Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr

ilustraciones, fotografías, graficas

Autores:
Quiroga Mateus, William Andrés
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83943
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83943
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Carbonato de glicerol
Biodiésel
Carboxilación directa
Captura de CO2
Glycerol carbonate
Biodiesel
Direct carboxylation
CO2 capture
carboxylation
catalytic activity
Carboxilación
actividad catalítica
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_c2604b00b40eae28cf321402348070b4
oai_identifier_str oai:repositorio.unal.edu.co:unal/83943
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
dc.title.translated.eng.fl_str_mv Obtaining of glycerol carbonate from glycerol and CO2 using La and La/Zr oxides
title Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
spellingShingle Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Carbonato de glicerol
Biodiésel
Carboxilación directa
Captura de CO2
Glycerol carbonate
Biodiesel
Direct carboxylation
CO2 capture
carboxylation
catalytic activity
Carboxilación
actividad catalítica
title_short Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
title_full Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
title_fullStr Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
title_full_unstemmed Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
title_sort Obtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/Zr
dc.creator.fl_str_mv Quiroga Mateus, William Andrés
dc.contributor.advisor.none.fl_str_mv Velasquéz Márquez, León Mauricio
dc.contributor.author.none.fl_str_mv Quiroga Mateus, William Andrés
dc.contributor.researchgroup.spa.fl_str_mv Estado Sólido y Catálisis Ambiental
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Carbonato de glicerol
Biodiésel
Carboxilación directa
Captura de CO2
Glycerol carbonate
Biodiesel
Direct carboxylation
CO2 capture
carboxylation
catalytic activity
Carboxilación
actividad catalítica
dc.subject.proposal.spa.fl_str_mv Carbonato de glicerol
Biodiésel
Carboxilación directa
Captura de CO2
dc.subject.proposal.eng.fl_str_mv Glycerol carbonate
Biodiesel
Direct carboxylation
CO2 capture
dc.subject.wikidata.eng.fl_str_mv carboxylation
catalytic activity
dc.subject.wikidata.spa.fl_str_mv Carboxilación
actividad catalítica
description ilustraciones, fotografías, graficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-01T15:10:41Z
dc.date.available.none.fl_str_mv 2023-06-01T15:10:41Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83943
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83943
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] C. Teodoriu and O. Bello, “A review of cement testing apparatus and methods under CO2 environment and their impact on well integrity prediction – Where do we stand ?,” J. Pet. Sci. Eng., vol. 187, no. September 2019, p. 106736, 2020.
[2] H. Esmaeili, “A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts,” Fuel Process. Technol., vol. 230, no. March, p. 107224, 2022.
[3] M. V Semkiv, J. Ruchala, K. V Dmytruk, and A. A. Sibirny, “100 Years Later , What Is New in Glycerol Bioproduction ?,” Trends Biotechnol., vol. 38, no. 8, pp. 907–916, 2020.
[4] J. A. Posada-duque and C. A. Cardona-alzate, “Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiésel la producción de biodiésel,” Ing. Univ. Bogotá, vol. 14, no. 1, pp. 9–27, 2010.
[5] International Energy Agency, “CO2 emissions from fuel combustion,” Outlook, pp. 1–92, 2020.
[6] S. Lukato, G. N. Kasozi, B. Naziriwo, and E. Tebandeke, “Glycerol carbonylation with CO2
[7] P. de Caro, M. Bandres, M. Urrutigoïty, C. Cecutti, and S. Thiebaud-Roux, “Recent progress in synthesis of glycerol carbonate and evaluation of its plasticizing properties,” Front. Chem., vol. 7, no. MAY, pp. 1–13, 2019.
[8] “Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases.” [Online]. Available: https://gml.noaa.gov/ccgg/trends/global.html. [Accessed: 19-Feb-2022].
[9] S. Chen, G. Zhou, and C. Miao, “Green and renewable bio-diesel produce from oil hydrodeoxygenation : Strategies for catalyst development and mechanism,” Renew. Sustain. Energy Rev., vol. 101, no. November 2018, pp. 568–589, 2019.
[10] Herrera et all, “Biocombustibles En Colombia,” FedeBiocombustibles, p. 22, 2020.
[11] “Federación nacional de biocombustibles de Colombia,” 2021. [Online]. Available: https://www.fedebiocombustibles.com/nota-web-id-488.htm. [Accessed: 23-Mar-2021].
[12] M. Ripoll and L. Betancor, “Opportunities for the valorization of industrial glycerol via biotransformations,” Curr. Opin. Green Sustain. Chem., vol. 28, 2021.
[13] A. Khosravanipour Mostafazadeh et al., “An insight into an electro-catalytic reactor concept for high value-added production from crude glycerol: Optimization, electrode passivation, product distribution, and reaction pathway identification,” Renewable Energy, vol. 172. pp. 130–144, 2021.
[14] P. U. Okoye, A. Longoria, P. J. Sebastian, S. Wang, S. Li, and B. H. Hameed, “A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol,” Sci. Total Environ., vol. 719, 2020.
[15] S. Nomanbhay, M. Y. Ong, K. W. Chew, P. Show, M. K. Lam, and W. Chen, “Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production : A Review,” Energies, vol. 13, no. 1483, pp. 1–23, 2020.
[16] M. O. Sonnati, S. Amigoni, T. Darmanin, and O. Choulet, “Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications,” Green Chem., no. 2005, pp. 283–306, 2013.
[17] S. Christy, A. Noschese, M. Lomelí-Rodriguez, N. Greeves, and J. A. Lopez-Sanchez, “Recent progress in the synthesis and applications of glycerol carbonate,” Curr. Opin. Green Sustain. Chem., vol. 14, pp. 99–107, 2018.
[18] G. P. Fernandes and G. D. Yadav, “Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst,” Catal. Today, vol. 309, no. March 2017, pp. 153–160, 2018.
[19] W. K. Teng, G. C. Ngoh, R. Yusoff, and M. K. Aroua, “A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters,” Energy Convers. Manag., vol. 88, pp. 484–497, 2014.
[20] S. Sahani, S. N. Upadhyay, and Y. C. Sharma, “Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification,” Ind. Eng. Chem. Res., vol. 60, no. 1, pp. 67–88, 2021.
[21] H. Li et al., “Synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3/ZnO 36 catalysts,” Catal. Sci. Technol., vol. 0, no. 0, p. 0, 2013.
[22] J. Liu and D. He, “Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst,” J. CO2 Util., vol. 26, no. May, pp. 370–379, 2018.
[23] J. Liu, Y. Li, H. Liu, and D. He, “Transformation of CO2 and glycerol to glycerol carbonate over CeO2 e ZrO2 solid solution effect of Zr doping,” Biomass and Bioenergy, vol. 118, no. October 2017, pp. 74–83, 2018.
[24] H. Li et al., “Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites,” Catal. Sci. Technol., vol. 5, no. 2, pp. 989–1005, 2015.
[25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res., vol. 42, no. 4, pp. 663–674, 2003.
[25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res., vol. 42, no. 4, pp. 663–674, 2003.
[26] Huntsman Corp, “JEFFSOL ® Glycerine Carbonate,” p. Technical Bulletin, 2010.
[27] R. G. Sotomayor, A. R. Holguín, D. M. Cristancho, D. R. Delgado, and F. Martínez, “Extended Hildebrand Solubility Approach applied to piroxicam in ethanol + water mixtures,” J. Mol. Liq., vol. 180, pp. 34–38, 2013.
[28] P. Lameiras et al., “Glycerol and glycerol carbonate as ultraviscous solvents for mixture analysis by NMR,” J. Magn. Reson., vol. 212, no. 1, pp. 161–168, 2011.
[29] D. Bégin, M. Moumen, and M. Gérin, “La substitution des solvants par l’alcool benzylique rapport.” 2005.
[30] C. Ursin, C. M. Hansen, J. W. Van Dyk, P. O. Jensen, I. J. Christensen, and J. Ebbehoej, “Permeability of Commercial Solvents Through Living Human Skin,” Am. Ind. Hyg. Assoc. J., vol. 56, no. 7, pp. 651–660, 1995.
[31] G. Ou, B. He, and Y. Yuan, “Design of biosolvents through hydroxyl functionalization of compounds with high dielectric constant,” Appl. Biochem. Biotechnol., vol. 166, no. 6, pp. 1472–1479, 2012.
[32] M. Benoit, Y. Brissonnet, E. Guélou, K. De-Oliveira-Vigier, J. Barrault, and F. Jérôme, “Acidcatalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent,” ChemSusChem, vol. 3, no. 11, pp. 1304–1309, 2010.
[33] S. Holmiere, R. Valentin, and P. Marechal, “Esters of oligo- ( glycerol carbonate-glycerol ): new biobased oligomeric,” 2016.
[34] J. Britz, W. H. Meyer, and G. Wegner, “Blends of poly(meth)acrylates with 2-oxo- (1,3)dioxolane side chains and lithium salts as lithium ion conductors,” Macromolecules, vol. 40, no. 21, pp. 7558–7565, 2007.
[35] A. S. Kovvali and K. K. Sirkar, “Dendrimer liquid membranes: CO2 separation from gas mixtures,” Ind. Eng. Chem. Res., vol. 40, no. 11, pp. 2502–2511, 2001.
[36] K. Iaych, S. Dumarcay, P. Gérardin, R. Belakhmima, M. Ebn Touhami, and M. Chaouch, “Non isocyanate route to polyurethanes from polyglycerol five membered polycarbonate,” J. Mater. Environ. Sci., vol. 6, no. 11, pp. 3245–3250, 2015.
[37] R. Bai et al., “One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a highly efficient and easily available solid catalyst NaAlO2,” Green Chem., vol. 15, no. 10, pp. 2929–2934, 2013.
[38] J. Geschwind and H. Frey, “Poly(1,2-glycerol carbonate): A fundamental polymer structure synthesized from CO2 and glycidyl ethers,” Macromolecules, vol. 46, no. 9, pp. 3280–3287, 2013.
[39] Y. Tachibana, X. Shi, D. Graiver, and R. Narayan, “The Use of Glycerol Carbonate in the Preparation of Highly Branched Siloxy Polymers,” Silicon, vol. 7, no. 1, pp. 5–13, 2015.
[40] H. Joo, S. J. Cho, and K. Na, “Control of CO2 absorption capacity and kinetics by MgO-based dry sorbents promoted with carbonate and nitrate salts,” J. CO2 Util., vol. 19, pp. 194–201, 2017.
[41] J. Miranda-Pizarro, A. Perejón, J. M. Valverde, L. A. Pérez-Maqueda, and P. E. SánchezJiménez, “CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions,” Fuel, vol. 196, pp. 497–507, 2017.
[42] N. Azri, R. Irmawati, U. Idris Nda-Umar, M. Izham Saiman, and Y. Hin Taufiq-Yap, “Promotional Effect of Transition Metals (Cu, Ni, Co, Fe, Zn)–Supported on Dolomite for Hydrogenolysis of Glycerol into 1,2-propanediol,” Arab. J. Chem., p. 103047, 2021.
[43] T. Leungcharoenwattana and S. Jitkarnka, “Bio-based chemical production from glycerol conversion with ethanol co-feeding over Zr-promoted MgAl-layered double oxide catalysts: Impact of zirconium location,” J. Clean. Prod., vol. 273, 2020.
[44] X. Su et al., “Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate,” Green Chem., vol. 19, no. 7, pp. 1775–1781, 2017.
[45] H. Li et al., “Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X = F, Cl, Br) catalysts: The influence of the interlayer anion,” J. Mol. Catal. A Chem., vol. 402, pp. 71–78, 2015.
[46] N. A. Razali, M. Conte, and J. McGregor, “The role of impurities in the La2O3 catalysed carboxylation of crude glycerol,” Catal. Letters, vol. 149, no. 5, pp. 1403–1414, 2019.
[47] V. A. Online, A. B. Halgeri, and G. V Shanbhag, “Glycerol acetins: Fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst,” RSC Adv., vol. 5, no. 126, pp. 104354–104362, 2015.
[48] L. Jyoti et al., “Shape selectivity and acidity effects in glycerol acetylation with acetic anhydride: Selective synthesis of triacetin over Y-zeolite and sulfonated mesoporous carbons,” J. Catal., vol. 329, pp. 237–247, 2015.
[49] M. Aresta, A. Dibenedetto, F. Nocito, and C. Pastore, “A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions,” Atmos. Environ., vol. 41, no. 2, pp. 407–416, 2007.
[50] J. George, Y. Patel, S. M. Pillai, and P. Munshi, “Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst,” J. Mol. Catal. A Chem., vol. 304, no. 1–2, pp. 1–7, 2009.
[51] P. G. Jessop and B. Subramaniam, “Gas-Expanded Liquids,” Chem. Rev., vol. 107, pp. 2666– 2694, 2007.
[52] J. Zhang and D. He, “Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: the role of supports,” Wiley Online Libr., no. April, 2014.
[53] J. Liu, Y. Li, J. Zhang, and D. He, “Glycerol carbonylation with CO2 to glycerol carbonate 38 over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters,” Appl. Catal. A Gen., vol. 513, pp. 9–18, 2016.
[54] C. yi Park, H. Nguyen-Phu, and E. W. Shin, “Glycerol carbonation with CO2 and La2O2CO3ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure,” Mol. Catal., vol. 435, pp. 99–109, 2017.
[55] L. P. Ozorio and C. J. A. Mota, “Direct Carbonation of Glycerol with CO2 Catalyzed by Metal Oxides,” ChemPubSoc Eur., vol. 909, pp. 3260–3265, 2017.
[56] J. Liu, Y. Li, H. Liu, and D. He, “Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts,” Appl. Catal. B Environ., vol. 244, no. September 2018, pp. 836–843, 2019.
[57] Y. Li, H. Liu, L. Ma, J. Liu, and D. He, “Transforming glycerol and CO2 into glycerol carbonate over La2O2CO3-ZnO catalyst — a case study of the photo-thermal synergism,” Catal. Sci. Technol., vol. 11, no. 3, pp. 1007–1013, 2021.
[58] C. Collett, O. Mašek, N. Razali, and J. McGregor, “Influence of biochar composition and source material on catalytic performance: the carboxylation of glycerol with CO2 as a case study,” Catalysts, vol. 10, no. 9, pp. 1–20, 2020.
[59] C. Vieville, J. W. Yoo, S. Pelet, and Z. Mouloungui, “Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins,” Catal. Letters, vol. 56, pp. 245–247, 1998.
[60] L. P. Ozorio et al., “Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2,” Appl. Catal. A Gen., vol. 504, pp. 187–191, 2015.
[61] C. Hu, M. Yoshida, H. Chen, S. Tsunekawa, Y. Lin, and J. Huang, “Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst,” Chem. Eng. Sci., vol. 235, p. 116451, 2021.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 86 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83943/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83943/2/1024545419.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83943/3/1024545419.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
dbb5aaee68896d713af9a92d05e0a3c0
48fc81cb51b62fe755399a84eb1acebd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089717407285248
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velasquéz Márquez, León Mauricio0d552eac92d33127ec7f0030c3ee7d97Quiroga Mateus, William Andrés818ffe02cda130112e3d7b01aa591a30Estado Sólido y Catálisis Ambiental2023-06-01T15:10:41Z2023-06-01T15:10:41Z2023https://repositorio.unal.edu.co/handle/unal/83943Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasEn este trabajo de investigación se realizó inicialmente una revisión del estado del arte sobre la reacción de carboxilación directa entre el glicerol y el CO2 para la obtención de carbonato de glicerol, abarcando aspectos como las problemáticas ambientales, la naturaleza de los catalizadores empleados, limitaciones cinéticas y termodinámicas. Posteriormente, óxidos de La y La/Zr fueron sintetizados por el método de coprecipitación convencional y caracterizados evaluando sus propiedades fisicoquímicas para luego ser empleados en dicha reacción. Adicionalmente, se realizó un estudio sobre los parámetros que afectan la reacción como el efecto del agua, temperatura, presión, tiempo, agente desecante y masa de catalizador. Finalmente, los resultados obtenidos ilustran que el catalizador de La/Zr es promisorio para la producción de este compuesto de alto interés industrial debido a la correlación entre su capacidad de captura y liberación de CO2 junto a su actividad catalítica. (Texto tomado de la fuente)In this research work, a review of the state of the art on the direct carboxylation reaction between glycerol and CO2 to obtain glycerol carbonate was mainly carried out, covering aspects such as environmental problems, the nature of the catalysts used, kinetic and thermodynamics limitations. Subsequently, the oxides of La and La/Zr were synthesized by the conventional coprecipitation method and characterized by evaluating their physicochemical properties to later be used in this reaction. Additionally, a study was carried out on the parameters that flourish the reaction such as the effect of water, temperature, pressure, time, drying agent and catalyst mass. Finally, the results obtained illustrate that the La/Zr catalyst is promising for the production of this compound of high industrial interest due to the connection between its capacity to capture and release CO2 together with its catalytic activity.MaestríaMagíster en Ciencias - QuímicaCatálisis Heterogénea86 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesCarbonato de glicerolBiodiéselCarboxilación directaCaptura de CO2Glycerol carbonateBiodieselDirect carboxylationCO2 capturecarboxylationcatalytic activityCarboxilaciónactividad catalíticaObtención de carbonato de glicerol a partir de glicerol y CO2 empleando óxidos de La y La/ZrObtaining of glycerol carbonate from glycerol and CO2 using La and La/Zr oxidesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] C. Teodoriu and O. Bello, “A review of cement testing apparatus and methods under CO2 environment and their impact on well integrity prediction – Where do we stand ?,” J. Pet. Sci. Eng., vol. 187, no. September 2019, p. 106736, 2020.[2] H. Esmaeili, “A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts,” Fuel Process. Technol., vol. 230, no. March, p. 107224, 2022.[3] M. V Semkiv, J. Ruchala, K. V Dmytruk, and A. A. Sibirny, “100 Years Later , What Is New in Glycerol Bioproduction ?,” Trends Biotechnol., vol. 38, no. 8, pp. 907–916, 2020.[4] J. A. Posada-duque and C. A. Cardona-alzate, “Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiésel la producción de biodiésel,” Ing. Univ. Bogotá, vol. 14, no. 1, pp. 9–27, 2010.[5] International Energy Agency, “CO2 emissions from fuel combustion,” Outlook, pp. 1–92, 2020.[6] S. Lukato, G. N. Kasozi, B. Naziriwo, and E. Tebandeke, “Glycerol carbonylation with CO2[7] P. de Caro, M. Bandres, M. Urrutigoïty, C. Cecutti, and S. Thiebaud-Roux, “Recent progress in synthesis of glycerol carbonate and evaluation of its plasticizing properties,” Front. Chem., vol. 7, no. MAY, pp. 1–13, 2019.[8] “Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases.” [Online]. Available: https://gml.noaa.gov/ccgg/trends/global.html. [Accessed: 19-Feb-2022].[9] S. Chen, G. Zhou, and C. Miao, “Green and renewable bio-diesel produce from oil hydrodeoxygenation : Strategies for catalyst development and mechanism,” Renew. Sustain. Energy Rev., vol. 101, no. November 2018, pp. 568–589, 2019.[10] Herrera et all, “Biocombustibles En Colombia,” FedeBiocombustibles, p. 22, 2020.[11] “Federación nacional de biocombustibles de Colombia,” 2021. [Online]. Available: https://www.fedebiocombustibles.com/nota-web-id-488.htm. [Accessed: 23-Mar-2021].[12] M. Ripoll and L. Betancor, “Opportunities for the valorization of industrial glycerol via biotransformations,” Curr. Opin. Green Sustain. Chem., vol. 28, 2021.[13] A. Khosravanipour Mostafazadeh et al., “An insight into an electro-catalytic reactor concept for high value-added production from crude glycerol: Optimization, electrode passivation, product distribution, and reaction pathway identification,” Renewable Energy, vol. 172. pp. 130–144, 2021.[14] P. U. Okoye, A. Longoria, P. J. Sebastian, S. Wang, S. Li, and B. H. Hameed, “A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol,” Sci. Total Environ., vol. 719, 2020.[15] S. Nomanbhay, M. Y. Ong, K. W. Chew, P. Show, M. K. Lam, and W. Chen, “Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production : A Review,” Energies, vol. 13, no. 1483, pp. 1–23, 2020.[16] M. O. Sonnati, S. Amigoni, T. Darmanin, and O. Choulet, “Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications,” Green Chem., no. 2005, pp. 283–306, 2013.[17] S. Christy, A. Noschese, M. Lomelí-Rodriguez, N. Greeves, and J. A. Lopez-Sanchez, “Recent progress in the synthesis and applications of glycerol carbonate,” Curr. Opin. Green Sustain. Chem., vol. 14, pp. 99–107, 2018.[18] G. P. Fernandes and G. D. Yadav, “Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst,” Catal. Today, vol. 309, no. March 2017, pp. 153–160, 2018.[19] W. K. Teng, G. C. Ngoh, R. Yusoff, and M. K. Aroua, “A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters,” Energy Convers. Manag., vol. 88, pp. 484–497, 2014.[20] S. Sahani, S. N. Upadhyay, and Y. C. Sharma, “Critical Review on Production of Glycerol Carbonate from Byproduct Glycerol through Transesterification,” Ind. Eng. Chem. Res., vol. 60, no. 1, pp. 67–88, 2021.[21] H. Li et al., “Synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3/ZnO 36 catalysts,” Catal. Sci. Technol., vol. 0, no. 0, p. 0, 2013.[22] J. Liu and D. He, “Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst,” J. CO2 Util., vol. 26, no. May, pp. 370–379, 2018.[23] J. Liu, Y. Li, H. Liu, and D. He, “Transformation of CO2 and glycerol to glycerol carbonate over CeO2 e ZrO2 solid solution effect of Zr doping,” Biomass and Bioenergy, vol. 118, no. October 2017, pp. 74–83, 2018.[24] H. Li et al., “Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites,” Catal. Sci. Technol., vol. 5, no. 2, pp. 989–1005, 2015.[25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res., vol. 42, no. 4, pp. 663–674, 2003.[25] J. H. Clements, “Reactive applications of cyclic alkylene carbonates,” Ind. Eng. Chem. Res., vol. 42, no. 4, pp. 663–674, 2003.[26] Huntsman Corp, “JEFFSOL ® Glycerine Carbonate,” p. Technical Bulletin, 2010.[27] R. G. Sotomayor, A. R. Holguín, D. M. Cristancho, D. R. Delgado, and F. Martínez, “Extended Hildebrand Solubility Approach applied to piroxicam in ethanol + water mixtures,” J. Mol. Liq., vol. 180, pp. 34–38, 2013.[28] P. Lameiras et al., “Glycerol and glycerol carbonate as ultraviscous solvents for mixture analysis by NMR,” J. Magn. Reson., vol. 212, no. 1, pp. 161–168, 2011.[29] D. Bégin, M. Moumen, and M. Gérin, “La substitution des solvants par l’alcool benzylique rapport.” 2005.[30] C. Ursin, C. M. Hansen, J. W. Van Dyk, P. O. Jensen, I. J. Christensen, and J. Ebbehoej, “Permeability of Commercial Solvents Through Living Human Skin,” Am. Ind. Hyg. Assoc. J., vol. 56, no. 7, pp. 651–660, 1995.[31] G. Ou, B. He, and Y. Yuan, “Design of biosolvents through hydroxyl functionalization of compounds with high dielectric constant,” Appl. Biochem. Biotechnol., vol. 166, no. 6, pp. 1472–1479, 2012.[32] M. Benoit, Y. Brissonnet, E. Guélou, K. De-Oliveira-Vigier, J. Barrault, and F. Jérôme, “Acidcatalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent,” ChemSusChem, vol. 3, no. 11, pp. 1304–1309, 2010.[33] S. Holmiere, R. Valentin, and P. Marechal, “Esters of oligo- ( glycerol carbonate-glycerol ): new biobased oligomeric,” 2016.[34] J. Britz, W. H. Meyer, and G. Wegner, “Blends of poly(meth)acrylates with 2-oxo- (1,3)dioxolane side chains and lithium salts as lithium ion conductors,” Macromolecules, vol. 40, no. 21, pp. 7558–7565, 2007.[35] A. S. Kovvali and K. K. Sirkar, “Dendrimer liquid membranes: CO2 separation from gas mixtures,” Ind. Eng. Chem. Res., vol. 40, no. 11, pp. 2502–2511, 2001.[36] K. Iaych, S. Dumarcay, P. Gérardin, R. Belakhmima, M. Ebn Touhami, and M. Chaouch, “Non isocyanate route to polyurethanes from polyglycerol five membered polycarbonate,” J. Mater. Environ. Sci., vol. 6, no. 11, pp. 3245–3250, 2015.[37] R. Bai et al., “One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a highly efficient and easily available solid catalyst NaAlO2,” Green Chem., vol. 15, no. 10, pp. 2929–2934, 2013.[38] J. Geschwind and H. Frey, “Poly(1,2-glycerol carbonate): A fundamental polymer structure synthesized from CO2 and glycidyl ethers,” Macromolecules, vol. 46, no. 9, pp. 3280–3287, 2013.[39] Y. Tachibana, X. Shi, D. Graiver, and R. Narayan, “The Use of Glycerol Carbonate in the Preparation of Highly Branched Siloxy Polymers,” Silicon, vol. 7, no. 1, pp. 5–13, 2015.[40] H. Joo, S. J. Cho, and K. Na, “Control of CO2 absorption capacity and kinetics by MgO-based dry sorbents promoted with carbonate and nitrate salts,” J. CO2 Util., vol. 19, pp. 194–201, 2017.[41] J. Miranda-Pizarro, A. Perejón, J. M. Valverde, L. A. Pérez-Maqueda, and P. E. SánchezJiménez, “CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions,” Fuel, vol. 196, pp. 497–507, 2017.[42] N. Azri, R. Irmawati, U. Idris Nda-Umar, M. Izham Saiman, and Y. Hin Taufiq-Yap, “Promotional Effect of Transition Metals (Cu, Ni, Co, Fe, Zn)–Supported on Dolomite for Hydrogenolysis of Glycerol into 1,2-propanediol,” Arab. J. Chem., p. 103047, 2021.[43] T. Leungcharoenwattana and S. Jitkarnka, “Bio-based chemical production from glycerol conversion with ethanol co-feeding over Zr-promoted MgAl-layered double oxide catalysts: Impact of zirconium location,” J. Clean. Prod., vol. 273, 2020.[44] X. Su et al., “Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate,” Green Chem., vol. 19, no. 7, pp. 1775–1781, 2017.[45] H. Li et al., “Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X = F, Cl, Br) catalysts: The influence of the interlayer anion,” J. Mol. Catal. A Chem., vol. 402, pp. 71–78, 2015.[46] N. A. Razali, M. Conte, and J. McGregor, “The role of impurities in the La2O3 catalysed carboxylation of crude glycerol,” Catal. Letters, vol. 149, no. 5, pp. 1403–1414, 2019.[47] V. A. Online, A. B. Halgeri, and G. V Shanbhag, “Glycerol acetins: Fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst,” RSC Adv., vol. 5, no. 126, pp. 104354–104362, 2015.[48] L. Jyoti et al., “Shape selectivity and acidity effects in glycerol acetylation with acetic anhydride: Selective synthesis of triacetin over Y-zeolite and sulfonated mesoporous carbons,” J. Catal., vol. 329, pp. 237–247, 2015.[49] M. Aresta, A. Dibenedetto, F. Nocito, and C. Pastore, “A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions,” Atmos. Environ., vol. 41, no. 2, pp. 407–416, 2007.[50] J. George, Y. Patel, S. M. Pillai, and P. Munshi, “Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst,” J. Mol. Catal. A Chem., vol. 304, no. 1–2, pp. 1–7, 2009.[51] P. G. Jessop and B. Subramaniam, “Gas-Expanded Liquids,” Chem. Rev., vol. 107, pp. 2666– 2694, 2007.[52] J. Zhang and D. He, “Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: the role of supports,” Wiley Online Libr., no. April, 2014.[53] J. Liu, Y. Li, J. Zhang, and D. He, “Glycerol carbonylation with CO2 to glycerol carbonate 38 over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters,” Appl. Catal. A Gen., vol. 513, pp. 9–18, 2016.[54] C. yi Park, H. Nguyen-Phu, and E. W. Shin, “Glycerol carbonation with CO2 and La2O2CO3ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure,” Mol. Catal., vol. 435, pp. 99–109, 2017.[55] L. P. Ozorio and C. J. A. Mota, “Direct Carbonation of Glycerol with CO2 Catalyzed by Metal Oxides,” ChemPubSoc Eur., vol. 909, pp. 3260–3265, 2017.[56] J. Liu, Y. Li, H. Liu, and D. He, “Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts,” Appl. Catal. B Environ., vol. 244, no. September 2018, pp. 836–843, 2019.[57] Y. Li, H. Liu, L. Ma, J. Liu, and D. He, “Transforming glycerol and CO2 into glycerol carbonate over La2O2CO3-ZnO catalyst — a case study of the photo-thermal synergism,” Catal. Sci. Technol., vol. 11, no. 3, pp. 1007–1013, 2021.[58] C. Collett, O. Mašek, N. Razali, and J. McGregor, “Influence of biochar composition and source material on catalytic performance: the carboxylation of glycerol with CO2 as a case study,” Catalysts, vol. 10, no. 9, pp. 1–20, 2020.[59] C. Vieville, J. W. Yoo, S. Pelet, and Z. Mouloungui, “Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins,” Catal. Letters, vol. 56, pp. 245–247, 1998.[60] L. P. Ozorio et al., “Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2,” Appl. Catal. A Gen., vol. 504, pp. 187–191, 2015.[61] C. Hu, M. Yoshida, H. Chen, S. Tsunekawa, Y. Lin, and J. Huang, “Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst,” Chem. Eng. Sci., vol. 235, p. 116451, 2021.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83943/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024545419.2023.pdf1024545419.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf2421506https://repositorio.unal.edu.co/bitstream/unal/83943/2/1024545419.2023.pdfdbb5aaee68896d713af9a92d05e0a3c0MD52THUMBNAIL1024545419.2023.pdf.jpg1024545419.2023.pdf.jpgGenerated Thumbnailimage/jpeg5496https://repositorio.unal.edu.co/bitstream/unal/83943/3/1024545419.2023.pdf.jpg48fc81cb51b62fe755399a84eb1acebdMD53unal/83943oai:repositorio.unal.edu.co:unal/839432024-08-09 23:19:52.41Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=