):21, apr 2020Thomas Schlegl, Philipp Seeb¨ock, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In International conference on information processing in medical imaging, pages 146–157. Springer, 2017Lászlá Varga, Attila Kovács, Tamás Grósz, Géza Thury, Flóra Hadarits, Rózsa Dégi, and József Dombi. Automatic segmentation of hyperreflective foci in OCT images. Computer Methods and Programs in Biomedicine, 178:91–103, 2019.Ruwan Tennakoon, Amirali K Gostar, Reza Hoseinnezhad, and Alireza Bab-Hadiashar. Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 1436–1440, 2018Abdolreza Rashno, Behzad Nazari, Dara D Koozekanani, Paul M Drayna, Saeed Sadri, Hossein Rabbani, and Keshab K Parhi. Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel graph cut in neutrosophic domain. PLOS ONE, 12(10):1–26, 2017Xiaoming Liu, Dong Liu, Bo Li, and Shaocheng Wang. Deep learning based fluid segmentation in retinal optical coherence tomography images. In International Conference on Intelligent Computing, pages 337–345. Springer, 2019Shekoufeh Gorgi Zadeh, Maximilian W M Wintergerst, and Thomas Schultz. Intelligent interaction and uncertainty visualization for efficient drusen and retinal layer segmentation in Optical Coherence Tomography. Computers Graphics, 83:51–61, 2019Rui Zhao, Acner Camino, Jie Wang, Ahmed M Hagag, Yansha Lu, Steven T Bailey, Christina J Flaxel, Thomas S Hwang, David Huang, Dengwang Li, and Yali Jia. Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography. Biomedical Optics Express, 8(11):5049–5064, 2017Zailiang Chen, Dabao Li, Hailan Shen, Hailan Mo, Ziyang Zeng, and Hao Wei. Automated segmentation of fluid regions in optical coherence tomography B-scan images of age-related macular degeneration. Optics Laser Technology, 122:105830, 2020Philipp Seeböck, David Romo-Bucheli, Sebastian Waldstein, Hrvoje Bogunovic, Jos´e Ignacio Orlando, Bianca S Gerendas, Georg Langs, and Ursula Schmidt-Erfurth. Using Cyclegans for Effectively Reducing Image Variability Across OCT Devices and Improving Retinal Fluid Segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pages 605–609, 2019.Timothy R Fricke, Nina Tahhan, Serge Resnikoff, Eric Papas, Anthea Burnett, Suit May Ho, Thomas Naduvilath, and Kovin S Naidoo. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling. Ophthalmology, 125(10):1492–1499, 2018Wen Liu, Yankui Sun, and Qingge Ji. MDAN-UNet: Multi-Scale and Dual Attention Enhanced Nested U-Net Architecture for Segmentation of Optical Coherence Tomography Images, 2020N Motozawa, G An, S Takagi, S Kitahata, M Mandai, Y Hirami, H Yokota, M Akiba, A Tsujikawa, M Takahashi, and Y Kurimoto. Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes. Ophthalmology and Therapy, 8(4):527–539, 2019Who. Vision impairment and blindness, 2021Soichiro Kuwayama, Yuji Ayatsuka, Daisuke Yanagisono, Takaki Uta, Hideaki Usui, Aki Kato, Noriaki Takase, Yuichiro Ogura, and Tsutomu Yasukawa. Automated detection of macular diseases by optical coherence tomography and artificial intelligence machine learning of optical coherence tomography images. Journal of ophthalmology, 2019I Oguz, L Zhang, M D Abr`amoff, and M Sonka. Optimal retinal cyst segmentation from OCT images. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 9784, 2016Zubin Mishra, Anushika Ganegoda, Jane Selicha, Ziyuan Wang, SriniVas R Sadda, and Zhihong Hu. Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived Information. Scientific Reports, 10(1):9541, 2020V Rajinikanth, R Sivakumar, D J Hemanth, S Kadry, J R Mohanty, S Arunmozhi, N S M Raja, and N G Nhu. Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images. Evolutionary Intelligence, 2021Samina Khalid, M Usman Akram, Taimur Hassan, Amina Jameel, and Tehmina Khalil. Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. Journal of Digital Imaging, 31(4):464–476, 2018M Treder, J L Lauermann, and N Eter. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256(2):259–265, 2018A Serener and S Serte. Dry and wet age-related macular degeneration classification using OCT images and deep learning. In 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019Ali Mohammad Alqudah. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical Biological Engineering Computing, 58(1):41–53, 2020Daisuke Nagasato, Hitoshi Tabuchi, Hiroki Masumoto, Hiroki Enno, Naofumi Ishitobi, Masahiro Kameoka, Masanori Niki, and Yoshinori Mitamura. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning. PLOS ONE, 14(11):e0223965, nov 2019.Thomas Schlegl, Sebastian M Waldstein, Hrvoje Bogunovic, Franz Endstraßer, Amir Sadeghipour, Ana-Maria Philip, Dominika Podkowinski, Bianca S Gerendas, Georg Langs, and Ursula Schmidt-Erfurth. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 125(4):549–558, 2018.Melinda Katona, Attila Kovács, Lászl´o Varga, Tamás Grósz, József Dombi, Rózsa Dégi, and László G Nyúl. Automatic detection and characterization of biomarkers in OCT images. In International Conference Image Analysis and Recognition, pages 706–714. Springer, 2018Chenchen Yu, Sha Xie, Sijie Niu, Zexuan Ji, Wen Fan, Songtao Yuan, Qinghuai Liu, and Qiang Chen. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Medical Physics, 46(10):4502–4519, oct 2019Gabriella Moraes, Dun Jack Fu, Marc Wilson, Hagar Khalid, Siegfried K Wagner, Edward Korot, Daniel Ferraz, Livia Faes, Christopher J Kelly, Terry Spitz, Praveen J Patel, Konstantinos Balaskas, Tiarnan D L Keenan, Pearse A Keane, and Reena Chopra. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology, 128(5):693–705, 2021.Xiayu Xu, Kyungmoo Lee, Li Zhang, Milan Sonka, and Michael D Abrámoff. Stratified Sampling Voxel Classification for Segmentation of Intraretinal and Subretinal Fluid in Longitudinal Clinical OCT Data. IEEE Transactions on Medical Imaging, 34(7):1616–1623, 2015Abhijit Guha Roy, Sailesh Conjeti, Sri Phani Krishna Karri, Debdoot Sheet, Amin Katouzian, Christian Wachinger, and Nassir Navab. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomedical Optics Express, 8(8):3627–3642, 2017G N Girish, B Thakur, S R Chowdhury, A R Kothari, and J Rajan. Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model. IEEE Journal of Biomedical and Health Informatics, 23(1):296–304, 2019K Gopinath and J Sivaswamy. Segmentation of Retinal Cysts From Optical Coherence Tomography Volumes Via Selective Enhancement. IEEE Journal of Biomedical and Health Informatics, 23(1):273–282, 2019G N Girish, Abhishek R. Kothari, and Jeny Rajan. Marker controlled watershed transform for intra-retinal cysts segmentation from optical coherence tomography B-scans. Pattern Recognition Letters, 139:86–94, 2020Rhona Asgari, Jos´e Ignacio Orlando, Sebastian Waldstein, Ferdinand Schlanitz, Magdalena Baratsits, Ursula Schmidt-Erfurth, and Hrvoje Bogunovi´c. Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. pages 192–200, Cham, 2019. Springer International PublishingU Schmidt-Erfurth, S M Waldstein, S Klimscha, A Sadeghipour, X Hu, B S Gerendas, A Osborne, and H Bogunovi´c. Prediction of individual disease conversion in early AMD using artificial intelligence. Investigative Ophthalmology and Visual Science, 59(8):3199–3208, 2018Sina Farsiu, Stephanie J Chiu, Rachelle V O’Connell, Francisco A Folgar, Eric Yuan, Joseph A Izatt, Cynthia A Toth, Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, and Others. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1):162–172, 2014Christian Simader, Jing Wu, Ana-Maria Glodan, Sebastian M Waldstein, Bianca S Gerendas, Georg Langs, Ursula Schmidt-Erfurth, and OPTIMA Segmentation Challenge. A Multi-vendor Dataset and Standardized Evaluation Framework for Retinal Cyst Segmentation. Investigative Ophthalmology & Visual Science, 56(7):5279, 2015H Bogunovi´c, F Venhuizen, S Klimscha, S Apostolopoulos, A Bab-Hadiashar, U Bagci, M F Beg, L Bekalo, Q Chen, C Ciller, K Gopinath, A K Gostar, K Jeon, Z Ji, S H Kang, D D Koozekanani, D Lu, D Morley, K K Parhi, H S Park, A Rashno, M Sarunic, S Shaikh, J Sivaswamy, R Tennakoon, S Yadav, S De Zanet, S M Waldstein, B S Gerendas, C Klaver, C I S´anchez, and U Schmidt-Erfurth. RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Transactions on Medical Imaging, 38(8):1858–1874, 2019Xiaoming Liu, Tianyu Fu, Zhifang Pan, Dong Liu, Wei Hu, and Bo Li. Semi-Supervised Automatic Layer and Fluid Region Segmentation of Retinal Optical Coherence Tomography Images Using Adversarial Learning. In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 2780–2784, 2018Donghuan Lu, Morgan Heisler, Sieun Lee, Gavin Weiguang Ding, Eduardo Navajas, Marinko V Sarunic, and Mirza Faisal Beg. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical Image Analysis, 54:100–110, 2019Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina C S Valentim, Huiying Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, and Others. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018] Meng-Xiao Li, Su-Qin Yu, Wei Zhang, Hao Zhou, Xun Xu, Tian-Wei Qian, and YongJing Wan. Segmentation of retinal fluid based on deep learning: application of threedimensional fully convolutional neural networks in optical coherence tomography images. International journal of ophthalmology, 12(6):1012, 2019Hao Wei and Peng Peng. The Segmentation of Retinal Layer and Fluid in SD-OCT Images Using Mutex Dice Loss Based Fully Convolutional Networks. IEEE Access,8:60929–60939, 2020Nihaal Mehta, Cecilia S Lee, Lu´ısa S M Mendon¸ca, Khadija Raza, Phillip X Braun, Jay S Duker, Nadia K Waheed, and Aaron Y Lee. Model-to-Data Approach for Deep Learning in Optical Coherence Tomography Intraretinal Fluid Segmentation. JAMA Ophthalmology, 138(10):1017–1024, oct 2020Khaled Alsaih, Mohd Zuki Yusoff, Tong Boon Tang, Ibrahima Faye, and Fabrice Mériaudeau. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans. Computer methods and programs in biomedicine, 195:105566, 2020K Alsaih, M Z Yusoff, T B Tang, I Faye, and F M´eriaudeau. Retinal Fluids Segmentation Using Volumetric Deep Neural Networks on Optical Coherence Tomography Scans. In 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pages 68–72, 2020Sung Ho Kang, Hyoung Suk Park, Jaeseong Jang, and Kiwan Jeon. Deep neural networks for the detection and segmentation of the retinal fluid in OCT images. 2018.Kun Gao, Sijie Niu, Zexuan Ji, Menglin Wu, Qiang Chen, Rongbin Xu, Songtao Yuan, Wen Fan, Yuehui Chen, and Jiwen Dong. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SDOCT images. Computer Methods and Programs in Biomedicine, 176:69–80, 2019.Liling Guan, Kai Yu, and Xinjian Chen. Fully automated detection and quantification of multiple retinal lesions in OCT volumes based on deep learning and improved DRLSE. In Proc.SPIE, volume 10949, mar 2019Retinal Diseases and VISION 2020. Community eye health, 16(46):19–20, 2003Oscar Julian Perdomo Charry and Fabio Augusto González Osorio. Una revisión sistemática de métodos de aprendizaje profundo aplicados a im´agenes oculares. Ciencia e Ingeniería Neogranadina, 30(1 SE - Art´ıculos):9–26, nov 2019.M Pekala, N Joshi, T Y Alvin Liu, N M Bressler, D Cabrera DeBuc, and P Burlina. Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114:103445, 2019Giacomo Panozzo and Andrea Mercanti. Optical Coherence Tomography Findings in Myopic Traction Maculopathy. Archives of Ophthalmology, 122(10):1455–1460, oct 2004.Oscar Perdomo, Hernán Rios, Francisco J Rodr, Sebastián Otálora, Fabrice Meriaudeau, Henning Müller, and Fabio A González. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Computer methods and programs in biomedicine, 178:181–189, 2019Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbel´aez, and Luc Van Gool. Deep Retinal Image Understanding. arXiv, sep 2016Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. arXiv, apr 2018Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-Image Translation with Conditional Adversarial Networks, 2016Stephanie J Chiu, Michael J Allingham, Priyatham S Mettu, Scott W Cousins, Joseph AIzatt, and Sina Farsiu. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomedical optics express, 6(4):1172–1194,mar 2015Daniel Shu Wei Ting, Louis R Pasquale, Lily Peng, John Peter Campbell, Aaron Y Lee, Rajiv Raman, Gavin Siew Wei Tan, Leopold Schmetterer, Pearse A Keane, and Tien Yin Wong. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2):167–175, 2019.Alejandra Daruich, Alexandre Matet, Alexandre Moulin, Laura Kowalczuk, Michaël Nicolas, Alexandre Sellam, Pierre-Raphaël Rothschild, Samy Omri, Emmanuelle Gélizé, Laurent Jonet, Kimberley Delaunay, Yvonne De Kozak, Marianne Berdugo, Min Zhao, Patricia Crisanti, and Francine Behar-Cohen. Mechanisms of macular edema: Beyond the surface. Progress in Retinal and Eye Research, 63:20–68, 2018Undurti N Das. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Archives of medical science : AMS, 12(5):1142–1157, oct 2016Mark W Johnson. Etiology and Treatment of Macular Edema. American Journal of Ophthalmology, 147(1):11–21.e1, 2009Neelakshi Bhagat, Ruben A Grigorian, Arthur Tutela, and Marco A Zarbin. Diabetic Macular Edema: Pathogenesis and Treatment. Survey of Ophthalmology, 54(1):1–32, 2009Matthias Bolz, Katharina Kriechbaum, Christian Simader, Gabor Deak, Jan Lammer, Clara Treu, Christoph Scholda, Christian Prünte, and Ursula Schmidt-Erfurth. In Vivo Retinal Morphology after Grid Laser Treatment in Diabetic Macular Edema. Ophthalmology, 117(3):538–544, 2010Maurizio Battaglia Parodi and Francesco Bandello. Branch retinal vein occlusion: classification and treatment. Ophthalmologica, 223(5):298–305, 2009.Marion Funk, Katharina Kriechbaum, Franz Prager, Thomas Benesch, Michael Georgopoulos, Gerhard J Zlabinger, and Ursula Schmidt-Erfurth. Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. Investigative Ophthalmology Visual Science, 50(3):1025–1032, mar 2009Paris G Tranos, Sanjeewa S Wickremasinghe, Nikos T Stangos, Fotis Topouzis, Ioannis Tsinopoulos, and Carlos E Pavesio. Macular edema. Survey of Ophthalmology, 49(5):470–490, 2004Marion R Munk, Stefan Sacu, Wolfgang Huf, Florian Sulzbacher, Tamara J Mitterm¨uller, Katharina Eibenberger, Sandra Rezar, Matthias Bolz, Christopher G Kiss, Christian Simader, and Others. Differential diagnosis of macular edema of different pathophysiologic origins by spectral domain optical coherence tomography. Retina, 34(11):2218–2232, 2014Robert T Atkinson Jr, Arthur J and Colburn, Wayne A and DeGruttola, Victor G and DeMets, David L and Downing, Gregory J and Hoth, Daniel F and Oates, John A and Peck, Carl C and Schooley. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology Therapeutics, 69(3):89–95, mar 2001Robert M Califf. Biomarker definitions and their applications. Experimental Biology and Medicine, 243(3):213–221, 2018Tso-Ting Lai, Yi-Ting Hsieh, Chung-May Yang, Tzyy-Chang Ho, and Chang-Hao Yang. Biomarkers of optical coherence tomography in evaluating the treatment outcomes of neovascular age-related macular degeneration: a real-world study. Scientific Reports, 9(1):529, 2019Changyow C Kwan and Amani A Fawzi. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Current Diabetes Reports, 19(10):95, 2019Hyungwoo Lee, Hyoik Jang, Youn A Choi, Hyung Chan Kim, and Hyewon Chung. Association Between Soluble CD14 in the Aqueous Humor and Hyperreflective Foci on Optical Coherence Tomography in Patients With Diabetic Macular Edema. Investigative Ophthalmology Visual Science, 59(2):715–721, feb 2018Glenn Yiu, R Joel Welch, Yinwen Wang, Zhe Wang, Pin-Wen Wang, and Zdenka Haskova. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology Retina, 4(1):67–76, 2020D Jha, P H Smedsrud, M A Riegler, D Johansen, T D Lange, P Halvorsen, and H D. Johansen. ResUNet++: An Advanced Architecture for Medical Image Segmentation. In 2019 IEEE International Symposium on Multimedia (ISM), pages 225–230, 2019Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018EstudiantesInvestigadoresMaestrosORIGINAL1104704188.2021.pdf1104704188.2021.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf3175576https://repositorio.unal.edu.co/bitstream/unal/81123/1/1104704188.2021.pdf6864d8c419de22945b88345ef37a59b0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81123/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1104704188.2021.pdf.jpg1104704188.2021.pdf.jpgGenerated Thumbnailimage/jpeg4440https://repositorio.unal.edu.co/bitstream/unal/81123/3/1104704188.2021.pdf.jpg5315a673cf8832b80518a8b4484099b0MD53unal/81123oai:repositorio.unal.edu.co:unal/811232024-08-03 23:10:51.333Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |