Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.

ilustraciones, diagramas

Autores:
Monje Hernández, Dany Santiago
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80052
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80052
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::546 - Química inorgánica
Óxido de hierro
Agentes antihipertensivos
Nanomateriales
Nanotecnología
Síntesis verde
Procesos de oxidación avanzada
Contaminantes emergentes
Foto-Fenton
Fotocatálisis heterogénea
Nanomaterials
Nanotechnology
Green synthesis
Advanced oxidation processes
Emerging pollutants
Photo-Fenton
Heterogeneous photocatalysis
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_c28a3b6504ea7dc06ecff8660c3cfb4d
oai_identifier_str oai:repositorio.unal.edu.co:unal/80052
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
dc.title.translated.eng.fl_str_mv Evaluation of the use of iron and/or copper-based nanomaterials to promote the degradation of the antihypertensive Losartan and Valsartan
title Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
spellingShingle Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
540 - Química y ciencias afines::546 - Química inorgánica
Óxido de hierro
Agentes antihipertensivos
Nanomateriales
Nanotecnología
Síntesis verde
Procesos de oxidación avanzada
Contaminantes emergentes
Foto-Fenton
Fotocatálisis heterogénea
Nanomaterials
Nanotechnology
Green synthesis
Advanced oxidation processes
Emerging pollutants
Photo-Fenton
Heterogeneous photocatalysis
title_short Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
title_full Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
title_fullStr Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
title_full_unstemmed Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
title_sort Evaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.
dc.creator.fl_str_mv Monje Hernández, Dany Santiago
dc.contributor.advisor.none.fl_str_mv Valencia Uribe, Gloria Cristina
Mercado Castro, Donaldo Fabio
dc.contributor.author.none.fl_str_mv Monje Hernández, Dany Santiago
dc.contributor.researchgroup.spa.fl_str_mv Aplicaciones en Fotoquímica (GIAFOT)
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::546 - Química inorgánica
topic 540 - Química y ciencias afines::546 - Química inorgánica
Óxido de hierro
Agentes antihipertensivos
Nanomateriales
Nanotecnología
Síntesis verde
Procesos de oxidación avanzada
Contaminantes emergentes
Foto-Fenton
Fotocatálisis heterogénea
Nanomaterials
Nanotechnology
Green synthesis
Advanced oxidation processes
Emerging pollutants
Photo-Fenton
Heterogeneous photocatalysis
dc.subject.lemb.none.fl_str_mv Óxido de hierro
Agentes antihipertensivos
dc.subject.proposal.spa.fl_str_mv Nanomateriales
Nanotecnología
Síntesis verde
Procesos de oxidación avanzada
Contaminantes emergentes
Foto-Fenton
Fotocatálisis heterogénea
dc.subject.proposal.eng.fl_str_mv Nanomaterials
Nanotechnology
Green synthesis
Advanced oxidation processes
Emerging pollutants
Photo-Fenton
Heterogeneous photocatalysis
description ilustraciones, diagramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-30T16:14:45Z
dc.date.available.none.fl_str_mv 2021-08-30T16:14:45Z
dc.date.issued.none.fl_str_mv 2021-08-27
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80052
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80052
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] UNICEF, WHO, State of the World’s SANITATION, 2020. [2] K.H. Luepke, K.J. Suda, H. Boucher, R.L. Russo, M.W. Bonney, T.D. Hunt, J.F. Mohr, Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications., Pharmacotherapy. (2016) n/a-n/a. https://doi.org/10.1002/phar.1868. [3] P. Villegas-Guzman, S. Giannakis, R.A. Torres-Palma, C. Pulgarin, Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids, Appl. Catal. B Environ. 205 (2017) 219–227. https://doi.org/10.1016/j.apcatb.2016.12.021. [4] Y. Zhou, J. Meng, M. Zhang, S. Chen, B. He, H. Zhao, Q. Li, S. Zhang, T. Wang, Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?, Environ. Int. 131 (2019). https://doi.org/10.1016/j.envint.2019.104982. [5] B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma, Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes, Environ. Chem. Lett. 16 (2018) 947–967. https://doi.org/10.1007/s10311-018-0738-3. [6] R. Naidu, V. Andres, A. Espana, Y. Liu, J. Jit, Emerging contaminants in the environment : Risk-based analysis for better management, Chemosphere. 154 (2016) 350–357. https://doi.org/10.1016/j.chemosphere.2016.03.068. [7] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Res. 72 (2014) 3–27. https://doi.org/10.1016/j.watres.2014.08.053. [8] K.E. Murray, S.M. Thomas, A.A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment, Environ. Pollut. 158 (2010) 3462–3471. https://doi.org/10.1016/j.envpol.2010.08.009. [9] N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination. 238 (2009) 229–246. https://doi.org/10.1016/j.desal.2008.03.020. [10] A.L. Giraldo, E.D. Erazo-erazo, O.A. Flórez-acosta, E.A. Serna-galvis, R.A. Torres-palma, Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti / IrO 2 anodes : Evaluation of degradation routes , organic by-products and effects of water matrix components, Chem. Eng. J. 279 (2015) 103–114. https://doi.org/10.1016/j.cej.2015.04.140. [11] W. Giger, A.C. Alder, E.M. Golet, H.E. Kohler, C.S. Mcardell, E. Molnar, H. Siegrist, M.J. Suter, Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters , Sewage Sludges , and Surface Waters, Enviromental Anal. 57 (2003) 485–491. [12] R. Kallenborn, E. Brorström-Lundén, L.O. Reiersen, S. Wilson, Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change, Environ. Sci. Pollut. Res. (2017) 1–13. https://doi.org/10.1007/s11356-017-9726-6. [13] A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón, N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández, ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,’ Sci. Total Environ. 642 (2018) 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088. [14] E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B Environ. 166–167 (2015) 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016. [15] E.A. Serna-Galvis, A.M. Botero-Coy, D. Martínez-Pachón, A. Moncayo-Lasso, M. Ibáñez, F. Hernández, R.A. Torres-Palma, Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes, Water Res. 154 (2019) 349–360. https://doi.org/10.1016/j.watres.2019.01.045. [16] N. Milić, M. Milanović, N.G. Letić, M.T. Sekulić, J. Radonić, I. Mihajlović, M.V. Miloradov, Occurrence of antibiotics as emerging contaminant substances in aquatic environment, Int. J. Environ. Health Res. 23 (2013) 296–310. https://doi.org/10.1080/09603123.2012.733934. [17] UNESCO, Emerging Pollutants in Water and Wastewater, (n.d.). https://en.unesco.org/emergingpollutantsinwaterandwastewater (accessed March 20, 2021). [18] Y. Wang, Y. Gao, L. Chen, H. Zhang, Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange, Catal. Today. 252 (2015) 107–112. https://doi.org/10.1016/j.cattod.2015.01.012. [19] J. Wang, C. Liu, I. Hussain, C. Li, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: The effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye, RSC Adv. 6 (2016) 54623–54635. https://doi.org/10.1039/c6ra08501f. [20] J.A. Donadelli, L. Carlos, A. Arques, F.S. García Einschlag, Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways, Appl. Catal. B Environ. 231 (2018) 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057. [21] S. Arzate, S. Pfister, C. Oberschelp, J.A. Sánchez-Pérez, Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant, Sci. Total Environ. 694 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.378. [22] M.A. Quiroz, E.R. Bandala, C.A. Martinez-Huitle, Advanced Oxidation Processes (AOPs) for Removal of Pesticides from Aqueous Media, in: Pestic. - Formul. Eff. Fate, InTech, 2011: pp. 685–730. https://doi.org/10.5772/13597. [23] L.P. Ramteke, P.R. Gogate, Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation, Environ. Sci. Pollut. Res. 23 (2016) 9712–9729. https://doi.org/10.1007/s11356-016-6156-9. [24] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes ( AOP ) for water purification and recovery, Catal. Today. 53 (1999) 51–59. [25] D.A. Armstronga, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals, Bioinorg. React. Mech. 9 (2013) 59–61. https://doi.org/10.1515/irm-2013-0005. [26] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1–84. https://doi.org/10.1080/10643380500326564. [27] S. Papoutsakis, C. Pulgarin, I. Oller, R. Sánchez-moreno, S. Malato, Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products : The possibilities of cork boiling wastewater reuse, Chem. Eng. J. 304 (2016) 890–896. [28] D. Vione, F. Merlo, V. Maurino, Effect of humic acids on the Fenton degradation of phenol, Enviromental Chem. Lett. 2 (2004) 129–133. https://doi.org/10.1007/s10311-004-0086-3. [29] M. Fukushima, K. Tatsumi, Degradation Pathways of Pentachlorophenol by Photo-Fenton Systems in the Presence of Iron ( III ), Humic Acid , and Hydrogen Peroxide, Enviromental, Sci. Technol. 35 (2001) 1771–1778. [30] D. Spuhler, J. Andrés Rengifo-Herrera, C. Pulgarin, The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12, Appl. Catal. B Environ. 96 (2010) 126–141. https://doi.org/10.1016/j.apcatb.2010.02.010. [31] J.A. Sánchez Pérez, S. Arzate, P. Soriano-Molina, J.L. García Sánchez, J.L. Casas López, P. Plaza-Bolaños, Neutral or acidic pH for the removal of contaminants of emerging concern in wastewater by solar photo-Fenton? A techno-economic assessment of continuous raceway pond reactors, Sci. Total Environ. 736 (2020) 139681. https://doi.org/10.1016/j.scitotenv.2020.139681. [32] N. De la Cruz, J. Giménez, S. Esplugas, D. Grandjean, L.F. De Alencastro, C. Pulgarín, Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge, Water Res. 46 (2012) 1947–1957. https://doi.org/10.1016/j.watres.2012.01.014. [33] E.A. Serna-galvis, J. Silva-agredo, A.L. Giraldo, O.A. Flórez-acosta, R.A. Torres-palma, Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton , TiO 2 -photocatalysis and electrochemical processes, Sci. Total Environ. 541 (2016) 1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029. [34] E. Brillas, E. Mur, R. Sauleda, L. Sánchez, J. Peral, X. Domenech, J. Casado, Aniline mineralization by AOP ’ s : anodic oxidation , photocatalysis , electro-Fenton and photoelectro-Fenton processes, Appl. Catal. B Environ. 16 (1998) 31–42. [35] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds., Chem. Soc. Rev. 43 (2014) 765–78. https://doi.org/10.1039/c3cs60262a. [36] A. Kaur, S.K. Kansal, Bi 2 WO 6 nanocuboids : An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase, Chem. Eng. J. 302 (2016) 194–203. https://doi.org/10.1016/j.cej.2016.05.010. [37] L. Cermenati, P. Pichat, C. Guillard, A. Albini, Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH. radicals and superoxide dismutase, J. Phys. Chem. B. 101 (1997) 2650–2658. https://doi.org/10.1021/jp962700p. [38] D. Zhou, Z. Xu, S. Dong, M. Huo, S. Dong, X. Tian, B. Cui, H. Xiong, T. Li, D. Ma, Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light, Environ. Sci. Technol. 49 (2015) 7776–7783. https://doi.org/10.1021/acs.est.5b00989. [39] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200. https://doi.org/10.1016/j.jhazmat.2007.12.033. [40] M.I. Litter, Introduction to Photochemical Advanced Oxidation Processes for Water Treatment, in: Environ. Photochem. Part II, Springer-Verlag, Berlin/Heidelberg, 2005: pp. 325–366. https://doi.org/10.1007/b138188. [41] B.C. Hodges, E.L. Cates, J.H. Kim, Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, Nat. Nanotechnol. 13 (2018) 642–650. https://doi.org/10.1038/s41565-018-0216-x. [42] B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, S.J. Dhoble, Prospective of nanotechnology in degradation of waste water: A new challenges, Nano-Structures and Nano-Objects. 22 (2020) 100442. https://doi.org/10.1016/j.nanoso.2020.100442. [43] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng. 58 (2016) 36–43. https://doi.org/10.1016/j.msec.2015.08.018. [44] V. Prakash Sharma, U. Sharma, M. Chattopadhyay, V.N. Shukla, Advance Applications of Nanomaterials: A Review, Mater. Today Proc. 5 (2018) 6376–6380. https://doi.org/10.1016/j.matpr.2017.12.248. [45] S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots, Nanoscale. 5 (2013) 11665–11671. https://doi.org/10.1039/c3nr03893a. [46] A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains, Int. J. Nanomedicine. 7 (2012) 3527–3535. https://doi.org/10.2147/IJN.S29020. [47] A. Arunachalam, S. Dhanapandian, C. Manoharan, G. Sivakumar, Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 138 (2015) 105–112. https://doi.org/10.1016/j.saa.2014.11.016. [48] M. Khalaj, M. Kamali, M.E. V. Costa, I. Capela, Green synthesis of nanomaterials - A scientometric assessment, J. Clean. Prod. 267 (2020) 122036. https://doi.org/10.1016/j.jclepro.2020.122036. [49] A. Pal, Photochemical dissolution of gold nanoparticles by bromine containing trihalomethanes (THMs) in an aqueous triton X-100 medium and its analytical application, J. Photochem. Photobiol. A Chem. 142 (2001) 59–65. https://doi.org/10.1016/S1010-6030(01)00465-8. [50] M.A. Asghar, E. Zahir, S.M. Shahid, M.N. Khan, M.A. Asghar, J. Iqbal, G. Walker, Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity, LWT - Food Sci. Technol. 90 (2018) 98–107. https://doi.org/10.1016/j.lwt.2017.12.009. [51] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058. [52] A. Gil, F.C.C. Assis, S. Albeniz, S.A. Korili, Removal of dyes from wastewaters by adsorption on pillared clays, Chem. Eng. J. 168 (2011) 1032–1040. https://doi.org/10.1016/j.cej.2011.01.078. [53] B. Ozbey Unal, Z. Bilici, N. Ugur, Z. Isik, E. Harputlu, N. Dizge, K. Ocakoglu, Adsorption and Fenton oxidation of azo dyes by magnetite nanoparticles deposited on a glass substrate, J. Water Process Eng. 32 (2019) 100897. https://doi.org/10.1016/j.jwpe.2019.100897. [54] C.L. Almeida, S. Garcia-segura, C. Arias, N. Bocchi, E. Brillas, Electrochemical mineralization of the azo dye Acid Red 29 ( Chromotrope 2R ) by photoelectro-Fenton process, Chemosphere. 89 (2012) 751–758. https://doi.org/10.1016/j.chemosphere.2012.07.007. [55] S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu, J. Gui, Enhanced visible light photocatalytic performance of g-C 3 N 4 photocatalysts co-doped with iron and phosphorus, Appl. Surf. Sci. 311 (2014) 164–171. https://doi.org/10.1016/j.apsusc.2014.05.036. [56] S. Haji, B. Benstaali, N. Al-Bastaki, Degradation of methyl orange by UV/H2O2 advanced oxidation process, Chem. Eng. J. 168 (2011) 134–139. https://doi.org/10.1016/j.cej.2010.12.050. [57] N. Gupta, H.P. Singh, R.K. Sharma, Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect, J. Mol. Catal. A Chem. 335 (2011) 248–252. https://doi.org/10.1016/j.molcata.2010.12.001. [58] I. Ali, N. Hasan, M. Ahmad, Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications, J. Photochem. Photobiol. B Biol. 183 (2018) 154–163. https://doi.org/10.1016/j.jphotobiol.2018.04.014. [59] E. Neyens, J. Baeyens, A review of classic Fenton ’ s peroxidation as an advanced oxidation technique, J. Hazard. Mater. 98 (2003) 33–50. [60] M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - A review, Appl. Catal. B Environ. 176–177 (2015) 249–265. https://doi.org/10.1016/j.apcatb.2015.04.003. [61] J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal. B Environ. 75 (2007) 312–323. https://doi.org/10.1016/j.apcatb.2007.05.003. [62] M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source, Appl. Catal. B Environ. 154–155 (2014) 102–109. https://doi.org/10.1016/j.apcatb.2014.02.006. [63] Z.R. Lin, L. Zhao, Y.H. Dong, Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction, Chemosphere. 141 (2015) 7–12. https://doi.org/10.1016/j.chemosphere.2015.05.066. [64] C.K.J. Yeh, C.Y. Hsu, C.H. Chiu, K.L. Huang, Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes, J. Hazard. Mater. 151 (2008) 562–569. https://doi.org/10.1016/j.jhazmat.2007.06.014. [65] T. Zhou, X. Wu, Y. Zhang, J. Li, T.T. Lim, Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system, Appl. Catal. B Environ. 136–137 (2013) 294–301. https://doi.org/10.1016/j.apcatb.2013.02.004. [66] I.R. Guimaraes, A. Giroto, L.C.A. Oliveira, M.C. Guerreiro, D.Q. Lima, J.D. Fabris, Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process, Appl. Catal. B Environ. 91 (2009) 581–586. https://doi.org/10.1016/j.apcatb.2009.06.030. [67] X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Hydroxylamine Promoted Goethite Surface Fenton Degradation of Organic Pollutants, Environ. Sci. Technol. 51 (2017) 5118–5126. https://doi.org/10.1021/acs.est.6b05906. [68] H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, G. He, Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite, Environ. Technol. (United Kingdom). 33 (2012) 1545–1552. https://doi.org/10.1080/09593330.2011.635709. [69] D. Lorenzo, C.M. Dominguez, A. Romero, A. Santos, Wet peroxide oxidation of chlorobenzenes catalyzed by goethite and promoted by hydroxylamine, Catalysts. 9 (2019). https://doi.org/10.3390/catal9060553. [70] X. Huang, X. Hou, F. Jia, F. Song, J. Zhao, L. Zhang, Ascorbate-Promoted Surface Iron Cycle for Efficient Heterogeneous Fenton Alachlor Degradation with Hematite Nanocrystals, ACS Appl. Mater. Interfaces. 9 (2017) 8751–8758. https://doi.org/10.1021/acsami.6b16600. [71] X. Huang, X. Hou, J. Zhao, L. Zhang, Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span, Appl. Catal. B Environ. 181 (2016) 127–137. https://doi.org/10.1016/j.apcatb.2015.06.061. [72] L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C. Minero, D. Vione, Photo-Fenton reaction in the presence of morphologically controlled hematite as iron source, J. Photochem. Photobiol. A Chem. 307–308 (2015) 99–107. https://doi.org/10.1016/j.jphotochem.2015.04.009. [73] J.Y.T. Chan, S.Y. Ang, E.Y. Ye, M. Sullivan, J. Zhang, M. Lin, Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets, Phys. Chem. Chem. Phys. 17 (2015) 25333–25341. https://doi.org/10.1039/c5cp03332b. [74] F.V.F. Araujo, L. Yokoyama, L.A.C. Teixeira, J.C. Campos, Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution, Brazilian J. Chem. Eng. 28 (2011) 605–616. https://doi.org/10.1590/S0104-66322011000400006. [75] D. He, X. Wu, Y. Chen, Y. Situ, L. Zhong, H. Huang, In-situ growth of lepidocrocite on Bi2O3 rod: A perfect cycle coupling photocatalysis and heterogeneous fenton-like process by potential-level matching with advanced oxidation, Chemosphere. 210 (2018) 334–340. https://doi.org/10.1016/j.chemosphere.2018.06.142. [76] M. Qin, B. Lu, S. Feng, Z. Zhen, R. Chen, H. Liu, Role of exposed facets and surface OH groups in the Fenton-like reactivity of lepidocrocite catalyst, Chemosphere. 230 (2019) 286–293. https://doi.org/10.1016/j.chemosphere.2019.05.071. [77] H. Sun, G. Xie, D. He, L. Zhang, Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling, Appl. Catal. B Environ. 267 (2020) 118383. https://doi.org/10.1016/j.apcatb.2019.118383. [78] S.P. Sun, A.T. Lemley, P-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways, J. Mol. Catal. A Chem. 349 (2011) 71–79. https://doi.org/10.1016/j.molcata.2011.08.022. [79] L. Hou, Q. Zhang, F. Jérôme, D. Duprez, H. Zhang, S. Royer, Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts, Appl. Catal. B Environ. 144 (2014) 739–749. https://doi.org/10.1016/j.apcatb.2013.07.072. [80] M. Usman, P. Faure, C. Ruby, K. Hanna, Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation, Appl. Catal. B Environ. 117–118 (2012) 10–17. https://doi.org/10.1016/j.apcatb.2012.01.007. [81] L. Khanna, G. Gupta, S.K. Tripathi, Effect of size and silica coating on structural, magnetic as well as cytotoxicity properties of copper ferrite nanoparticles, Mater. Sci. Eng. C. 97 (2019) 552–566. https://doi.org/10.1016/j.msec.2018.12.051. [82] M.T.. Zin, J. Borja, H. Hinode, W. Kurniawan, Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios, Int. J. Chem. Nucl. Metall. Mater. Eng. 7 (2013) 669–673. h. [83] K. Ulucan-Altuntas, S.L. Kuzu, Modelling and optimization of dye removal by Fe/Cu bimetallic nanoparticles coated with different Cu ratios, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab4bb5. [84] P. Mondal, A. Anweshan, M.K. Purkait, Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review, Chemosphere. 259 (2020) 127509. https://doi.org/10.1016/j.chemosphere.2020.127509. [85] S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications, Nanomaterials. 6 (2016) 1–26. https://doi.org/10.3390/nano6110209. [86] S.S.F. Carvalho, N.M.F. Carvalho, Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis, J. Environ. Manage. 187 (2017) 82–88. https://doi.org/10.1016/j.jenvman.2016.11.032. [87] G. Magnacca, A. Allera, E. Montoneri, L. Celi, D.E. Benito, L.G. Gagliardi, L. Carlos, Novel magnetite nanoparticles coated with waste sourced bio- based substances as sustainable and renewable adsorbing materials, ACS Sustain. Chem. Eng. 2 (2014) 1518–1524. https://doi.org/10.1021/sc500213j. [88] F.E. García, A.M. Senn, J.M. Meichtry, T.B. Scott, H. Pullin, A.G. Leyva, E.B. Halac, C.P. Ramos, J. Sacanell, M. Mizrahi, F.G. Requejo, M.I. Litter, Iron-based nanoparticles prepared from yerba mate extract. Synthesis, characterization and use on chromium removal, J. Environ. Manage. 235 (2019) 1–8. https://doi.org/10.1016/j.jenvman.2019.01.002. [89] D.F. Mercado, A. Rubert, G. Magnacca, M. Malandrino, S. Sapino, P. Caregnato, A.B. Prevot, M.C. Gonzalez, Versatile Fe-containing hydroxyapatite nanomaterials as efficient substrates for lead ions adsorption, J. Nanosci. Nanotechnol. 17 (2017) 9081–9090. https://doi.org/10.1166/jnn.2017.13870. [90] D.F. Mercado, G. Magnacca, M. Malandrino, A. Rubert, E. Montoneri, C. Gonzalez, L. Celi, A. Bianco Prevot, M.C. Gonzalez, Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis, 6 (2014) 3937–3946. https://pubs.acs.org/doi/abs/10.1021/am405217j (accessed September 21, 2020). [91] P. Salgado, K. Márquez, O. Rubilar, D. Contreras, G. Vidal, The effect of phenolic compounds on the green synthesis of iron nanoparticles (Fe x O y -NPs) with photocatalytic activity, Appl. Nanosci. 9 (2019) 371–385. https://doi.org/10.1007/s13204-018-0931-5. [92] M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T. Das Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba, M. Ashaduzzaman, Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity, Heliyon. 6 (2020) e04603. https://doi.org/10.1016/j.heliyon.2020.e04603. [93] D.F. Mercado, P. Caregnato, L.S. Villata, M.C. Gonzalez, Ilex paraguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant, J. Inorg. Organomet. Polym. Mater. 28 (2018) 519–527. https://doi.org/10.1007/s10904-017-0757-8. [94] Y. Wu, S. Zeng, F. Wang, M. Megharaj, R. Naidu, Z. Chen, Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst, Sep. Purif. Technol. 154 (2015) 161–167. https://doi.org/10.1016/j.seppur.2015.09.022. [95] Q. Ouyang, F. Kou, P.E. Tsang, J. Lian, J. Xian, J. Fang, Z. Fang, Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin, J. Clean. Prod. 232 (2019) 1492–1498. https://doi.org/10.1016/j.jclepro.2019.06.043. [96] Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles, J. Colloid Interface Sci. 410 (2013) 67–73. https://doi.org/10.1016/j.jcis.2013.08.020. [97] E.S. Önal, T. Yatkin, M. Ergüt, A. Özer, Green Synthesis of Iron Nanoparticles by Aqueous Extract of Eriobotrya japonica Leaves as a Heterogenous Fenton-like Catalyst: Degradation of Basic Red 46, Int. J. Chem. Eng. Appl. 8 (2017) 328–333. https://doi.org/10.18178/ijcea.2017.8.5.678. [98] C. Gordon-falconí, M. Florencia, M. Sara, L. Cumbal, A. Debut, M. Daniela, Synthesis of silver nanoparticles with remediative potential using discarded yerba mate : An eco-friendly approach, J. Environ. Chem. Eng. 8 (2020) 104425. https://doi.org/10.1016/j.jece.2020.104425. [99] D.F. Mercado, M. Cipollone, M.C. González, F.H. Sánchez, Yerba Mate applications: Magnetic response of powders and colloids of iron oxide nanoparticles coated with Ilex paraguariensis derivatives, J. Magn. Magn. Mater. 462 (2018) 13–21. https://doi.org/10.1016/j.jmmm.2018.04.048. [100] S. Amaliyah, D.P. Pangesti, M. Masruri, A. Sabarudin, S.B. Sumitro, Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent, Heliyon. 6 (2020) e04636. https://doi.org/10.1016/j.heliyon.2020.e04636. [101] N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (2014) 7610–7630. https://doi.org/10.1021/cr400544s. [102] Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad, K.X. Lee, Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract, Nanoscale Res. Lett. 11 (2016) 276. https://doi.org/10.1186/s11671-016-1498-2. [103] F. Azadi, A. Karimi-Jashni, M.M. Zerafat, Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment, Ecotoxicol. Environ. Saf. 165 (2018) 467–475. https://doi.org/10.1016/j.ecoenv.2018.09.032. [104] G. Tabbì, A. Giuffrida, R.P. Bonomo, Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features, J. Inorg. Biochem. 128 (2013) 137–145. https://doi.org/10.1016/j.jinorgbio.2013.07.035. [105] D.F. Mercado, M. Cipollone, M.C. Gonzalez, F.H. Sánchez, Yerba Mate applications: magnetic response of powders and colloids of magnetite nanoparticles coated with Ilex Paraguariensis derivatives., J. Magn. Magn. Mater. 462 (2018) 13–21. https://doi.org/10.1016/j.jmmm.2018.04.048. [106] A.L. Rose, T.D. Waite, Kinetics of iron complexation by dissolved natural organic matter in coastal waters, Mar. Chem. 84 (2003) 85–103. https://doi.org/10.1016/S0304-4203(03)00113-0. [107] N.A.S. Webster, M.J. Loan, I.C. Madsen, R.B. Knott, G.M. Brodie, J.A. Kimpton, An in situ synchrotron X-ray diffraction investigation of lepidocrocite and ferrihydrite-seeded Al(OH) 3 crystallisation from supersaturated sodium aluminate liquor, J. Cryst. Growth. 340 (2012) 112–117. https://doi.org/10.1016/j.jcrysgro.2011.12.002. [108] N. Bost, M.R. Ammar, M.L. Bouchetou, J. Poirier, The catalytic effect of iron oxides on the formation of nano-carbon by the Boudouard reaction in refractories, J. Eur. Ceram. Soc. 36 (2016) 2133–2142. https://doi.org/10.1016/j.jeurceramsoc.2016.02.052. [109] S. Kumar, A.K. Ojha, D. Bhorolua, J. Das, A. Kumar, A. Hazarika, Facile synthesis of CuO nanowires and Cu 2 O nanospheres grown on rGO surface and exploiting its photocatalytic, antibacterial and supercapacitive properties, Phys. B Condens. Matter. 558 (2019) 74–81. https://doi.org/10.1016/j.physb.2019.01.040. [110] S. Rahimi, R.M.M. Moattari, L. Rajabi, A.A. Derakhshan, M. Keyhani, A. Ashraf, M. Keyhani, A.A. Derakhshan, M. Keyhani, Iron oxide/hydroxide (α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media, J. Ind. Eng. Chem. 23 (2015) 33–43. https://doi.org/10.1016/j.jiec.2014.07.039. [111] M. Veneranda, J. Aramendia, L. Bellot-Gurlet, P. Colomban, K. Castro, J.M. Madariaga, FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems, Corros. Sci. 133 (2018) 68–77. https://doi.org/10.1016/j.corsci.2018.01.016. [112] L. Nalbandian, E. Patrikiadou, V. Zaspalis, A. Patrikidou, E. Hatzidaki, C. N. Papandreou, Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation, Curr. Nanosci. 12 (2015) 455–468. https://doi.org/10.2174/1573413712666151210230002. [113] M.C.V.M. Starling, P.P. Souza, A. Le Person, C.C. Amorim, J. Criquet, Intensification of UV-C treatment to remove emerging contaminants by UV-C/H 2 O 2 and UV-C/S 2 O 82− : Susceptibility to photolysis and investigation of acute toxicity, Chem. Eng. J. (2019) 0–1. https://doi.org/10.1016/j.cej.2019.01.135. [114] S. Kato, C. Walling, The Oxidation of Alcohols by Fenton’s Reagent. the Effect of Copper Ion, J. Am. Chem. Soc. 93 (1971) 4275–4281. https://doi.org/10.1021/ja00746a031. [115] A. Santos,
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 168 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Escuela de química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80052/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80052/2/1117533322.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80052/3/1117533322.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
9ba7b1bf62ef60e1f20a2cf05afc13e0
a36e40e921884b832904bf854567d7a6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089701836980224
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valencia Uribe, Gloria Cristinab5bb0453eb709f67b76c97ea6c2e768fMercado Castro, Donaldo Fabio8e9fd299b572273ca3e88497d60a9407600Monje Hernández, Dany Santiagoa64dabf96fa72fa48335757f17d8ef66Aplicaciones en Fotoquímica (GIAFOT)2021-08-30T16:14:45Z2021-08-30T16:14:45Z2021-08-27https://repositorio.unal.edu.co/handle/unal/80052Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn esta investigación se sintetizaron distintos nanomateriales basados en óxidos de hierro por rutas sintéticas verdes, y se evaluó su actividad catalítica en la remoción de contaminantes emergentes. Siete nanopartículas bimetálica de óxidos de Cu/Fe fueron sintetizadas usando extracto de yerba mate como agente precipitante y estabilizante superficial, variando la relación molar de Cu/Fe. La caracterización por TEM, DRX, TGA-Ms, Potencial Z, FTIR y espectroscopia de adsorción atómica indicó que todos los materiales poseen una morfología esférica con estructura tipo core-shell con las fases de óxidos metálicos en el núcleo y una cobertura orgánica con un alto porcentaje de materia orgánica. Se encontró que la fase orgánica juega un papel fundamental en la actividad fotocatalítica de los sólidos durante el proceso Foto-Fenton a pH cercano a la neutralidad, en el cual se evidenció la foto-lixiviación de Fe y un mecanismo fue propuesto. Todos los materiales mostraron actividad catalítica en la eliminación de naranja de metilo, lográndose decoloraciones superiores a 96% en dos horas bajo irradiación UV a 375 nm. Dos nanopartículas de puntos de carbono fueron sintetizados empleando el extracto de yerba mate como precursor de síntesis mediante digestión ácida con H2SO4 o HNO3 para promover el dopaje superficial con S y N respectivamente. Posteriormente se evaluó la funcionalización de nanopartículas a través de dos rutas sintéticas con los puntos de carbono dopados. La caracterización por TEM, DRX, TGA-Ms, Potencial Z, DLS, FTIR y RAMAN, indicó que todos los materiales poseen una morfología esférica con estructura tipo core-shell con la fase de magnetita en el núcleo y puntos de carbono dopados en la superficie. Se encontró que la presencia de puntos de carbono afecta las propiedades fotocatalíticas de los materiales durante el proceso Foto-Fenton, a través de la generación de especies reactivas de oxígeno y promoviendo el ciclo catalítico del Fe2+; en consecuencia un mecanismo fue propuesto. Todos los materiales mostraron actividad catalítica en la eliminación del naranja de metilo, lográndose decoloraciones superiores al 98% en 7 horas bajo irradiación visible entre 400 – 750 nm. Finalmente, se obtuvo g-C3N4 a partir de urea por una ruta de polimerización térmica y posteriormente dopado con K. Se sintetizaron 4 nanocompositos de magnetita con g-C3N4 y 4 con g-C3N4 después del dopaje con K, variando las cantidades de Fe con relación a la concentración necesaria para formar una monocapa a partir del modelo de isotermas de Langmuir. La caracterización por TEM, DRX, TGA-Ms, Potencial Z, DLS, FTIR y espectroscopia UV/Vis indicó que todos los materiales habían sido modificados satisfactoriamente y se encontraban en escalas nanométrica. Se encontró que el dopaje con K y la concentración de Fe empleada afectan las propiedades fotocatalíticas de los materiales y en consecuencia un mecanismo fue propuesto. Se evaluó la fotoestabilidad y foto-generación de oxígeno molecular singlete de Losartán y Valsartán, encontrándose que ambos compuestos son altamente estables a diferentes condiciones de irradiación, y que no actúan como fotosensibilizadores de oxígeno singlete. Todos los materiales mostraron actividad catalítica en la eliminación del Losartán y Valsartán, lográndose degradaciones superiores al 95% en 3 horas bajo irradiación visible entre 400 – 750 nm. Igualmente los materiales probaron ser capaces de eliminar el contaminante en condiciones de irradiación con luz solar en una matriz de agua corriente. Estos resultados demuestran el potencial fotocatalítico de los nanomateriales basados en hierro y plantea alternativas de síntesis eficientes siguiendo rutas verdes. (Texto tomado de la fuente)In this work several iron oxide based nanomaterials were synthesized by green synthesis routes, evaluating their catalytic activity in the removal of emerging pollutants. Seven bimetallic Cu/Fe oxide nanoparticles were synthesized using yerba mate dry leaf extract as precipitant and capping agent, varying the Cu/Fe molar ratio. A thorough characterization of the particles by TEM, XRD, TGA-MS, Z-potential, FTIR, and atomic absorption-spectrometry AA indicates that all materials have spheric-like morphology with a core-shell structure with the metal oxide phases in the core and an organic shell with a high percentage of organic matter. This organic matter is proposed to play an important role in the solids' photocatalytic activity in a photo-Fenton reaction, in which iron photoleaching was elucidated, and a mechanism was proposed. All materials showed catalytic activity in the methyl orange elimination, achieving discolorations up to 96% in two hours under UV irradiation at 375 nm. Two carbon dot nanoparticles were synthesized using yerba mate extract as a synthesis precursor by an acid digestion route with H2SO4 or HNO3 to promote the surface doping with S and N respectively. Subsequently, the nanoparticles functionalization through two synthesis routes with de doped carbon dots was evaluated. The characterization by TEM, XRD, TGA-Ms, Z Potential, DLS, FTIR and Raman, indicated that all the materials are in nanométrica scale and have a spherical morphology with a core-shell structure in which the magnetite as the core and the doped carbon dots in the surface. Is was found that the carbon dots affects the photocatalytic behavior of the nanomaterials in the photo-Fenton process through the generation of reactive oxygen species and enhancing the catalyst XII Abstract Fe2+ regeneration; as consequence a mechanism was proposed. All the materials showed catalytic activity in the methyl orange elimination, reaching discolorations over 98% in 7 hours under visible radiation between 400-750 nm. Finally, g-C3N4 was obtained from urea by a thermal polymerization route and subsequently doped with K. Four magnetic nanocomposites were synthesized with gC3N4 and four with g-C3N4 after doping with K, varying the Fe amounts in relation with the necessary concentration to form a monolayer from the Langmuir isotherm model. The characterization by TEM, XRD, TGA-Ms, Z Potential, DLS, FTIR, Raman and UV spectroscopy, indicate that all the materials had been satisfactorily modified and were on nanometric scale. It was found that the K doping and the iron concentration used, affect the photocatalytic behavior of the materials and in consequence a mechanism was proposed. It was evaluated the photostability and photogeneration of singlet molecular oxygen of Losartan and Valsartan, finding that both compounds are highly stable under different irradiation conditions, and don‟t act as photosensitizers of singlet oxygen. All the materials show catalytic activity in the elimination of Losartan and Valsartan, reaching degradations over 95% in 3 hours under visible irradiation between 400 – 750 nm. Finally, the materials are able to eliminate the pollutants with solar irradiation conditions, using a simulated current water matrix.ColcienciasMaestríaMagister en Ciencias - QuímicasSíntesis verde de diversos nanomateriales ópticamente activosxviii, 168 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Ciencias - Maestría en Ciencias - QuímicaEscuela de químicaFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afines::546 - Química inorgánicaÓxido de hierroAgentes antihipertensivosNanomaterialesNanotecnologíaSíntesis verdeProcesos de oxidación avanzadaContaminantes emergentesFoto-FentonFotocatálisis heterogéneaNanomaterialsNanotechnologyGreen synthesisAdvanced oxidation processesEmerging pollutantsPhoto-FentonHeterogeneous photocatalysisEvaluación del uso de nanomateriales basados en hierro y/o cobre para promover la degradación de los antihipertensivos Losartán y Valsartán.Evaluation of the use of iron and/or copper-based nanomaterials to promote the degradation of the antihypertensive Losartan and ValsartanTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] UNICEF, WHO, State of the World’s SANITATION, 2020. [2] K.H. Luepke, K.J. Suda, H. Boucher, R.L. Russo, M.W. Bonney, T.D. Hunt, J.F. Mohr, Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications., Pharmacotherapy. (2016) n/a-n/a. https://doi.org/10.1002/phar.1868. [3] P. Villegas-Guzman, S. Giannakis, R.A. Torres-Palma, C. Pulgarin, Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids, Appl. Catal. B Environ. 205 (2017) 219–227. https://doi.org/10.1016/j.apcatb.2016.12.021. [4] Y. Zhou, J. Meng, M. Zhang, S. Chen, B. He, H. Zhao, Q. Li, S. Zhang, T. Wang, Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants?, Environ. Int. 131 (2019). https://doi.org/10.1016/j.envint.2019.104982. [5] B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma, Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes, Environ. Chem. Lett. 16 (2018) 947–967. https://doi.org/10.1007/s10311-018-0738-3. [6] R. Naidu, V. Andres, A. Espana, Y. Liu, J. Jit, Emerging contaminants in the environment : Risk-based analysis for better management, Chemosphere. 154 (2016) 350–357. https://doi.org/10.1016/j.chemosphere.2016.03.068. [7] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Res. 72 (2014) 3–27. https://doi.org/10.1016/j.watres.2014.08.053. [8] K.E. Murray, S.M. Thomas, A.A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment, Environ. Pollut. 158 (2010) 3462–3471. https://doi.org/10.1016/j.envpol.2010.08.009. [9] N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination. 238 (2009) 229–246. https://doi.org/10.1016/j.desal.2008.03.020. [10] A.L. Giraldo, E.D. Erazo-erazo, O.A. Flórez-acosta, E.A. Serna-galvis, R.A. Torres-palma, Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti / IrO 2 anodes : Evaluation of degradation routes , organic by-products and effects of water matrix components, Chem. Eng. J. 279 (2015) 103–114. https://doi.org/10.1016/j.cej.2015.04.140. [11] W. Giger, A.C. Alder, E.M. Golet, H.E. Kohler, C.S. Mcardell, E. Molnar, H. Siegrist, M.J. Suter, Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters , Sewage Sludges , and Surface Waters, Enviromental Anal. 57 (2003) 485–491. [12] R. Kallenborn, E. Brorström-Lundén, L.O. Reiersen, S. Wilson, Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change, Environ. Sci. Pollut. Res. (2017) 1–13. https://doi.org/10.1007/s11356-017-9726-6. [13] A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón, N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández, ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,’ Sci. Total Environ. 642 (2018) 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088. [14] E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B Environ. 166–167 (2015) 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016. [15] E.A. Serna-Galvis, A.M. Botero-Coy, D. Martínez-Pachón, A. Moncayo-Lasso, M. Ibáñez, F. Hernández, R.A. Torres-Palma, Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes, Water Res. 154 (2019) 349–360. https://doi.org/10.1016/j.watres.2019.01.045. [16] N. Milić, M. Milanović, N.G. Letić, M.T. Sekulić, J. Radonić, I. Mihajlović, M.V. Miloradov, Occurrence of antibiotics as emerging contaminant substances in aquatic environment, Int. J. Environ. Health Res. 23 (2013) 296–310. https://doi.org/10.1080/09603123.2012.733934. [17] UNESCO, Emerging Pollutants in Water and Wastewater, (n.d.). https://en.unesco.org/emergingpollutantsinwaterandwastewater (accessed March 20, 2021). [18] Y. Wang, Y. Gao, L. Chen, H. Zhang, Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange, Catal. Today. 252 (2015) 107–112. https://doi.org/10.1016/j.cattod.2015.01.012. [19] J. Wang, C. Liu, I. Hussain, C. Li, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: The effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye, RSC Adv. 6 (2016) 54623–54635. https://doi.org/10.1039/c6ra08501f. [20] J.A. Donadelli, L. Carlos, A. Arques, F.S. García Einschlag, Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways, Appl. Catal. B Environ. 231 (2018) 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057. [21] S. Arzate, S. Pfister, C. Oberschelp, J.A. Sánchez-Pérez, Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant, Sci. Total Environ. 694 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.378. [22] M.A. Quiroz, E.R. Bandala, C.A. Martinez-Huitle, Advanced Oxidation Processes (AOPs) for Removal of Pesticides from Aqueous Media, in: Pestic. - Formul. Eff. Fate, InTech, 2011: pp. 685–730. https://doi.org/10.5772/13597. [23] L.P. Ramteke, P.R. Gogate, Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation, Environ. Sci. Pollut. Res. 23 (2016) 9712–9729. https://doi.org/10.1007/s11356-016-6156-9. [24] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes ( AOP ) for water purification and recovery, Catal. Today. 53 (1999) 51–59. [25] D.A. Armstronga, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals, Bioinorg. React. Mech. 9 (2013) 59–61. https://doi.org/10.1515/irm-2013-0005. [26] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1–84. https://doi.org/10.1080/10643380500326564. [27] S. Papoutsakis, C. Pulgarin, I. Oller, R. Sánchez-moreno, S. Malato, Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products : The possibilities of cork boiling wastewater reuse, Chem. Eng. J. 304 (2016) 890–896. [28] D. Vione, F. Merlo, V. Maurino, Effect of humic acids on the Fenton degradation of phenol, Enviromental Chem. Lett. 2 (2004) 129–133. https://doi.org/10.1007/s10311-004-0086-3. [29] M. Fukushima, K. Tatsumi, Degradation Pathways of Pentachlorophenol by Photo-Fenton Systems in the Presence of Iron ( III ), Humic Acid , and Hydrogen Peroxide, Enviromental, Sci. Technol. 35 (2001) 1771–1778. [30] D. Spuhler, J. Andrés Rengifo-Herrera, C. Pulgarin, The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12, Appl. Catal. B Environ. 96 (2010) 126–141. https://doi.org/10.1016/j.apcatb.2010.02.010. [31] J.A. Sánchez Pérez, S. Arzate, P. Soriano-Molina, J.L. García Sánchez, J.L. Casas López, P. Plaza-Bolaños, Neutral or acidic pH for the removal of contaminants of emerging concern in wastewater by solar photo-Fenton? A techno-economic assessment of continuous raceway pond reactors, Sci. Total Environ. 736 (2020) 139681. https://doi.org/10.1016/j.scitotenv.2020.139681. [32] N. De la Cruz, J. Giménez, S. Esplugas, D. Grandjean, L.F. De Alencastro, C. Pulgarín, Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge, Water Res. 46 (2012) 1947–1957. https://doi.org/10.1016/j.watres.2012.01.014. [33] E.A. Serna-galvis, J. Silva-agredo, A.L. Giraldo, O.A. Flórez-acosta, R.A. Torres-palma, Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton , TiO 2 -photocatalysis and electrochemical processes, Sci. Total Environ. 541 (2016) 1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029. [34] E. Brillas, E. Mur, R. Sauleda, L. Sánchez, J. Peral, X. Domenech, J. Casado, Aniline mineralization by AOP ’ s : anodic oxidation , photocatalysis , electro-Fenton and photoelectro-Fenton processes, Appl. Catal. B Environ. 16 (1998) 31–42. [35] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds., Chem. Soc. Rev. 43 (2014) 765–78. https://doi.org/10.1039/c3cs60262a. [36] A. Kaur, S.K. Kansal, Bi 2 WO 6 nanocuboids : An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase, Chem. Eng. J. 302 (2016) 194–203. https://doi.org/10.1016/j.cej.2016.05.010. [37] L. Cermenati, P. Pichat, C. Guillard, A. Albini, Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH. radicals and superoxide dismutase, J. Phys. Chem. B. 101 (1997) 2650–2658. https://doi.org/10.1021/jp962700p. [38] D. Zhou, Z. Xu, S. Dong, M. Huo, S. Dong, X. Tian, B. Cui, H. Xiong, T. Li, D. Ma, Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light, Environ. Sci. Technol. 49 (2015) 7776–7783. https://doi.org/10.1021/acs.est.5b00989. [39] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200. https://doi.org/10.1016/j.jhazmat.2007.12.033. [40] M.I. Litter, Introduction to Photochemical Advanced Oxidation Processes for Water Treatment, in: Environ. Photochem. Part II, Springer-Verlag, Berlin/Heidelberg, 2005: pp. 325–366. https://doi.org/10.1007/b138188. [41] B.C. Hodges, E.L. Cates, J.H. Kim, Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, Nat. Nanotechnol. 13 (2018) 642–650. https://doi.org/10.1038/s41565-018-0216-x. [42] B.D. Deshpande, P.S. Agrawal, M.K.N. Yenkie, S.J. Dhoble, Prospective of nanotechnology in degradation of waste water: A new challenges, Nano-Structures and Nano-Objects. 22 (2020) 100442. https://doi.org/10.1016/j.nanoso.2020.100442. [43] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng. 58 (2016) 36–43. https://doi.org/10.1016/j.msec.2015.08.018. [44] V. Prakash Sharma, U. Sharma, M. Chattopadhyay, V.N. Shukla, Advance Applications of Nanomaterials: A Review, Mater. Today Proc. 5 (2018) 6376–6380. https://doi.org/10.1016/j.matpr.2017.12.248. [45] S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, Q. Chang, Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots, Nanoscale. 5 (2013) 11665–11671. https://doi.org/10.1039/c3nr03893a. [46] A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains, Int. J. Nanomedicine. 7 (2012) 3527–3535. https://doi.org/10.2147/IJN.S29020. [47] A. Arunachalam, S. Dhanapandian, C. Manoharan, G. Sivakumar, Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 138 (2015) 105–112. https://doi.org/10.1016/j.saa.2014.11.016. [48] M. Khalaj, M. Kamali, M.E. V. Costa, I. Capela, Green synthesis of nanomaterials - A scientometric assessment, J. Clean. Prod. 267 (2020) 122036. https://doi.org/10.1016/j.jclepro.2020.122036. [49] A. Pal, Photochemical dissolution of gold nanoparticles by bromine containing trihalomethanes (THMs) in an aqueous triton X-100 medium and its analytical application, J. Photochem. Photobiol. A Chem. 142 (2001) 59–65. https://doi.org/10.1016/S1010-6030(01)00465-8. [50] M.A. Asghar, E. Zahir, S.M. Shahid, M.N. Khan, M.A. Asghar, J. Iqbal, G. Walker, Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity, LWT - Food Sci. Technol. 90 (2018) 98–107. https://doi.org/10.1016/j.lwt.2017.12.009. [51] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931–3946. https://doi.org/10.1016/j.watres.2012.09.058. [52] A. Gil, F.C.C. Assis, S. Albeniz, S.A. Korili, Removal of dyes from wastewaters by adsorption on pillared clays, Chem. Eng. J. 168 (2011) 1032–1040. https://doi.org/10.1016/j.cej.2011.01.078. [53] B. Ozbey Unal, Z. Bilici, N. Ugur, Z. Isik, E. Harputlu, N. Dizge, K. Ocakoglu, Adsorption and Fenton oxidation of azo dyes by magnetite nanoparticles deposited on a glass substrate, J. Water Process Eng. 32 (2019) 100897. https://doi.org/10.1016/j.jwpe.2019.100897. [54] C.L. Almeida, S. Garcia-segura, C. Arias, N. Bocchi, E. Brillas, Electrochemical mineralization of the azo dye Acid Red 29 ( Chromotrope 2R ) by photoelectro-Fenton process, Chemosphere. 89 (2012) 751–758. https://doi.org/10.1016/j.chemosphere.2012.07.007. [55] S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu, J. Gui, Enhanced visible light photocatalytic performance of g-C 3 N 4 photocatalysts co-doped with iron and phosphorus, Appl. Surf. Sci. 311 (2014) 164–171. https://doi.org/10.1016/j.apsusc.2014.05.036. [56] S. Haji, B. Benstaali, N. Al-Bastaki, Degradation of methyl orange by UV/H2O2 advanced oxidation process, Chem. Eng. J. 168 (2011) 134–139. https://doi.org/10.1016/j.cej.2010.12.050. [57] N. Gupta, H.P. Singh, R.K. Sharma, Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect, J. Mol. Catal. A Chem. 335 (2011) 248–252. https://doi.org/10.1016/j.molcata.2010.12.001. [58] I. Ali, N. Hasan, M. Ahmad, Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications, J. Photochem. Photobiol. B Biol. 183 (2018) 154–163. https://doi.org/10.1016/j.jphotobiol.2018.04.014. [59] E. Neyens, J. Baeyens, A review of classic Fenton ’ s peroxidation as an advanced oxidation technique, J. Hazard. Mater. 98 (2003) 33–50. [60] M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - A review, Appl. Catal. B Environ. 176–177 (2015) 249–265. https://doi.org/10.1016/j.apcatb.2015.04.003. [61] J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal. B Environ. 75 (2007) 312–323. https://doi.org/10.1016/j.apcatb.2007.05.003. [62] M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source, Appl. Catal. B Environ. 154–155 (2014) 102–109. https://doi.org/10.1016/j.apcatb.2014.02.006. [63] Z.R. Lin, L. Zhao, Y.H. Dong, Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction, Chemosphere. 141 (2015) 7–12. https://doi.org/10.1016/j.chemosphere.2015.05.066. [64] C.K.J. Yeh, C.Y. Hsu, C.H. Chiu, K.L. Huang, Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes, J. Hazard. Mater. 151 (2008) 562–569. https://doi.org/10.1016/j.jhazmat.2007.06.014. [65] T. Zhou, X. Wu, Y. Zhang, J. Li, T.T. Lim, Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system, Appl. Catal. B Environ. 136–137 (2013) 294–301. https://doi.org/10.1016/j.apcatb.2013.02.004. [66] I.R. Guimaraes, A. Giroto, L.C.A. Oliveira, M.C. Guerreiro, D.Q. Lima, J.D. Fabris, Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process, Appl. Catal. B Environ. 91 (2009) 581–586. https://doi.org/10.1016/j.apcatb.2009.06.030. [67] X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Hydroxylamine Promoted Goethite Surface Fenton Degradation of Organic Pollutants, Environ. Sci. Technol. 51 (2017) 5118–5126. https://doi.org/10.1021/acs.est.6b05906. [68] H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, G. He, Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite, Environ. Technol. (United Kingdom). 33 (2012) 1545–1552. https://doi.org/10.1080/09593330.2011.635709. [69] D. Lorenzo, C.M. Dominguez, A. Romero, A. Santos, Wet peroxide oxidation of chlorobenzenes catalyzed by goethite and promoted by hydroxylamine, Catalysts. 9 (2019). https://doi.org/10.3390/catal9060553. [70] X. Huang, X. Hou, F. Jia, F. Song, J. Zhao, L. Zhang, Ascorbate-Promoted Surface Iron Cycle for Efficient Heterogeneous Fenton Alachlor Degradation with Hematite Nanocrystals, ACS Appl. Mater. Interfaces. 9 (2017) 8751–8758. https://doi.org/10.1021/acsami.6b16600. [71] X. Huang, X. Hou, J. Zhao, L. Zhang, Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span, Appl. Catal. B Environ. 181 (2016) 127–137. https://doi.org/10.1016/j.apcatb.2015.06.061. [72] L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C. Minero, D. Vione, Photo-Fenton reaction in the presence of morphologically controlled hematite as iron source, J. Photochem. Photobiol. A Chem. 307–308 (2015) 99–107. https://doi.org/10.1016/j.jphotochem.2015.04.009. [73] J.Y.T. Chan, S.Y. Ang, E.Y. Ye, M. Sullivan, J. Zhang, M. Lin, Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets, Phys. Chem. Chem. Phys. 17 (2015) 25333–25341. https://doi.org/10.1039/c5cp03332b. [74] F.V.F. Araujo, L. Yokoyama, L.A.C. Teixeira, J.C. Campos, Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution, Brazilian J. Chem. Eng. 28 (2011) 605–616. https://doi.org/10.1590/S0104-66322011000400006. [75] D. He, X. Wu, Y. Chen, Y. Situ, L. Zhong, H. Huang, In-situ growth of lepidocrocite on Bi2O3 rod: A perfect cycle coupling photocatalysis and heterogeneous fenton-like process by potential-level matching with advanced oxidation, Chemosphere. 210 (2018) 334–340. https://doi.org/10.1016/j.chemosphere.2018.06.142. [76] M. Qin, B. Lu, S. Feng, Z. Zhen, R. Chen, H. Liu, Role of exposed facets and surface OH groups in the Fenton-like reactivity of lepidocrocite catalyst, Chemosphere. 230 (2019) 286–293. https://doi.org/10.1016/j.chemosphere.2019.05.071. [77] H. Sun, G. Xie, D. He, L. Zhang, Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling, Appl. Catal. B Environ. 267 (2020) 118383. https://doi.org/10.1016/j.apcatb.2019.118383. [78] S.P. Sun, A.T. Lemley, P-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways, J. Mol. Catal. A Chem. 349 (2011) 71–79. https://doi.org/10.1016/j.molcata.2011.08.022. [79] L. Hou, Q. Zhang, F. Jérôme, D. Duprez, H. Zhang, S. Royer, Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts, Appl. Catal. B Environ. 144 (2014) 739–749. https://doi.org/10.1016/j.apcatb.2013.07.072. [80] M. Usman, P. Faure, C. Ruby, K. Hanna, Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation, Appl. Catal. B Environ. 117–118 (2012) 10–17. https://doi.org/10.1016/j.apcatb.2012.01.007. [81] L. Khanna, G. Gupta, S.K. Tripathi, Effect of size and silica coating on structural, magnetic as well as cytotoxicity properties of copper ferrite nanoparticles, Mater. Sci. Eng. C. 97 (2019) 552–566. https://doi.org/10.1016/j.msec.2018.12.051. [82] M.T.. Zin, J. Borja, H. Hinode, W. Kurniawan, Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios, Int. J. Chem. Nucl. Metall. Mater. Eng. 7 (2013) 669–673. h. [83] K. Ulucan-Altuntas, S.L. Kuzu, Modelling and optimization of dye removal by Fe/Cu bimetallic nanoparticles coated with different Cu ratios, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab4bb5. [84] P. Mondal, A. Anweshan, M.K. Purkait, Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review, Chemosphere. 259 (2020) 127509. https://doi.org/10.1016/j.chemosphere.2020.127509. [85] S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications, Nanomaterials. 6 (2016) 1–26. https://doi.org/10.3390/nano6110209. [86] S.S.F. Carvalho, N.M.F. Carvalho, Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis, J. Environ. Manage. 187 (2017) 82–88. https://doi.org/10.1016/j.jenvman.2016.11.032. [87] G. Magnacca, A. Allera, E. Montoneri, L. Celi, D.E. Benito, L.G. Gagliardi, L. Carlos, Novel magnetite nanoparticles coated with waste sourced bio- based substances as sustainable and renewable adsorbing materials, ACS Sustain. Chem. Eng. 2 (2014) 1518–1524. https://doi.org/10.1021/sc500213j. [88] F.E. García, A.M. Senn, J.M. Meichtry, T.B. Scott, H. Pullin, A.G. Leyva, E.B. Halac, C.P. Ramos, J. Sacanell, M. Mizrahi, F.G. Requejo, M.I. Litter, Iron-based nanoparticles prepared from yerba mate extract. Synthesis, characterization and use on chromium removal, J. Environ. Manage. 235 (2019) 1–8. https://doi.org/10.1016/j.jenvman.2019.01.002. [89] D.F. Mercado, A. Rubert, G. Magnacca, M. Malandrino, S. Sapino, P. Caregnato, A.B. Prevot, M.C. Gonzalez, Versatile Fe-containing hydroxyapatite nanomaterials as efficient substrates for lead ions adsorption, J. Nanosci. Nanotechnol. 17 (2017) 9081–9090. https://doi.org/10.1166/jnn.2017.13870. [90] D.F. Mercado, G. Magnacca, M. Malandrino, A. Rubert, E. Montoneri, C. Gonzalez, L. Celi, A. Bianco Prevot, M.C. Gonzalez, Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis, 6 (2014) 3937–3946. https://pubs.acs.org/doi/abs/10.1021/am405217j (accessed September 21, 2020). [91] P. Salgado, K. Márquez, O. Rubilar, D. Contreras, G. Vidal, The effect of phenolic compounds on the green synthesis of iron nanoparticles (Fe x O y -NPs) with photocatalytic activity, Appl. Nanosci. 9 (2019) 371–385. https://doi.org/10.1007/s13204-018-0931-5. [92] M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T. Das Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba, M. Ashaduzzaman, Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity, Heliyon. 6 (2020) e04603. https://doi.org/10.1016/j.heliyon.2020.e04603. [93] D.F. Mercado, P. Caregnato, L.S. Villata, M.C. Gonzalez, Ilex paraguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant, J. Inorg. Organomet. Polym. Mater. 28 (2018) 519–527. https://doi.org/10.1007/s10904-017-0757-8. [94] Y. Wu, S. Zeng, F. Wang, M. Megharaj, R. Naidu, Z. Chen, Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst, Sep. Purif. Technol. 154 (2015) 161–167. https://doi.org/10.1016/j.seppur.2015.09.022. [95] Q. Ouyang, F. Kou, P.E. Tsang, J. Lian, J. Xian, J. Fang, Z. Fang, Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin, J. Clean. Prod. 232 (2019) 1492–1498. https://doi.org/10.1016/j.jclepro.2019.06.043. [96] Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles, J. Colloid Interface Sci. 410 (2013) 67–73. https://doi.org/10.1016/j.jcis.2013.08.020. [97] E.S. Önal, T. Yatkin, M. Ergüt, A. Özer, Green Synthesis of Iron Nanoparticles by Aqueous Extract of Eriobotrya japonica Leaves as a Heterogenous Fenton-like Catalyst: Degradation of Basic Red 46, Int. J. Chem. Eng. Appl. 8 (2017) 328–333. https://doi.org/10.18178/ijcea.2017.8.5.678. [98] C. Gordon-falconí, M. Florencia, M. Sara, L. Cumbal, A. Debut, M. Daniela, Synthesis of silver nanoparticles with remediative potential using discarded yerba mate : An eco-friendly approach, J. Environ. Chem. Eng. 8 (2020) 104425. https://doi.org/10.1016/j.jece.2020.104425. [99] D.F. Mercado, M. Cipollone, M.C. González, F.H. Sánchez, Yerba Mate applications: Magnetic response of powders and colloids of iron oxide nanoparticles coated with Ilex paraguariensis derivatives, J. Magn. Magn. Mater. 462 (2018) 13–21. https://doi.org/10.1016/j.jmmm.2018.04.048. [100] S. Amaliyah, D.P. Pangesti, M. Masruri, A. Sabarudin, S.B. Sumitro, Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent, Heliyon. 6 (2020) e04636. https://doi.org/10.1016/j.heliyon.2020.e04636. [101] N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (2014) 7610–7630. https://doi.org/10.1021/cr400544s. [102] Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad, K.X. Lee, Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract, Nanoscale Res. Lett. 11 (2016) 276. https://doi.org/10.1186/s11671-016-1498-2. [103] F. Azadi, A. Karimi-Jashni, M.M. Zerafat, Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment, Ecotoxicol. Environ. Saf. 165 (2018) 467–475. https://doi.org/10.1016/j.ecoenv.2018.09.032. [104] G. Tabbì, A. Giuffrida, R.P. Bonomo, Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features, J. Inorg. Biochem. 128 (2013) 137–145. https://doi.org/10.1016/j.jinorgbio.2013.07.035. [105] D.F. Mercado, M. Cipollone, M.C. Gonzalez, F.H. Sánchez, Yerba Mate applications: magnetic response of powders and colloids of magnetite nanoparticles coated with Ilex Paraguariensis derivatives., J. Magn. Magn. Mater. 462 (2018) 13–21. https://doi.org/10.1016/j.jmmm.2018.04.048. [106] A.L. Rose, T.D. Waite, Kinetics of iron complexation by dissolved natural organic matter in coastal waters, Mar. Chem. 84 (2003) 85–103. https://doi.org/10.1016/S0304-4203(03)00113-0. [107] N.A.S. Webster, M.J. Loan, I.C. Madsen, R.B. Knott, G.M. Brodie, J.A. Kimpton, An in situ synchrotron X-ray diffraction investigation of lepidocrocite and ferrihydrite-seeded Al(OH) 3 crystallisation from supersaturated sodium aluminate liquor, J. Cryst. Growth. 340 (2012) 112–117. https://doi.org/10.1016/j.jcrysgro.2011.12.002. [108] N. Bost, M.R. Ammar, M.L. Bouchetou, J. Poirier, The catalytic effect of iron oxides on the formation of nano-carbon by the Boudouard reaction in refractories, J. Eur. Ceram. Soc. 36 (2016) 2133–2142. https://doi.org/10.1016/j.jeurceramsoc.2016.02.052. [109] S. Kumar, A.K. Ojha, D. Bhorolua, J. Das, A. Kumar, A. Hazarika, Facile synthesis of CuO nanowires and Cu 2 O nanospheres grown on rGO surface and exploiting its photocatalytic, antibacterial and supercapacitive properties, Phys. B Condens. Matter. 558 (2019) 74–81. https://doi.org/10.1016/j.physb.2019.01.040. [110] S. Rahimi, R.M.M. Moattari, L. Rajabi, A.A. Derakhshan, M. Keyhani, A. Ashraf, M. Keyhani, A.A. Derakhshan, M. Keyhani, Iron oxide/hydroxide (α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media, J. Ind. Eng. Chem. 23 (2015) 33–43. https://doi.org/10.1016/j.jiec.2014.07.039. [111] M. Veneranda, J. Aramendia, L. Bellot-Gurlet, P. Colomban, K. Castro, J.M. Madariaga, FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems, Corros. Sci. 133 (2018) 68–77. https://doi.org/10.1016/j.corsci.2018.01.016. [112] L. Nalbandian, E. Patrikiadou, V. Zaspalis, A. Patrikidou, E. Hatzidaki, C. N. Papandreou, Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation, Curr. Nanosci. 12 (2015) 455–468. https://doi.org/10.2174/1573413712666151210230002. [113] M.C.V.M. Starling, P.P. Souza, A. Le Person, C.C. Amorim, J. Criquet, Intensification of UV-C treatment to remove emerging contaminants by UV-C/H 2 O 2 and UV-C/S 2 O 82− : Susceptibility to photolysis and investigation of acute toxicity, Chem. Eng. J. (2019) 0–1. https://doi.org/10.1016/j.cej.2019.01.135. [114] S. Kato, C. Walling, The Oxidation of Alcohols by Fenton’s Reagent. the Effect of Copper Ion, J. Am. Chem. Soc. 93 (1971) 4275–4281. https://doi.org/10.1021/ja00746a031. [115] A. Santos, S. Rodríguez, F. Pardo, A. Romero, Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water, Sci. Total Environ. 563–564 (2015) 657–663. https://doi.org/10.1016/j.scitotenv.2015.09.044. [116] T. Xu, R. Zhu, H. Shang, Y. Xia, X. Liu, L. Zhang, Photochemical behavior of ferrihydrite-oxalate system : Interfacial reaction mechanism and charge transfer process, Water Res. 159 (2019) 10–19. https://doi.org/10.1016/j.watres.2019.04.055. [117] P. Mazellier, B. Sulzberger, Diuron Degradation in Irradiated , Heterogeneous Iron/Oxalate Systems : The Rate-Determining Step, Enviromental, Sci. Technol. 35 (2001) 3314–3320. [118] Y. Li, W. Zhang, J. Niu, Y. Chen, Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions, Environ. Sci. Technol. 47 (2013) 10293–10301. https://doi.org/10.1021/es400945v. [119] B. Sulzberger, H. Laubscher, Photochemical Reductive Dissolution of Lepidocrocite, (2009) 279–290. https://doi.org/10.1021/ba-1995-0244.ch014. [120] X. Wang, Z. Nan, Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism, Sep. Purif. Technol. 233 (2020) 116023. https://doi.org/10.1016/j.seppur.2019.116023. [121] K.K. Singh, K.K. Senapati, K.C. Sarma, Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution, J. Environ. Chem. Eng. 5 (2017) 2214–2221. https://doi.org/10.1016/j.jece.2017.04.022. [122] A. Gao, H. Liu, L. Hu, H. Zhang, A. Hou, K. Xie, Synthesis of Fe3O4@SiO2-Au/Cu magnetic nanoparticles and its efficient catalytic performance for the Ullman coupling reaction of bromamine acid, Chinese Chem. Lett. 29 (2018) 1301–1304. [123] J. Zhang, J. Zhuang, L. Gao, Y. Zhang, N. Gu, J. Feng, D. Yang, J. Zhu, X. Yan, Decomposing phenol by the hidden talent of ferromagnetic nanoparticles, Chemosphere. 73 (2008) 1524–1528. https://doi.org/10.1016/j.chemosphere.2008.05.050. [124] V. Balan, I.A. Petrache, M.I. Popa, M. Butnaru, E. Barbu, J. Tsibouklis, L. Verestiuc, Biotinylated chitosan-based SPIONs with potential in blood-contacting applications, J. Nanoparticle Res. 14 (2012). https://doi.org/10.1007/s11051-012-0730-y. [125] A. Tadesse, D. Ramadevi, M. Hagos, G. Battu, K. Basavaiah, Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water, RSC Adv. 8 (2018) 8528–8536. https://doi.org/10.1039/c8ra00158h. [126] R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review, Mater. Today Chem. 8 (2018) 96–109. https://doi.org/10.1016/j.mtchem.2018.03.003. [127] D.S. Monje, K.M. Chacon, I.C. Galindo, C. Castaño, L.M. Ballesteros-Rueda, G.C. Valencia, M.C. Gonzalez, D.F. Mercado, Carbon dots from agroindustrial residues: a critical comparison of the effect of physicochemical properties on their performance as photocatalyst and emulsion stabilizer, Mater. Today Chem. 20 (2021) 100445. https://doi.org/10.1016/j.mtchem.2021.100445. [128] P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses , properties , characterization and bioanalytical applications of fluorescent carbon dots, Microchim. Acta. 183 (2016) 519–542. https://doi.org/10.1007/s00604-015-1705-3. [129] M.J. Molaei, The optical properties and solar energy conversion applications of carbon quantum dots: A review, Sol. Energy. 196 (2020) 549–566. https://doi.org/10.1016/j.solener.2019.12.036. [130] D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang, J.J. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon N. Y. 64 (2013) 424–434. https://doi.org/10.1016/j.carbon.2013.07.095. [131] Z. Deng, C. Liu, Y. Jin, J. Pu, B. Wang, J. Chen, High quantum yield blue- and orange-emitting carbon dots: One-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging, Analyst. 144 (2019) 4569–4574. https://doi.org/10.1039/c9an00672a. [132] Y. Zhou, E.M. Zahran, B.A. Quiroga, J. Perez, K.J. Mintz, Z. Peng, P.Y. Liyanage, R.R. Pandey, C.C. Chusuei, R.M. Leblanc, Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence, Appl. Catal. B Environ. 248 (2019) 157–166. https://doi.org/10.1016/j.apcatb.2019.02.019. [133] Z.A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu, Q. Huo, Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation, Chem. Commun. 46 (2010) 8812–8814. https://doi.org/10.1039/c0cc02724c. [134] M. Gholinejad, F. Zareh, C. Nájera, Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea, Appl. Organomet. Chem. 32 (2018) 1–14. https://doi.org/10.1002/aoc.3984. [135] C. Hu, M. Li, J. Qiu, Y. Sun, Design and fabrication of carbon dots for energy conversion and storage, Chem. Soc. Rev. 48 (2019) 2315–2337. https://doi.org/10.1039/c8cs00750k. [136] R. Ren, Z. Zhang, P. Zhao, J. Shi, K. Han, Z. Yang, D. Gao, F. Bi, Facile and one-step preparation carbon quantum dots from biomass residue and their applications as efficient surfactants, J. Dispers. Sci. Technol. 40 (2019) 627–633. https://doi.org/10.1080/01932691.2018.1475239. [137] C. Wang, H. Shi, M. Yang, Y. Yan, E. Liu, Z. Ji, J. Fan, Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions, Mater. Res. Bull. 124 (2020) 110730. https://doi.org/10.1016/j.materresbull.2019.110730. [138] R. Aggarwal, D. Saini, B. Singh, J. Kaushik, A.K. Garg, S.K. Sonkar, Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye, Sol. Energy. 197 (2020) 326–331. https://doi.org/10.1016/j.solener.2020.01.010. [139] P. Surendran, A. Lakshmanan, G. Vinitha, G. Ramalingam, P. Rameshkumar, Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications, Luminescence. 35 (2020) 196–202. https://doi.org/10.1002/bio.3713. [140] W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang, C. Dong, Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging, Anal. Chim. Acta. 898 (2015) 116–127. https://doi.org/10.1016/j.aca.2015.09.050. [141] A. Prasannan, T. Imae, One-pot synthesis of fluorescent carbon dots from orange waste peels, Ind. Eng. Chem. Res. 52 (2013) 15673–15678. https://doi.org/10.1021/ie402421s. [142] X. Hu, Y. Li, Y. Xu, Z. Gan, X. Zou, J. Shi, X. Huang, Z. Li, Y. Li, Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk, Food Chem. 339 (2021) 127775. https://doi.org/10.1016/j.foodchem.2020.127775. [143] M. Wang, R. Shi, M. Gao, K. Zhang, L. Deng, Q. Fu, L. Wang, D. Gao, Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on orange peels-derived carbon dots modified with EDTA, Food Chem. 318 (2020) 126506. https://doi.org/10.1016/j.foodchem.2020.126506. [144] S.J. Phang, L.L. Tan, Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications, Catal. Sci. Technol. 9 (2019) 5882–5905. https://doi.org/10.1039/c9cy01452g. [145] T. Arumugham, M. Alagumuthu, R.G. Amimodu, S. Munusamy, S.K. Iyer, A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications, Sustain. Mater. Technol. 23 (2020) e00138. https://doi.org/10.1016/j.susmat.2019.e00138. [146] R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, J. Mater. Chem. A. 5 (2017) 3717–3734. https://doi.org/10.1039/c6ta08660h. [147] B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice, RSC Adv. 3 (2013) 8286–8290. https://doi.org/10.1039/c3ra00088e. [148] J.J.M. Lenders, G. Mirabello, N.A.J.M. Sommerdijk, Bioinspired magnetite synthesis via solid precursor phases, Chem. Sci. 7 (2016) 5624–5634. https://doi.org/10.1039/c6sc00523c. [149] S.P. Jovanović, Z. Syrgiannis, M.D. Budimir, D.D. Milivojević, D.J. Jovanovic, V.B. Pavlović, J.M. Papan, M. Bartenwerfer, M.M. Mojsin, M.J. Stevanović, B.T. Todorović Marković, Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea, Mater. Sci. Eng. C. 109 (2020) 110539. https://doi.org/10.1016/j.msec.2019.110539. [150] T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng, Y. Liu, Y. Min, Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction, J. Alloys Compd. 792 (2019) 844–850. https://doi.org/10.1016/j.jallcom.2019.04.097. [151] M. Li, C. Yu, C. Hu, W. Yang, C. Zhao, S. Wang, M. Zhang, J. Zhao, X. Wang, J. Qiu, Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield, Chem. Eng. J. 320 (2017) 570–575. https://doi.org/10.1016/j.cej.2017.03.090. [152] M.J. Perri, Y.B. Lim, S.P. Seitzinger, B.J. Turpin, Organosulfates from glycolaldehyde in aqueous aerosols and clouds: Laboratory studies, Atmos. Environ. 44 (2010) 2658–2664. https://doi.org/10.1016/j.atmosenv.2010.03.031. [153] T. Wang, Y. Zhai, Y. Zhu, C. Li, G. Zeng, A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties, Renew. Sustain. Energy Rev. 90 (2018) 223–247. https://doi.org/10.1016/j.rser.2018.03.071. [154] R. Andreozzi, M. Canterino, V. Caprio, I. Di Somma, R. Sanchirico, Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions, J. Hazard. Mater. 138 (2006) 452–458. https://doi.org/10.1016/j.jhazmat.2006.05.104. [155] M.L. Liu, B. Bin Chen, C.M. Li, C.Z. Huang, Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications, Green Chem. 21 (2019) 449–471. https://doi.org/10.1039/c8gc02736f. [156] J. Wu, P. Wang, F. Wang, Y. Fang, Investigation of the Microstructures of Graphene Quantum Dots ( GQDs ) by Surface-Enhanced Raman Spectroscopy, Nanomaterials. 8 (2018) 864. https://doi.org/10.3390/nano8100864. [157] A. Sachdev, I. Matai, P. Gopinath, Implications of surface passivation on physicochemical and bioimaging properties of carbon dots, RSC Adv. 4 (2014) 20915–20921. https://doi.org/10.1039/c4ra02017k. [158] P. Roy, P. Chen, A.P. Periasamy, Y. Chen, H. Chang, Photoluminescent carbon nanodots : synthesis , physicochemical properties and analytical applications, Mater. Today. 00 (2015) 1–12. https://doi.org/10.1016/j.mattod.2015.04.005. [159] L.M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B.D. Stein, B. Dragnea, Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation, Chem. Mater. 19 (2007) 3624–3632. [160] D. Iglesias, S. Sabater, A. Azua, J.A. Mata, Catalytic applications of Magnetic nanoparticles functionalized using iridium N-Heterocyclic carbene complexes, New J. Chem. (2015). https://doi.org/10.1039/C5NJ00803D. [161] N. Vasimalai, V. Vilas-Boas, J. Gallo, M. de F. Cerqueira, M. Menéndez-Miranda, J.M. Costa-Fernández, L. Diéguez, B. Espiña, M.T. Fernández-Argüelles, Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition, Beilstein J. Nanotechnol. 9 (2018) 530–544. https://doi.org/10.3762/bjnano.9.51. [162] M. Singh, P. Ulbrich, V. Prokopec, P. Svoboda, E. Šantavá, F. Štěpánek, Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors, J. Solid State Chem. 200 (2013) 150–156. https://doi.org/10.1016/j.jssc.2013.01.037. [163] R. Bandi, B.R. Gangapuram, R. Dadigala, R. Eslavath, S.S. Singh, V. Guttena, Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents, RSC Adv. 6 (2016) 28633–28639. https://doi.org/10.1039/c6ra01669c. [164] W.H. Chen, P.C. Kuo, A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry, Energy. 35 (2010) 2580–2586. https://doi.org/10.1016/j.energy.2010.02.054. [165] B. Şenel, N. Demir, G. Büyükköroğlu, M. Yıldız, Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications, Saudi Pharm. J. 27 (2019) 846–858. https://doi.org/10.1016/j.jsps.2019.05.006. [166] O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424–430. https://doi.org/10.1016/S0022-4596(03)00294-9. [167] I. V. Chernyshova, M.F. Hochella, A.S. Madden, Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition, Phys. Chem. Chem. Phys. 9 (2007) 1736–1750. https://doi.org/10.1039/b618790k. [168] C.L. Chun, R.M. Hozalski, W.A. Arnold, Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite, Environ. Sci. Technol. 39 (2005) 8525–8532. https://doi.org/10.1021/es051044g. [169] H. Muthukumar, M. Manickam, Amaranthus spinosus leaf extract mediated FeO nanoparticles : Physicochemical traits , photocatalytic and antioxidant activity, ACS Sustain. Chem. Eng. 3 (2015) 3149–3156. https://doi.org/10.1021/acssuschemeng.5b00722. [170] B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C 3 N 4, Appl. Surf. Sci. 344 (2015) 188–195. https://doi.org/10.1016/j.apsusc.2015.03.086. [171] J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere. 93 (2013) 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059. [172] I. Ahmad, S. Ahmed, Z. Anwar, M.A. Sheraz, M. Sikorski, Photostability and Photostabilization of Drugs and Drug Products, Int. J. Photoenergy. (2016) 1–19. https://doi.org/10.1155/2016/8135608. [173] R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, A. Petre, E. García-Calvo, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Res. 44 (2010) 578–588. https://doi.org/10.1016/j.watres.2009.07.004. [174] E.A. Serna-Galvis, J. Silva-Agredo, A.M. Botero-Coy, A. Moncayo-Lasso, F. Hernández, R.A. Torres-Palma, Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process, Sci. Total Environ. 670 (2019) 623–632. https://doi.org/10.1016/j.scitotenv.2019.03.153. [175] A.A. Godoy, F. Kummrow, P.A.Z. Pamplin, Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment - A review, Chemosphere. 138 (2015) 281–291. https://doi.org/10.1016/j.chemosphere.2015.06.024. [176] C. Salazar, N. Contreras, H.D. Mansilla, J. Yáñez, R. Salazar, Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode, J. Hazard. Mater. 319 (2016) 84–92. https://doi.org/10.1016/j.jhazmat.2016.04.009. [177] A. Ladhari, G. La Mura, C. Di Marino, G. Di Fabio, A. Zarrelli, Sartans: What they are for, how they degrade, where they are found and how they transform, Sustain. Chem. Pharm. 20 (2021) 100409. https://doi.org/10.1016/j.scp.2021.100409. [178] D. Martínez-Pachón, M. Ibáñez, F. Hernández, R.A. Torres-Palma, A. Moncayo-Lasso, Photo-electro-Fenton process applied to the degradation of valsartan: Effect of parameters, identification of degradation routes and mineralization in combination with a biological system, J. Environ. Chem. Eng. 6 (2018) 7302–7311. https://doi.org/10.1016/j.jece.2018.11.015. [179] D. Martínez-Pachón, P. Espinosa-Barrera, J. Rincón-Ortíz, A. Moncayo-Lasso, Advanced oxidation of antihypertensives losartan and valsartan by photo-electro-Fenton at near-neutral pH using natural organic acids and a dimensional stable anode-gas diffusion electrode (DSA-GDE) system under light emission diode (LED) lighting, Environ. Sci. Pollut. Res. 26 (2019) 4426–4437. https://doi.org/10.1007/s11356-018-2645-3. [180] D.C. Castaño, Histidina , Metionina Y Hormona Estimulante De Los Melanocitos Inducidas Por Pterina, 2016. [181] M. Lusina, T. Cindrić, J. Tomaić, M. Peko, L. Pozaić, N. Musulin, Stability study of losartan/hydrochlorothiazide tablets, Int. J. Pharm. 291 (2005) 127–137. https://doi.org/10.1016/j.ijpharm.2004.07.050. [182] R.A. Seburg, J.M. Ballard, T.L. Hwang, C.M. Sullivan, Photosensitized degradation of losartan potassium in an extemporaneous suspension formulation, J. Pharm. Biomed. Anal. 42 (2006) 411–422. https://doi.org/10.1016/j.jpba.2006.04.030. [183] M.C. De rosa, R.J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev. 233–234 (2002) 351–371. http://nathan.instras.com/MyDocsDB/doc-557.pdf (accessed April 13, 2018). [184] C. Castaño, A.H. Thomas, C. Lorente, Type I Photosensitized Oxidation of Methionine†, Photochem. Photobiol. 97 (2021) 91–98. https://doi.org/10.1111/php.13314. [185] L.O. Reid, C. Castaño, M.L. Dántola, V. Lhiaubet-Vallet, M.A. Miranda, M. Luisa Marin, A.H. Thomas, A novel synthetic approach to tyrosine dimers based on pterin photosensitization, Dye. Pigment. 147 (2017) 67–74. https://doi.org/10.1016/j.dyepig.2017.07.058. [186] S. Onoue, N. Igarashi, S. Yamada, Y. Tsuda, High-throughput reactive oxygen species (ROS) assay: An enabling technology for screening the phototoxic potential of pharmaceutical substances, Pharm. Biomed. Anal. 46 (2008) 187–193. [187] N.A. Ludin, A.M. Al-Alwani Mahmoud, A. Bakar Mohamad, A.A.H. Kadhum, K. Sopian, N.S. Abdul Karim, Review on the development of natural dye photosensitizer for dye-sensitized solar cells, Renew. Sustain. Energy Rev. 31 (2014) 386–396. https://doi.org/10.1016/j.rser.2013.12.001. [188] V. Ramar, S. Moothattu, K. Balasubramanian, Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: A green way to remove pollution, Sol. Energy. 169 (2018) 120–127. https://doi.org/10.1016/j.solener.2018.04.040. [189] C. Belver, J. Bedia, J.J. Rodriguez, Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants, J. Hazard. Mater. (2016). https://doi.org/10.1016/j.jhazmat.2016.02.028. [190] I. Fatimah, S. Wang, Narsito, K. Wijaya, Composites of TiO2-aluminum pillared montmorillonite: Synthesis, characterization and photocatalytic degradation of methylene blue, Appl. Clay Sci. 50 (2010) 588–593. https://doi.org/10.1016/j.clay.2010.08.016. [191] S. Zhou, S. Zhang, F. Liu, J. Liu, J. Xue, D. Yang, C. Chang, ZnO nanoflowers photocatalysis of norfloxacin: Effect of triangular silver nanoplates and water matrix on degradation rates, J. Photochem. Photobiol. A Chem. 328 (2016) 97–104. https://doi.org/10.1016/j.jphotochem.2016.03.037. [192] X. Li, X. Sun, L. Zhang, S. Sun, W. Wang, Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4, J. Mater. Chem. A. 6 (2018) 3005–3011. https://doi.org/10.1039/c7ta09762j. [193] Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A. 3 (2015) 3862–3867. https://doi.org/10.1039/c4ta05292g. [194] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon N. Y. 99 (2016) 111–117. https://doi.org/10.1016/j.carbon.2015.12.008. [195] N. Li, Y. Tian, J. Zhao, J. Zhang, W. Zuo, L. Kong, H. Cui, Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light, Chem. Eng. J. 352 (2018) 412–422. https://doi.org/10.1016/j.cej.2018.07.038. [196] M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis, J. Alloys Compd. 846 (2020) 156446. https://doi.org/10.1016/j.jallcom.2020.156446. [197] M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-LED radiation, Catal. Today. 328 (2019) 293–299. https://doi.org/10.1016/j.cattod.2018.11.018. [198] D. Zhu, S. Liu, M. Chen, J. Zhang, X. Wang, Flower-like-flake Fe3O4/g-C3N4 nanocomposite: Facile synthesis, characterization, and enhanced photocatalytic performance, Colloids Surfaces A Physicochem. Eng. Asp. 537 (2018) 372–382. https://doi.org/10.1016/j.colsurfa.2017.10.053. [199] Y. Xu, F. Ge, Z. Chen, S. Huang, W. Wei, M. Xie, H. Xu, H. Li, One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance, Appl. Surf. Sci. 469 (2019) 739–746. https://doi.org/10.1016/j.apsusc.2018.11.062. [200] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C 3 N 4 -based photocatalysts, Appl. Surf. Sci. 391 (2017) 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030. [201] J. Jiang, S. Cao, C. Hu, C. Chen, A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution, Cuihua Xuebao/Chinese J. Catal. 38 (2017) 1981–1989. https://doi.org/10.1016/S1872-2067(17)62936-X. [202] Y. Wang, S. Zhao, Y. Zhang, J. Fang, Y. Zhou, S. Yuan, C. Zhang, W. Chen, One-pot synthesis of K-doped g-C 3 N 4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation, Appl. Surf. Sci. 440 (2018) 258–265. https://doi.org/10.1016/j.apsusc.2018.01.091. [203] S. Sun, J. Li, J. Cui, X. Gou, Q. Yang, Y. Jiang, S. Liang, Z. Yang, Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production, Int. J. Hydrogen Energy. 44 (2019) 778–787. https://doi.org/10.1016/j.ijhydene.2018.11.019. [204] H. Zhang, L. Jia, P. Wu, R. Xu, J. He, W. Jiang, Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification, Appl. Surf. Sci. 527 (2020) 146584. https://doi.org/10.1016/j.apsusc.2020.146584. [205] V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res. 45 (2011) 2207–2212. https://doi.org/10.1016/j.watres.2011.01.012. [206] Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates, Catal. Sci. Technol. 4 (2014) 1556–1562. https://doi.org/10.1039/c3cy00921a. [207] W. Yan, L. Yan, C. Jing, Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms, Appl. Catal. B Environ. 244 (2019) 475–485. https://doi.org/10.1016/j.apcatb.2018.11.069. [208] L.K.B. Paragas, M.D.G. de Luna, R.A. Doong, Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts, Chemosphere. 210 (2018) 1099–1107. https://doi.org/10.1016/j.chemosphere.2018.07.109. [209] H.-W. Dibbern, R.M. Müller, E. Wirbitzki, UV and IR Spectra Pharmaceutical Substances (UV and IR) and Pharmaceutical and Cosmetic Excipients (IR), 202AD. [210] M.L. Dantola, L.O. Reid, C. Castanõ, C. Lorente, E. Oliveros, A.H. Thomas, Photosensitization of peptides and proteins by pterin derivatives, Pteridines. 28 (2017) 105–114. https://doi.org/10.1515/pterid-2017-0013. [211] C. Castaño, E. Oliveros, A.H. Thomas, C. Lorente, Histidine oxidation photosensitized by pterin: PH dependent mechanism, J. Photochem. Photobiol. B Biol. 153 (2015) 483–489. https://doi.org/10.1016/j.jphotobiol.2015.10.026. [212] E.I. Alarcon, H. Poblete, H.G. Roh, J.F. Couture, J. Comer, I.E. Kochevar, Rose Bengal binding to collagen and tissue photobonding, ACS Omega. 2 (2017) 6646–6657. https://doi.org/10.1021/acsomega.7b00675.EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80052/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1117533322.2021.pdf1117533322.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf6418552https://repositorio.unal.edu.co/bitstream/unal/80052/2/1117533322.2021.pdf9ba7b1bf62ef60e1f20a2cf05afc13e0MD52THUMBNAIL1117533322.2021.pdf.jpg1117533322.2021.pdf.jpgGenerated Thumbnailimage/jpeg5659https://repositorio.unal.edu.co/bitstream/unal/80052/3/1117533322.2021.pdf.jpga36e40e921884b832904bf854567d7a6MD53unal/80052oai:repositorio.unal.edu.co:unal/800522024-07-28 01:13:06.614Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==