Ecología de gradientes en paisajes fragmentados andinos

ilustraciones, diagramas, mapas

Autores:
Ortiz Yusty, Carlos Eduardo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83795
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83795
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
590 - Animales::598 - Pájaros
Ecología humana
Human ecology
Habitat (Ecología)
Habitat (Ecology)
Aves - Habitat
Birds - Habitat
Ecología de Paisaje
Sensores Remotos
Ocupación
Modelo de Paisaje
Landscape ecology
Occupancy
Landscape model
Remote sensing
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_c1c60adb9c57bb6284b6c575bcb13e2b
oai_identifier_str oai:repositorio.unal.edu.co:unal/83795
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Ecología de gradientes en paisajes fragmentados andinos
dc.title.translated.eng.fl_str_mv Gradient ecology in fragmented Andean landscapes
title Ecología de gradientes en paisajes fragmentados andinos
spellingShingle Ecología de gradientes en paisajes fragmentados andinos
570 - Biología::577 - Ecología
590 - Animales::598 - Pájaros
Ecología humana
Human ecology
Habitat (Ecología)
Habitat (Ecology)
Aves - Habitat
Birds - Habitat
Ecología de Paisaje
Sensores Remotos
Ocupación
Modelo de Paisaje
Landscape ecology
Occupancy
Landscape model
Remote sensing
title_short Ecología de gradientes en paisajes fragmentados andinos
title_full Ecología de gradientes en paisajes fragmentados andinos
title_fullStr Ecología de gradientes en paisajes fragmentados andinos
title_full_unstemmed Ecología de gradientes en paisajes fragmentados andinos
title_sort Ecología de gradientes en paisajes fragmentados andinos
dc.creator.fl_str_mv Ortiz Yusty, Carlos Eduardo
dc.contributor.advisor.none.fl_str_mv Zamora-Abrego, Joan Gastón
dc.contributor.author.none.fl_str_mv Ortiz Yusty, Carlos Eduardo
dc.contributor.researchgroup.spa.fl_str_mv Ecología y Conservación de Fauna Silvestre
dc.contributor.orcid.spa.fl_str_mv ORTIZ-YUSTY, CARLOS [0000-0002-8119-5270]
Zamora-Abrego, Joan Gastón [0000-0003-2904-4077]
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Carlos-Ortiz-Yusty
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
590 - Animales::598 - Pájaros
topic 570 - Biología::577 - Ecología
590 - Animales::598 - Pájaros
Ecología humana
Human ecology
Habitat (Ecología)
Habitat (Ecology)
Aves - Habitat
Birds - Habitat
Ecología de Paisaje
Sensores Remotos
Ocupación
Modelo de Paisaje
Landscape ecology
Occupancy
Landscape model
Remote sensing
dc.subject.lemb.none.fl_str_mv Ecología humana
Human ecology
Habitat (Ecología)
Habitat (Ecology)
Aves - Habitat
Birds - Habitat
dc.subject.proposal.spa.fl_str_mv Ecología de Paisaje
Sensores Remotos
Ocupación
Modelo de Paisaje
dc.subject.proposal.eng.fl_str_mv Landscape ecology
Occupancy
Landscape model
Remote sensing
description ilustraciones, diagramas, mapas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-04-26T20:30:50Z
dc.date.available.none.fl_str_mv 2023-04-26T20:30:50Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83795
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83795
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
RedCol
LaReferencia
Agrovoc
dc.relation.references.spa.fl_str_mv Abbot, E. J., & Firestone, F. A. (1933). Specifying surface quality. Mechanical Engineering, 55(9), 569–572.
Abdel Moniem, H. E. M., & Holland, J. D. (2013). Habitat connectivity for pollinator beetles using surface metrics. Landscape Ecology, 28(7), 1251–1267. https://doi.org/10.1007/s10980-013-9886-9
Abouheif, E. (1999). A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research, 1(8), 895–909.
Algar, A. C., Kerr, J. T., & Currie, D. J. (2009). Evolutionary constraints on regional faunas: Whom, but not how many. Ecology Letters, 12(1), 57–65. https://doi.org/10.1111/j.1461-0248.2008.01260.x
Alvarado, F., Andrade, E. R., Santos, B. A., Prescott, G., Souza, G., & Escobar, F. (2018). Forest cover is more important than farmland heterogeneity and livestock intensification for the retention of dung beetle phylogenetic diversity. Ecological Indicators, 93(May), 524–532. https://doi.org/10.1016/j.ecolind.2018.05.041
Anderson, D., & Burnham, K. (2002). Model selection and multi-model inference: A practical information-theoretic approach (Second Edi). Springer-Verlag New York Inc.
Andrade, E. R., Jardim, J. G., Santos, B. A., Melo, F. P. L., Talora, D. C., Faria, D., & Cazetta, E. (2015). Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. Forest Ecology and Management, 349, 73–84. https://doi.org/10.1016/j.foreco.2015.03.049
Andren, H. (1999). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. NCASI Technical Bulletin, 71(781 I), 12–13. https://doi.org/10.2307/3545823
Arroyo-Rodríguez, V., Cavender-Bares, J., Escobar, F., Melo, F. P. L., Tabarelli, M., & Santos, B. A. (2012). Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology, 100(3), 702–711. https://doi.org/10.1111/j.1365-2745.2011.01952.x
Barbosa, A. M. (2015). fuzzySim: Applying fuzzy logic to binary similarity indices in ecology. Methods in Ecology and Evolution, 6(7), 853–858. https://doi.org/10.1111/2041-210X.12372
Barker, G. M. (2002). Phylogenetic diversity: A quantitative framework for measurement of priority and achievement in biodiversity conservation. Biological Journal of the Linnean Society, 76(2), 165–194. https://doi.org/10.1046/j.1095-8312.2002.00055.x
Barlow, J., Mestre, L. A. M., Gardner, T. A., & Peres, C. A. (2007a). The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation, 136(2), 212–231. https://doi.org/10.1016/j.biocon.2006.11.021
Bélisle, M., Desbochers, A., & Fortin, M. J. (2001). Influence of forest cover on the movements of forest birds: A homing experiment. Ecology, 82(7), 1893–1904. https://doi.org/10.1890/0012-9658(2001)082[1893:IOFCOT]2.0.CO;2
Bello, F., Fibich, P., Zelený, D., Kopecký, M., Mudrák, O., Chytrý, M., Pyšek, P., Wild, J., Michalcová, D., Sádlo, J., Šmilauer, P., Lepš, J., & Pärtel, M. (2016). Measuring size and composition of species pools: A comparison of dark diversity estimates. Ecology and Evolution, 6(12), 4088–4101. https://doi.org/10.1002/ece3.2169
Beninde, J., Feldmeier, S., Werner, M., Peroverde, D., Schulte, U., Hochkirch, A., & Veith, M. (2016). Cityscape genetics: Structural vs. Functional connectivity of an urban lizard population. Molecular Ecology, 25(20), 4984–5000. https://doi.org/10.1111/mec.13810
Bennett, D. J., Choimes, A., Collen, B., Day, J., Palma, A. De, Dı, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Echeverria-london, S., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Laginha, D., … Mace, G. M. (2015). Global effects of land use on local terrestrial biodiversity. https://doi.org/10.1038/nature14324
Biz, M., Cornelius, C., & Metzger, J. P. W. (2017). Matrix type affects movement behavior of a Neotropical understory forest bird. Perspectives in Ecology and Conservation, 15(1), 10–17. https://doi.org/10.1016/j.pecon.2017.03.001
Bregman, T. P., Sekercioglu, C. H., & Tobias, J. A. (2014). Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biological Conservation, 169, 372–383. https://doi.org/10.1016/j.biocon.2013.11.024
Bruton, M. J., Maron, M., Levin, N., & McAlpine, C. A. (2015). Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes. Landscape Ecology, 30(4), 715–728. https://doi.org/10.1007/s10980-015-0157-9
Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x
Cardoso, P., Rigal, F., Borges, P. A. V., & Carvalho, J. C. (2014). A new frontier in biodiversity inventory: A proposal for estimators of phylogenetic and functional diversity. Methods in Ecology and Evolution, 5(5), 452–461. https://doi.org/10.1111/2041-210X.12173
Carrara, E., Arroyo-Rodríguez, V., Vega-Rivera, J. H., Schondube, J. E., de Freitas, S. M., & Fahrig, L. (2015a). Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biological Conservation, 184, 117–126. https://doi.org/10.1016/j.biocon.2015.01.014
Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S. Y., Norden, N., Letcher, S. G., Clark, D. B., Finegan, B., & Arroyo, J. P. (2011). A novel statistical method for classifying habitat generalists and specialists. Ecology, 92(6), 1332–1343. https://doi.org/10.1890/10-1345.1
Cisneros, L. M. M., Fagan, M. E. E., & Willig, M. R. R. (2015). Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Diversity and Distributions, 21(5), 523–533. https://doi.org/10.1111/ddi.12277
Clements, F. E. (1936). Nature and Structure of the Climax. The Journal of Ecology, 24(1), 252. https://doi.org/10.2307/2256278
Colace, M., Lavorel, S., Grigulis, K., Garden, D., Girel, J., Pellet, G., Douzet, R., Fourier, J., & Cedex, G. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. 135–147. https://doi.org/10.1111/j.1365-2745.2010.01753.x
Congedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1. https://doi.org/10.13140/RG.2.2.29474.02242/1
Correa Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117(April), 106630. https://doi.org/10.1016/j.ecolind.2020.106630
Cushman, S. A., Gutzweiler, K., Evans, J. S., & McGarigal, K. (2010). The gradient paradigm: A conceptual and analytical framework for landscape ecology. In Spatial complexity, informatics, and wildlife conservation (pp. 83–108). Springer.
Cushman, S. A., McKelvey, K. S., Flather, C. H., & McGarigal, K. (2008). Do forest community types provide a sufficient basis to evaluate biological diversity? Frontiers in Ecology and the Environment, 6(1), 13–17. https://doi.org/10.1890/070039
De Bello, F., Lavergne, S., Meynard, C. N., Lepš, J., & Thuiller, W. (2010). The partitioning of diversity: Showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21(5), 992–1000. https://doi.org/10.1111/j.1654-1103.2010.01195.x
De Camargo, R. X., Boucher-Lalonde, V., & Currie, D. J. (2018). At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Diversity and Distributions, 24(5), 629–639. https://doi.org/10.1111/ddi.12706
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., & Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13(8), 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x
Dorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. 1472–1484. https://doi.org/10.1111/geb.12216
Dorazio, R. M., Royle, J. A., Söderström, B., & Glimskär, A. (2006). Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology, 87(4), 842–854. https://doi.org/10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2
Dreiss, L. M., Burgio, K. R., Cisneros, L. M., Klingbeil, B. T., Patterson, B. D., Presley, S. J., & Willig, M. R. (2015). Taxonomic, functional, and phylogenetic dimensions of rodent biodiversity along an extensive tropical elevational gradient. Ecography, 38(9), 876–888. https://doi.org/10.1111/ecog.00971
Dutilleul, P., Clifford, P., Richardson, S., & Hemon, D. (1993). Modifying the t Test for Assessing the Correlation Between Two Spatial Processes. Biometrics, 49(1), 305. https://doi.org/10.2307/2532625
Echeverría-Londoño, S., Newbold, T., Hudson, L. N., Contu, S., Hill, S. L. L., Lysenko, I., Arbel�ez-Cort�s, E., Armbrecht, I., Boekhout, T., Cabra-Garc�a, J., Dominguez-Haydar, Y., Nates-Parra, G., Guti�rrez-Lamus, D. L., Higuera, D., Isaacs-Cubides, P. J., L�pez-Quintero, C. A., Martinez, E., Miranda-Esquivel, D. R., Navarro-Iriarte, L. E., … Purvis, A. (2016). Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), 1099–1111. https://doi.org/10.1111/ddi.12478
Ernst, R., Linsenmair, K. E., & Rödel, M. O. (2006). Diversity erosion beyond the species level: Dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biological Conservation, 133(2), 143–155. https://doi.org/10.1016/j.biocon.2006.05.028
Espinal, L. Sigifredo. (1985). Geografía Ecológica del Departamento de Antioquia (Zonas de Vida (Formaciones Vegetales) del Departamento de Antioquia). Revista Facultad Nacional de Agronomía, 38(1), 5–106.
Estrada, A., Real, R., & Vargas, J. M. (2011). Assessing coincidence between priority conservation areas for vertebrate groups in a Mediterranean hotspot. Biological Conservation, 144(3), 1120–1129. https://doi.org/10.1016/j.biocon.2010.12.031
F. Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres-Neto, P., Reineking, B., Schröder, B., M. Schurr, F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
Fahrig, L. (1997). Relative Effects of Habitat Loss and Fragmentation on Population Extinction. The Journal of Wildlife Management, 61(3), 603. https://doi.org/10.2307/3802168
Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130
Fahrig, L. (2019). Habitat fragmentation: A long and tangled tale. Global Ecology and Biogeography, 28(1), 33–41. https://doi.org/10.1111/geb.12839
Fahrig, L. (2020). Why do several small patches hold more species than few large patches? Global Ecology and Biogeography, August 2019, 1–14. https://doi.org/10.1111/geb.13059
Fahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., Boucher-Lalonde, V., Cazetta, E., Currie, D. J., Eigenbrod, F., Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper, N., Martin, A. E., Martin, J. L., Metzger, J. P., Morrison, P., Rhodes, J. R., Saunders, D. A., Simberloff, D., Smith, A. C., … Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity? Biological Conservation, 230(October 2018), 179–186. https://doi.org/10.1016/j.biocon.2018.12.026
Faith, D. P. (1992). Conservation evaluation and phylogentic diversity. Biological Conservation, 61, 1–10. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
Faith, D. P., Reid, C. A. M., & Hunter, J. (2004). Integrating Phylogenetic Diversity, Complementarity, and Endemism for Conservation Assessment. Conservation Biology, 18(1), 255–261. https://doi.org/10.1111/j.1523-1739.2004.00330.x
Fardila, D., Kelly, L. T., Moore, J. L., & McCarthy, M. A. (2017). A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biological Conservation, 212(March), 130–138. https://doi.org/10.1016/j.biocon.2017.04.031
Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13(3), 252–264. https://doi.org/10.1111/j.1472-4642.2007.00341.x
Fiske, I. J., & Chandler, R. B. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43(10), 1–23. https://doi.org/10.18637/jss.v043.i10
Fletcher, R. J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., Holt, R. D., Gonzalez, A., Pardini, R., Damschen, E. I., Melo, F. P. L., Ries, L., Prevedello, J. A., Tscharntke, T., Laurance, W. F., Lovejoy, T., & Haddad, N. M. (2018). Is habitat fragmentation good for biodiversity? Biological Conservation, 226(July), 9–15. https://doi.org/10.1016/j.biocon.2018.07.022
Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12(1), 22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x
Frazier, A. E., & Kedron, P. (2017). Landscape Metrics: Past Progress and Future Directions. Current Landscape Ecology Reports, 2(3), 63–72. https://doi.org/10.1007/s40823-017-0026-0
Frishkoff, L. O., Karp, D. S., M’Gonigle, L. K., Mendenhall, C. D., Zook, J., Kremen, C., Hadly, E. A., & Daily, G. C. (2014). Loss of avian phylogenetic diversity in neotropical agricultural systems. Science, 345(6202), 1343–1346. https://doi.org/10.1126/science.1254610
Gardiner, R., Bain, G., Hamer, R., Jones, M. E., & Johnson, C. N. (2018). Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landscape Ecology, 33(11), 1837–1849. https://doi.org/10.1007/s10980-018-0722-0
Geoffroy, C., Fiola, M. L., Bélisle, M., & Villard, M. A. (2019a). Functional connectivity in forest birds: Evidence for species-specificity and anisotropy. Landscape Ecology, 34(6), 1363–1377. https://doi.org/10.1007/s10980-019-00849-0
Gittleman, J. L., & Kot, M. (1990). Adaptation: Statistics and a null model for estimating phylogenetic effects. Systematic Zoology, 39(3), 227–241.
Godron, M. (1981). Patches and Structural Components for a Landscape Ecology. BioScience, 31(10), 733–740. https://doi.org/10.2307/1308780
Gomez, C., Tenorio, E. A., & Cadena, D. (2020). 100+ years of bird survey data reveal changes in functional fingerprints indexing ecosystem health of a tropical montane forest through time. BioRxiv.
González, J. J., Etter, A. A., Sarmiento, A. H., Orrego, S. A., Ramírez, C., Cabrera, E., Vargas, D., Galindo, G., García, M. C., & Ordoñez, M. F. (2011). Análisis de tendencias y patrones espaciales de deforestación en Colombia. In Ideam.
Gotelli, N. J. (2000). Null Model Analysis of Species Co-Occurrence Patterns. Ecology, 81(9), 2606. https://doi.org/10.2307/177478
Gustafson, E. J. (2019). How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century? Landscape Ecology, 34(9), 2065–2072. https://doi.org/10.1007/s10980-018-0709-x
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth ’ s ecosystems. Applied Ecology, March, 1–9. https://doi.org/10.1126/sciadv.1500052
Haddad, N. M., Gonzalez, A., Brudvig, L. A., Burt, M. A., Levey, D. J., & Damschen, E. I. (2017). Experimental evidence does not support the Habitat Amount Hypothesis. Ecography, 40(1), 48–55. https://doi.org/10.1111/ecog.02535
Halstead, K. E., Alexander, J. D., Hadley, A. S., Stephens, J. L., Yang, Z., & Betts, M. G. (2019). Using a species-centered approach to predict bird community responses to habitat fragmentation. Landscape Ecology, 34(8), 1919–1935. https://doi.org/10.1007/s10980-019-00860-5
Hansbauer, M. M., Storch, I., Pimentel, R. G., & Metzger, J. P. (2008). Comparative range use by three Atlantic Forest understorey bird species in relation to forest fragmentation. Journal of Tropical Ecology, 24(3), 291–299. https://doi.org/10.1017/S0266467408005002
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
Hardy, O. J. (2008). Testing the spatial phylogenetic structure of local communities: Statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology, 96(5), 914–926. https://doi.org/10.1111/j.1365-2745.2008.01421.x
He, F., & Legendre, P. (2002). Species Diversity Patterns Derived from Species-Area Models. Ecology, 83(5), 1185. https://doi.org/10.2307/3071933
Helmus, M. R., Bland, T. J., Williams, C. K., & Ives, A. R. (2007). Phylogenetic Measures of Biodiversity. The American Naturalist, 169(3), E68–E83. https://doi.org/10.1086/511334
Helmus, M. R., & Ives, A. R. (2012). Phylogenetic diversity–area curves. Ecology, 93(sp8), S31–S43. https://doi.org/10.1890/11-0435.1
Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). Landscapemetrics: An open‐source R tool to calculate landscape metrics. Ecography, 1–10. https://doi.org/10.1111/ecog.04617
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking Community Assembly through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics, 43(1), 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411
IDEAM, I., IAVH, S., & IIAP, I. (2017). Mapa Ecosistemas Continentales, Costeros y Marinos de Colombia. IDEAM Bogotá DC, Colombia.
Iknayan, K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014). Detecting diversity: Emerging methods to estimate species diversity. In Trends in Ecology and Evolution (Vol. 29, Issue 2, pp. 97–106). Elsevier Ltd. https://doi.org/10.1016/j.tree.2013.10.012
Detecting the Multiple Facets of Biodiversity, 31 Trends in Ecology and Evolution 527 (2016). https://doi.org/10.1016/j.tree.2016.04.002
Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K., & Mooers, A. O. (2014). Global Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology, 24(9), 919–930. https://doi.org/10.1016/j.cub.2014.03.011
K. McGarigal. (2002). Landscape pattern metrics. Encyclopedia of Environmetrics, 21(3), 1. https://doi.org/10.1002/9780470057339.val006.pub2
Kattan, G. H., & Franco, P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: Area and mass effects. Global Ecology and Biogeography, 13(5), 451–458. https://doi.org/10.1111/j.1466-822X.2004.00117.x
Kedron, P. J., Frazier, A. E., Ovando-Montejo, G. A., & Wang, J. (2018). Surface metrics for landscape ecology: A comparison of landscape models across ecoregions and scales. Landscape Ecology, 33(9), 1489–1504. https://doi.org/10.1007/s10980-018-0685-1
Keinath, D. A., Doak, D. F., Hodges, K. E., Prugh, L. R., Fagan, W., Sekercioglu, C. H., Buchart, S. H. M., & Kauffman, M. (2017). A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography, 26(1), 115–127. https://doi.org/10.1111/geb.12509
Kennedy, C. M., Marra, P. P., Fagan, W. F., & Neel, M. C. (2010a). Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecological Monographs, 80(4), 651–669. https://doi.org/10.1890/09-0904.1
Kerr, J. T., & Currie, D. J. (1999). The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America. Ecoscience, 6(3), 329–337. https://doi.org/10.1080/11956860.1999.11682546
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592–599. https://doi.org/10.1111/1365-2435.12345
Kupfer, J. A. (2012). Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Progress in Physical Geography: Earth and Environment, 36(3), 400–420. https://doi.org/10.1177/0309133312439594
Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R. U., Tischendorf, L., & Walz, U. (2015). Understanding and quantifying landscape structure—A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295(January), 31–41. https://doi.org/10.1016/j.ecolmodel.2014.08.018
Lavorel, S., Storkey, J., Bardgett, R. D., Bello, F. De, Berg, M. P., Roux, X. Le, Moretti, M., Mulder, C., Pakeman, R. J., & Sandra, D. (2013). SPECIAL FEATURE : FUNCTIONAL DIVERSITY A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. 24, 942–948. https://doi.org/10.1111/jvs.12083
Li, S., & Yang, B. (2015). Introducing a new method for assessing spatially explicit processes of landscape fragmentation. Ecological Indicators, 56, 116–124. https://doi.org/10.1016/j.ecolind.2015.03.031
Lindenmayer, D. B., Fischer, J., & Hobbs, R. (2007). The need for pluralism in landscape models: A reply to Dunn and Majer. Oikos, 116(8), 1419–1421. https://doi.org/10.1111/j.2007.0030-1299.16133.x
Loiselle, B. A., Graham, C. H., Goerck, J. M., & Ribeiro, M. C. (2010). Assessing the impact of deforestation and climate change on the range size and environmental niche of bird species in the Atlantic forests, Brazil. Journal of Biogeography, 37(7), 1288–1301. https://doi.org/10.1111/j.1365-2699.2010.02285.x
Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., & Gascon, F. (2016). Sentinel-2 SEN2COR: L2A processor for users. Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13.
Luck, G. W., Carter, A., & Smallbone, L. (2013). Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063671
MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Monographs in Population Biology I. Princeton University Press. Princeton, New Jersey.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003). Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84(8), 2200–2207. https://doi.org/10.1890/02-3090
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier.
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2018). Chapter 4—Basic Presence/Absence Situation (D. I. MacKenzie, J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, & J. E. B. T.-O. E. and M. (Second E. Hines, Eds.; pp. 115–215). Academic Press. https://doi.org/g/10.1016/B978-0-12-407197-1.00006-5
Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., & Gascon, F. (2017). Sen2Cor for Sentinel-2. Image and Signal Processing for Remote Sensing XXIII, 10427, 1042704.
Mangiafico, S. (2019). Rcompanion: Functions to support extension education program evaluation. R package version 2.0.
Martin, C. A. (2018). An early synthesis of the habitat amount hypothesis. Landscape Ecology, 33(11), 1831–1835. https://doi.org/10.1007/s10980-018-0716-y
Mason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097
Mason, N. W. H. H. W. H., De Bello, F., Mouillot, D., Pavoine, S., Dray, S., Bello, F. De, Mouillot, D., Pavoine, S., De Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24(5), 794–806. https://doi.org/10.1111/jvs.12013
Matos, F. A. R., Magnago, L. F. S., Gastauer, M., Carreiras, J. M. B., Simonelli, M., Meira-Neto, J. A. A., & Edwards, D. P. (2017). Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. Journal of Ecology, 105(1), 265–276. https://doi.org/10.1111/1365-2745.12661
McGarigal, K., & Cushman, S. A. (2005). The gradient concept of landscape structure. In Issues and Perspectives in Landscape Ecology (pp. 112–119). Cambridge University Press. https://doi.org/10.1017/CBO9780511614415.013
McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report - US Department of Agriculture, Forest Service, PNW-GTR-351, 122.
McGarigal, K., Tagil, S., & Cushman, S. A. (2009). Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landscape Ecology, 24(3), 433–450. https://doi.org/10.1007/s10980-009-9327-y
McMullan, M., Donegan, T. M., & Quevedo, A. (2011). Guia de Campo de las Aves de Colombia. ProAves.
Medeiros, H. R., Bochio, G. M., Ribeiro, M. C., Torezan, J. M., & dos Anjos, L. (2015). Combining plant and bird data increases the accuracy of an Index of Biotic Integrity to assess conservation levels of tropical forest fragments. Journal for Nature Conservation, 25, 1–7. https://doi.org/10.1016/j.jnc.2015.01.008
Merckx, T., Dantas de Miranda, M., & Pereira, H. M. (2019). Habitat amount, not patch size and isolation, drives species richness of macro-moth communities in countryside landscapes. Journal of Biogeography, 46(5), 956–967. https://doi.org/10.1111/jbi.13544
Miguet, P., Fahrig, L., & Lavigne, C. (2017). How to quantify a distance-dependent landscape effect on a biological response. Methods in Ecology and Evolution, 8(12), 1717–1724. https://doi.org/10.1111/2041-210X.12830
Mihaljevic, J. R., Maxwell, J. B., & Johnson, P. T. J. (2015). Using multispecies occupancy models to improve the characterization and understanding of metacommunity structure. Ecology, 96(7), 1783–1792. https://doi.org/10.1890/07-1861.1
Miller, E. T., Zanne, A. E., & Ricklefs, R. E. (2013). Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecology Letters, 16(9), 1186–1194. https://doi.org/10.1111/ele.12156
Moffiet, T., Armston, J. D., & Mengersen, K. (2010a). Motivation, development and validation of a new spectral greenness index: A spectral dimension related to foliage projective cover. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 26–41. https://doi.org/10.1016/j.isprsjprs.2009.08.002
Moffiet, T., Armston, J. D., & Mengersen, K. (2010b). Motivation, development and validation of a new spectral greenness index: A spectral dimension related to foliage projective cover. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 26–41. https://doi.org/10.1016/j.isprsjprs.2009.08.002
Montoya-Arango, S., Acevedo-Quintero, J. F., & Parra, J. L. (2019). Abundance and size of birds determine the position of the species in plantfrugivore interaction networks in fragmented forests. Community Ecology, 20(1), 75–82. https://doi.org/10.1556/168.2019.20.1.8
Morante-Filho, J. C., Arroyo-Rodríguez, V., de Andrade, E. R., Santos, B. A., Cazetta, E., & Faria, D. (2018). Compensatory dynamics maintain bird phylogenetic diversity in fragmented tropical landscapes. Journal of Applied Ecology, 55(1), 256–266. https://doi.org/10.1111/1365-2664.12962
Morrison, M. L., & Hall, S. L. (2002). Standard terminology: Toward a common language to advance ecological understanding and application. In Predicting species occurrences. Issues of accuracy and scale (pp. 43–52). Island Press.
Mortelliti, A., Fagiani, S., Battisti, C., Capizzi, D., & Boitani, L. (2010). Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Diversity and Distributions, 16(6), 941–951. https://doi.org/10.1111/j.1472-4642.2010.00701.x
Mühlner, S., Kormann, U., Schmidt-Entling, M., Herzog, F., & Bailey, D. (2010). Structural Versus Functional Habitat Connectivity Measures to Explain Bird Diversity in Fragmented Orchards. Journal of Landscape Ecology, 3(1), 52–64. https://doi.org/10.2478/v10285-012-0023-2
Munguía-Rosas, M. A., Jurado-Dzib, S. G., Mezeta-Cob, C. R., Montiel, S., Rojas, A., & Pech-Canché, J. M. (2014). Continuous forest has greater taxonomic, functional and phylogenetic plant diversity than an adjacent naturally fragmented forest. Journal of Tropical Ecology, 30(4), 323–333. https://doi.org/10.1017/S0266467414000194
Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691
Neuschulz, E. L., Brown, M., & Farwig, N. (2013a). Frequent bird movements across a highly fragmented landscape: The role of species traits and forest matrix. Animal Conservation, 16(2), 170–179. https://doi.org/10.1111/j.1469-1795.2012.00582.x
Neuschulz, E. L., Brown, M., & Farwig, N. (2013b). Frequent bird movements across a highly fragmented landscape: The role of species traits and forest matrix. Animal Conservation, 16(2), 170–179. https://doi.org/10.1111/j.1469-1795.2012.00582.x
Nicolson, M. (2013). Community concepts in plant ecology: From Humboldtian plant geography to the superorganism and beyond. Web Ecology, 13(April), 95–102. https://doi.org/10.5194/we-13-95-2013
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.
Petchey, O. L., & Gaston, K. J. (2002). Functional diversity ( FD ), species richness and community composition. Ecology Letters, 5, 402–411.
Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x
Petchey, O. L., Hector, A., & Gaston, K. J. (2004). How do different measeures of functional diversity perform. Ecology, 85(3), 847–857. https://doi.org/10.1890/03-0226
Pfeifer, M., Lefebvre, V., Gardner, T. A., Arroyo-Rodriguez, V., Baeten, L., Banks-Leite, C., Barlow, J., Betts, M. G., Brunet, J., Cerezo, A., Cisneros, L. M., Collard, S., D’Cruze, N., da Silva Motta, C., Duguay, S., Eggermont, H., Eigenbrod, F., Hadley, A. S., Hanson, T. R., … Ewers, R. M. (2014). BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecology and Evolution, 4(9), 1524–1537. https://doi.org/10.1002/ece3.1036
Polasky, S., Csuti, B., Vossler, C. A., & Meyers, S. M. (2001). A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biological Conservation, 97(1), 99–105. https://doi.org/10.1016/S0006-3207(00)00103-8
Posadas, P., Miranda Esquivel, D. R., & Crisci, J. V. (2001). Using phylogenetic diversity measures to set priorities in conservation: An example from southern South America. Conservation Biology, 15(5), 1325–1334. https://doi.org/10.1046/j.1523-1739.2001.99404.x
Prescott, G. W., Gilroy, J. J., Haugaasen, T., Medina Uribe, C. A., Foster, W. A., & Edwards, D. P. (2016). Managing Neotropical oil palm expansion to retain phylogenetic diversity. Journal of Applied Ecology, 53(1), 150–158. https://doi.org/10.1111/1365-2664.12571
Price, B., McAlpine, C. A., Kutt, A. S., Phinn, S. R., Pullar, D. V., & Ludwig, J. A. (2009). Continuum or discrete patch landscape models for savanna birds? Towards a pluralistic approach. Ecography, 32(5), 745–756. https://doi.org/10.1111/j.1600-0587.2009.05670.x
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Ramdani, F., Rahman, S., & Giri, C. (2019). Principal polar spectral indices for mapping mangroves forest in South East Asia: Study case Indonesia. International Journal of Digital Earth, 12(10), 1103–1117. https://doi.org/10.1080/17538947.2018.1454516
Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21(1), 24–43.
Rapacciuolo, G., Graham, C. H., Marin, J., Behm, J. E., Costa, G. C., Hedges, S. B., Helmus, M. R., Radeloff, V. C., Young, B. E., & Brooks, T. M. (2019). Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nature Ecology and Evolution, 3(1), 53–61. https://doi.org/10.1038/s41559-018-0744-7
Real, R., Barbosa, A. M., & Vargas, J. M. (2006). Obtaining environmental favourability functions from logistic regression. Environmental and Ecological Statistics, 13(2), 237–245. https://doi.org/10.1007/s10651-005-0003-3
Real, R., Márcia Barbosa, A., & Bull, J. W. (2017). Species distributions, quantum theory, and the enhancement of biodiversity measures. Systematic Biology, 66(3), 453–462. https://doi.org/10.1093/sysbio/syw072
Redding, D. W., & Mooers, A. O. (2006). Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20(6), 1670–1678. https://doi.org/10.1111/j.1523-1739.2006.00555.x
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Ricotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B. E. L., & Pavoine, S. (2016). Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution, 7(11), 1386–1395. https://doi.org/10.1111/2041-210X.12604
Rodríguez, R. A., Herrera, A. M., Riera, R., Santander, J., Miranda, J. V., Quirós, Á., Fernández-Rodríguez, M. J., Fernández-Palacios, J. M., Otto, R., Escudero, C. G., Jiménez-Rodríguez, A., Navarro-Cerrillo, R. M., Perdomo, M. E., & Delgado, J. D. (2015). Distribution of species diversity values: A link between classical and quantum mechanics in ecology. Ecological Modelling, 313, 162–180. https://doi.org/10.1016/j.ecolmodel.2015.06.021
Salgueiro, P. A., Mira, A., Rabaça, J. E., Silva, C., Eufrázio, S., Medinas, D., Manghi, G., Silva, B., & Santos, S. M. (2018). Thinking outside the patch: A multi-species comparison of conceptual models from real-world landscapes. Landscape Ecology, 33(3), 353–370. https://doi.org/10.1007/s10980-017-0603-y
Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. The R Journal, 8(1), 289–317. https://doi.org/10.1016/j.physbeh.2017.03.040
Shafer, C. L. (1990). Nature reserves: Island theory and conservation practice. Smithsonian Institution Press.
Smith, A. C., Fahrig, L., & Francis, C. M. (2011). Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography, 34(1), 103–113. https://doi.org/10.1111/j.1600-0587.2010.06201.x
Smith, M. A., Hallwachs, W., & Janzen, D. H. (2014). Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography, 37(8), 720–731. https://doi.org/10.1111/j.1600-0587.2013.00631.x
Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. https://doi.org/10.1111/ele.12277
Stevens, R. D., & Gavilanez, M. M. (2015). Dimensionality of community structure: Phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients. Ecography, 38(9), 861–875. https://doi.org/10.1111/ecog.00847
Terraube, J., Archaux, F., Deconchat, M., van Halder, I., Jactel, H., & Barbaro, L. (2016). Forest edges have high conservation value for bird communities in mosaic landscapes. Ecology and Evolution, 6(15), 5178–5189. https://doi.org/10.1002/ece3.2273
Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes—Eight hypotheses. In Biological Reviews (Vol. 87, Issue 3, pp. 661–685). https://doi.org/10.1111/j.1469-185X.2011.00216.x
Turner, M. G. (2005). Landscape Ecology: What Is the State of the Science? Annual Review of Ecology, Evolution, and Systematics, 36(1), 319–344. https://doi.org/10.1146/annurev.ecolsys.36.102003.152614
Valente, J. J., & Betts, M. G. (2019). Response to fragmentation by avian communities is mediated by species traits. Diversity and Distributions, 25(1), 48–60. https://doi.org/10.1111/ddi.12837
Emerging patterns in the comparative analysis of phylogenetic community structure, 18 Molecular Ecology 572 (2009). https://doi.org/10.1111/j.1365-294X.2008.04001.x
Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media.
Villard, M. A., Kurtis Trzcinski, M., & Merriam, G. (1999). Fragmentation effects on forest birds: Relative influence of woodland cover and configuration on landscape occupancy. Conservation Biology, 13(4), 774–783. https://doi.org/10.1046/j.1523-1739.1999.98059.x
Vogt, P., Ferrari, J. R., Lookingbill, T. R., Gardner, R. H., Riitters, K. H., & Ostapowicz, K. (2009). Mapping functional connectivity. Ecological Indicators, 9(1), 64–71. https://doi.org/10.1016/j.ecolind.2008.01.011
Walter, S. T., Browne, L., Freile, J., Olivo, J., González, M., & Karubian, J. (2017a). Landscape-level tree cover predicts species richness of large-bodied frugivorous birds in forest fragments. Biotropica, 49(6), 838–847. https://doi.org/10.1111/btp.12469
Walter, S. T., Browne, L., Freile, J., Olivo, J., González, M., & Karubian, J. (2017b). Landscape-level tree cover predicts species richness of large-bodied frugivorous birds in forest fragments. Biotropica, 49(6), 838–847. https://doi.org/10.1111/btp.12469
Wang, X., Swenson, N. G., Wiegand, T., Wolf, A., Howe, R., Lin, F., Ye, J., Yuan, Z., Shi, S., Bai, X., Xing, D., & Hao, Z. (2013). Phylogenetic and functional diversity area relationships in two temperate forests. Ecography, 36(8), 883–893. https://doi.org/10.1111/j.1600-0587.2012.00011.x
Watling, J. I., Arroyo‐Rodríguez, V., Pfeifer, M., Baeten, L., Banks‐Leite, C., Cisneros, L. M., Fang, Re., Hamel‐Leigue, A. C., Lachat, T., Leal, I. R., Lens, L., Possingham, H. P., Raheem, D. C., Ribeiro, D. B., Slade, E. M., Urbina‐Cardona, J. N., Wood, E. M., & Fahrig, L. (2020). Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, ele.13471. https://doi.org/10.1111/ele.13471
Webb, C. O., Ackerly, D. D., Mcpeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annu. Rev. Ecol. Syst, 33(2002), 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
Wiens, J. J. (2011). The niche, biogeography and species interactions. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 366, Issue 1576, pp. 2336–2350). https://doi.org/10.1098/rstb.2011.0059
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. In Ecology Letters (Vol. 13, Issue 10, pp. 1310–1324). https://doi.org/10.1111/j.1461-0248.2010.01515.x
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology, 95(7), 2027–2027. https://doi.org/10.1890/13-1917.1
Wilson, M. C., Chen, X.-Y., Corlett, R. T., Didham, R. K., Ding, P., Holt, R. D., Holyoak, M., Hu, G., Hughes, A. C., Jiang, L., Laurance, W. F., Liu, J., Pimm, S. L., Robinson, S. K., Russo, S. E., Si, X., Wilcove, D. S., Wu, J., & Yu, M. (2016). Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landscape Ecology, 31(2), 219–227. https://doi.org/10.1007/s10980-015-0312-3
Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to movement: A review. Landscape Ecology, 27(6), 777–797. https://doi.org/10.1007/s10980-012-9737-0
Zipkin, E. F., Andrew Royle, J., Dawson, D. K., & Bates, S. (2010). Multi-species occurrence models to evaluate the effects of conservation and management actions. Biological Conservation, 143(2), 479–484. https://doi.org/10.1016/j.biocon.2009.11.016
Zupan, L., Cabeza, M., Maiorano, L., Roquet, C., Devictor, V., Lavergne, S., Mouillot, D., Mouquet, N., Renaud, J., & Thuiller, W. (2014). Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Diversity and Distributions, 20(6), 674–685. https://doi.org/10.1111/ddi.12186
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 114 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Área Andina, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Doctorado en Ecología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83795/2/TesisDoctorado_CarlosOrtizY_Final2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83795/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83795/3/TesisDoctorado_CarlosOrtizY_Final2023.pdf.jpg
bitstream.checksum.fl_str_mv 2bfc0364e4e6339bf2a9c6c97a413d0c
eb34b1cf90b7e1103fc9dfd26be24b4a
e896e3afa69a9238fc0469c03cae8c88
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089939379290112
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zamora-Abrego, Joan Gastón 322f38b857170e1bd0d470d9cfa9f79c600Ortiz Yusty, Carlos Eduardo6d11917928989c3f0c21cd0bf05e98efEcología y Conservación de Fauna SilvestreORTIZ-YUSTY, CARLOS [0000-0002-8119-5270]Zamora-Abrego, Joan Gastón [0000-0003-2904-4077]https://www.researchgate.net/profile/Carlos-Ortiz-Yusty2023-04-26T20:30:50Z2023-04-26T20:30:50Z2020https://repositorio.unal.edu.co/handle/unal/83795Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasLa crisis de pérdida de biodiversidad ha generado numerosos estudios para evaluar los efectos de las actividades humanas sobre la biodiversidad, especialmente en términos de pérdida y fragmentación de hábitats. La conceptualización y delimitación de los hábitats en los estudios de pérdida y fragmentación de hábitat a menudo se simplifica bajo el modelo de parche-corredor-mosaico (M-PCM), lo que puede limitar la efectividad de las acciones de conservación. La simplificación de los hábitats y la relación de los organismos con estos en el modelo M-PCM puede ser una de las causas de los resultados conflictivos obtenidos en los análisis de comunidades biológicas. En este trabajo se propone que analizar los hábitats y la respuesta de los organismos a estos con un enfoque de gradientes (M-G), que represente de manera más realista el ambiente y sea consistente con la teoría de nicho ecológico, puede conducir a obtener conclusiones más precisas al evaluar los efectos del cambio ambiental sobre la distribución de las especies. Se destaca la importancia de investigar diferentes formas de cuantificar el cambio ambiental y caracterizar la respuesta de la biodiversidad a estos cambios a diferentes escalas espaciales y ecológicas. (Texto tomado de la fuente)The biodiversity loss crisis has generated numerous studies to assess the effects of human activities on biodiversity, especially in terms of habitat loss and fragmentation. The conceptualization and delimitation of habitats in habitat loss and fragmentation studies is often simplified under the patch-corridor-mosaic model (M-PCM), which can limit the effectiveness of conservation actions. The simplification of habitats and the relationship of organisms to habitats in the M-PCM model may be one of the causes of conflicting results obtained in biological community analyses. This work proposes that analyzing habitats and the response of organisms to them with a gradient approach (M-G), which more realistically represents the environment and is consistent with ecological niche theory, can lead to more accurate conclusions when assessing the effects of environmental change on species distributions. It highlights the importance of investigating different ways of quantifying environmental change and characterizing the response of biodiversity to these changes at different spatial and ecological scales.Este trabajo fue apoyado por el Ministerio de Ciencia, Tecnología e Innovación de Colombia (Minciencias) a través del Programa Nacional de Fomento a la Formación de Investigadores [Beca número 647]. El trabajo de campo fue financiado por ISAGEN S.A. y la Universidad de Antioquia (UdeA) en el marco del proyecto interinstitucional 47/146.DoctoradoDoctor en EcologíaEcología de comunidades y ecosistemasÁrea Curricular en Bosques y Conservación Ambientalx, 114 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Doctorado en EcologíaFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - Ecología590 - Animales::598 - PájarosEcología humanaHuman ecologyHabitat (Ecología)Habitat (Ecology)Aves - HabitatBirds - HabitatEcología de PaisajeSensores RemotosOcupaciónModelo de PaisajeLandscape ecologyOccupancyLandscape modelRemote sensingEcología de gradientes en paisajes fragmentados andinosGradient ecology in fragmented Andean landscapesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDÁrea Andina, ColombiaAgrosaviaRedColLaReferenciaAgrovocAbbot, E. J., & Firestone, F. A. (1933). Specifying surface quality. Mechanical Engineering, 55(9), 569–572.Abdel Moniem, H. E. M., & Holland, J. D. (2013). Habitat connectivity for pollinator beetles using surface metrics. Landscape Ecology, 28(7), 1251–1267. https://doi.org/10.1007/s10980-013-9886-9Abouheif, E. (1999). A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research, 1(8), 895–909.Algar, A. C., Kerr, J. T., & Currie, D. J. (2009). Evolutionary constraints on regional faunas: Whom, but not how many. Ecology Letters, 12(1), 57–65. https://doi.org/10.1111/j.1461-0248.2008.01260.xAlvarado, F., Andrade, E. R., Santos, B. A., Prescott, G., Souza, G., & Escobar, F. (2018). Forest cover is more important than farmland heterogeneity and livestock intensification for the retention of dung beetle phylogenetic diversity. Ecological Indicators, 93(May), 524–532. https://doi.org/10.1016/j.ecolind.2018.05.041Anderson, D., & Burnham, K. (2002). Model selection and multi-model inference: A practical information-theoretic approach (Second Edi). Springer-Verlag New York Inc.Andrade, E. R., Jardim, J. G., Santos, B. A., Melo, F. P. L., Talora, D. C., Faria, D., & Cazetta, E. (2015). Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. Forest Ecology and Management, 349, 73–84. https://doi.org/10.1016/j.foreco.2015.03.049Andren, H. (1999). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. NCASI Technical Bulletin, 71(781 I), 12–13. https://doi.org/10.2307/3545823Arroyo-Rodríguez, V., Cavender-Bares, J., Escobar, F., Melo, F. P. L., Tabarelli, M., & Santos, B. A. (2012). Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology, 100(3), 702–711. https://doi.org/10.1111/j.1365-2745.2011.01952.xBarbosa, A. M. (2015). fuzzySim: Applying fuzzy logic to binary similarity indices in ecology. Methods in Ecology and Evolution, 6(7), 853–858. https://doi.org/10.1111/2041-210X.12372Barker, G. M. (2002). Phylogenetic diversity: A quantitative framework for measurement of priority and achievement in biodiversity conservation. Biological Journal of the Linnean Society, 76(2), 165–194. https://doi.org/10.1046/j.1095-8312.2002.00055.xBarlow, J., Mestre, L. A. M., Gardner, T. A., & Peres, C. A. (2007a). The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation, 136(2), 212–231. https://doi.org/10.1016/j.biocon.2006.11.021Bélisle, M., Desbochers, A., & Fortin, M. J. (2001). Influence of forest cover on the movements of forest birds: A homing experiment. Ecology, 82(7), 1893–1904. https://doi.org/10.1890/0012-9658(2001)082[1893:IOFCOT]2.0.CO;2Bello, F., Fibich, P., Zelený, D., Kopecký, M., Mudrák, O., Chytrý, M., Pyšek, P., Wild, J., Michalcová, D., Sádlo, J., Šmilauer, P., Lepš, J., & Pärtel, M. (2016). Measuring size and composition of species pools: A comparison of dark diversity estimates. Ecology and Evolution, 6(12), 4088–4101. https://doi.org/10.1002/ece3.2169Beninde, J., Feldmeier, S., Werner, M., Peroverde, D., Schulte, U., Hochkirch, A., & Veith, M. (2016). Cityscape genetics: Structural vs. Functional connectivity of an urban lizard population. Molecular Ecology, 25(20), 4984–5000. https://doi.org/10.1111/mec.13810Bennett, D. J., Choimes, A., Collen, B., Day, J., Palma, A. De, Dı, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Echeverria-london, S., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Laginha, D., … Mace, G. M. (2015). Global effects of land use on local terrestrial biodiversity. https://doi.org/10.1038/nature14324Biz, M., Cornelius, C., & Metzger, J. P. W. (2017). Matrix type affects movement behavior of a Neotropical understory forest bird. Perspectives in Ecology and Conservation, 15(1), 10–17. https://doi.org/10.1016/j.pecon.2017.03.001Bregman, T. P., Sekercioglu, C. H., & Tobias, J. A. (2014). Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biological Conservation, 169, 372–383. https://doi.org/10.1016/j.biocon.2013.11.024Bruton, M. J., Maron, M., Levin, N., & McAlpine, C. A. (2015). Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes. Landscape Ecology, 30(4), 715–728. https://doi.org/10.1007/s10980-015-0157-9Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.xCardoso, P., Rigal, F., Borges, P. A. V., & Carvalho, J. C. (2014). A new frontier in biodiversity inventory: A proposal for estimators of phylogenetic and functional diversity. Methods in Ecology and Evolution, 5(5), 452–461. https://doi.org/10.1111/2041-210X.12173Carrara, E., Arroyo-Rodríguez, V., Vega-Rivera, J. H., Schondube, J. E., de Freitas, S. M., & Fahrig, L. (2015a). Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biological Conservation, 184, 117–126. https://doi.org/10.1016/j.biocon.2015.01.014Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S. Y., Norden, N., Letcher, S. G., Clark, D. B., Finegan, B., & Arroyo, J. P. (2011). A novel statistical method for classifying habitat generalists and specialists. Ecology, 92(6), 1332–1343. https://doi.org/10.1890/10-1345.1Cisneros, L. M. M., Fagan, M. E. E., & Willig, M. R. R. (2015). Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Diversity and Distributions, 21(5), 523–533. https://doi.org/10.1111/ddi.12277Clements, F. E. (1936). Nature and Structure of the Climax. The Journal of Ecology, 24(1), 252. https://doi.org/10.2307/2256278Colace, M., Lavorel, S., Grigulis, K., Garden, D., Girel, J., Pellet, G., Douzet, R., Fourier, J., & Cedex, G. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. 135–147. https://doi.org/10.1111/j.1365-2745.2010.01753.xCongedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1. https://doi.org/10.13140/RG.2.2.29474.02242/1Correa Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117(April), 106630. https://doi.org/10.1016/j.ecolind.2020.106630Cushman, S. A., Gutzweiler, K., Evans, J. S., & McGarigal, K. (2010). The gradient paradigm: A conceptual and analytical framework for landscape ecology. In Spatial complexity, informatics, and wildlife conservation (pp. 83–108). Springer.Cushman, S. A., McKelvey, K. S., Flather, C. H., & McGarigal, K. (2008). Do forest community types provide a sufficient basis to evaluate biological diversity? Frontiers in Ecology and the Environment, 6(1), 13–17. https://doi.org/10.1890/070039De Bello, F., Lavergne, S., Meynard, C. N., Lepš, J., & Thuiller, W. (2010). The partitioning of diversity: Showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21(5), 992–1000. https://doi.org/10.1111/j.1654-1103.2010.01195.xDe Camargo, R. X., Boucher-Lalonde, V., & Currie, D. J. (2018). At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Diversity and Distributions, 24(5), 629–639. https://doi.org/10.1111/ddi.12706Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., & Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13(8), 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.xDorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. 1472–1484. https://doi.org/10.1111/geb.12216Dorazio, R. M., Royle, J. A., Söderström, B., & Glimskär, A. (2006). Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology, 87(4), 842–854. https://doi.org/10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2Dreiss, L. M., Burgio, K. R., Cisneros, L. M., Klingbeil, B. T., Patterson, B. D., Presley, S. J., & Willig, M. R. (2015). Taxonomic, functional, and phylogenetic dimensions of rodent biodiversity along an extensive tropical elevational gradient. Ecography, 38(9), 876–888. https://doi.org/10.1111/ecog.00971Dutilleul, P., Clifford, P., Richardson, S., & Hemon, D. (1993). Modifying the t Test for Assessing the Correlation Between Two Spatial Processes. Biometrics, 49(1), 305. https://doi.org/10.2307/2532625Echeverría-Londoño, S., Newbold, T., Hudson, L. N., Contu, S., Hill, S. L. L., Lysenko, I., Arbel�ez-Cort�s, E., Armbrecht, I., Boekhout, T., Cabra-Garc�a, J., Dominguez-Haydar, Y., Nates-Parra, G., Guti�rrez-Lamus, D. L., Higuera, D., Isaacs-Cubides, P. J., L�pez-Quintero, C. A., Martinez, E., Miranda-Esquivel, D. R., Navarro-Iriarte, L. E., … Purvis, A. (2016). Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), 1099–1111. https://doi.org/10.1111/ddi.12478Ernst, R., Linsenmair, K. E., & Rödel, M. O. (2006). Diversity erosion beyond the species level: Dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biological Conservation, 133(2), 143–155. https://doi.org/10.1016/j.biocon.2006.05.028Espinal, L. Sigifredo. (1985). Geografía Ecológica del Departamento de Antioquia (Zonas de Vida (Formaciones Vegetales) del Departamento de Antioquia). Revista Facultad Nacional de Agronomía, 38(1), 5–106.Estrada, A., Real, R., & Vargas, J. M. (2011). Assessing coincidence between priority conservation areas for vertebrate groups in a Mediterranean hotspot. Biological Conservation, 144(3), 1120–1129. https://doi.org/10.1016/j.biocon.2010.12.031F. Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres-Neto, P., Reineking, B., Schröder, B., M. Schurr, F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.xFahrig, L. (1997). Relative Effects of Habitat Loss and Fragmentation on Population Extinction. The Journal of Wildlife Management, 61(3), 603. https://doi.org/10.2307/3802168Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130Fahrig, L. (2019). Habitat fragmentation: A long and tangled tale. Global Ecology and Biogeography, 28(1), 33–41. https://doi.org/10.1111/geb.12839Fahrig, L. (2020). Why do several small patches hold more species than few large patches? Global Ecology and Biogeography, August 2019, 1–14. https://doi.org/10.1111/geb.13059Fahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., Boucher-Lalonde, V., Cazetta, E., Currie, D. J., Eigenbrod, F., Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper, N., Martin, A. E., Martin, J. L., Metzger, J. P., Morrison, P., Rhodes, J. R., Saunders, D. A., Simberloff, D., Smith, A. C., … Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity? Biological Conservation, 230(October 2018), 179–186. https://doi.org/10.1016/j.biocon.2018.12.026Faith, D. P. (1992). Conservation evaluation and phylogentic diversity. Biological Conservation, 61, 1–10. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2Faith, D. P., Reid, C. A. M., & Hunter, J. (2004). Integrating Phylogenetic Diversity, Complementarity, and Endemism for Conservation Assessment. Conservation Biology, 18(1), 255–261. https://doi.org/10.1111/j.1523-1739.2004.00330.xFardila, D., Kelly, L. T., Moore, J. L., & McCarthy, M. A. (2017). A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biological Conservation, 212(March), 130–138. https://doi.org/10.1016/j.biocon.2017.04.031Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13(3), 252–264. https://doi.org/10.1111/j.1472-4642.2007.00341.xFiske, I. J., & Chandler, R. B. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43(10), 1–23. https://doi.org/10.18637/jss.v043.i10Fletcher, R. J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., Holt, R. D., Gonzalez, A., Pardini, R., Damschen, E. I., Melo, F. P. L., Ries, L., Prevedello, J. A., Tscharntke, T., Laurance, W. F., Lovejoy, T., & Haddad, N. M. (2018). Is habitat fragmentation good for biodiversity? Biological Conservation, 226(July), 9–15. https://doi.org/10.1016/j.biocon.2018.07.022Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12(1), 22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.xFrazier, A. E., & Kedron, P. (2017). Landscape Metrics: Past Progress and Future Directions. Current Landscape Ecology Reports, 2(3), 63–72. https://doi.org/10.1007/s40823-017-0026-0Frishkoff, L. O., Karp, D. S., M’Gonigle, L. K., Mendenhall, C. D., Zook, J., Kremen, C., Hadly, E. A., & Daily, G. C. (2014). Loss of avian phylogenetic diversity in neotropical agricultural systems. Science, 345(6202), 1343–1346. https://doi.org/10.1126/science.1254610Gardiner, R., Bain, G., Hamer, R., Jones, M. E., & Johnson, C. N. (2018). Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landscape Ecology, 33(11), 1837–1849. https://doi.org/10.1007/s10980-018-0722-0Geoffroy, C., Fiola, M. L., Bélisle, M., & Villard, M. A. (2019a). Functional connectivity in forest birds: Evidence for species-specificity and anisotropy. Landscape Ecology, 34(6), 1363–1377. https://doi.org/10.1007/s10980-019-00849-0Gittleman, J. L., & Kot, M. (1990). Adaptation: Statistics and a null model for estimating phylogenetic effects. Systematic Zoology, 39(3), 227–241.Godron, M. (1981). Patches and Structural Components for a Landscape Ecology. BioScience, 31(10), 733–740. https://doi.org/10.2307/1308780Gomez, C., Tenorio, E. A., & Cadena, D. (2020). 100+ years of bird survey data reveal changes in functional fingerprints indexing ecosystem health of a tropical montane forest through time. BioRxiv.González, J. J., Etter, A. A., Sarmiento, A. H., Orrego, S. A., Ramírez, C., Cabrera, E., Vargas, D., Galindo, G., García, M. C., & Ordoñez, M. F. (2011). Análisis de tendencias y patrones espaciales de deforestación en Colombia. In Ideam.Gotelli, N. J. (2000). Null Model Analysis of Species Co-Occurrence Patterns. Ecology, 81(9), 2606. https://doi.org/10.2307/177478Gustafson, E. J. (2019). How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century? Landscape Ecology, 34(9), 2065–2072. https://doi.org/10.1007/s10980-018-0709-xHaddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth ’ s ecosystems. Applied Ecology, March, 1–9. https://doi.org/10.1126/sciadv.1500052Haddad, N. M., Gonzalez, A., Brudvig, L. A., Burt, M. A., Levey, D. J., & Damschen, E. I. (2017). Experimental evidence does not support the Habitat Amount Hypothesis. Ecography, 40(1), 48–55. https://doi.org/10.1111/ecog.02535Halstead, K. E., Alexander, J. D., Hadley, A. S., Stephens, J. L., Yang, Z., & Betts, M. G. (2019). Using a species-centered approach to predict bird community responses to habitat fragmentation. Landscape Ecology, 34(8), 1919–1935. https://doi.org/10.1007/s10980-019-00860-5Hansbauer, M. M., Storch, I., Pimentel, R. G., & Metzger, J. P. (2008). Comparative range use by three Atlantic Forest understorey bird species in relation to forest fragmentation. Journal of Tropical Ecology, 24(3), 291–299. https://doi.org/10.1017/S0266467408005002Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693Hardy, O. J. (2008). Testing the spatial phylogenetic structure of local communities: Statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology, 96(5), 914–926. https://doi.org/10.1111/j.1365-2745.2008.01421.xHe, F., & Legendre, P. (2002). Species Diversity Patterns Derived from Species-Area Models. Ecology, 83(5), 1185. https://doi.org/10.2307/3071933Helmus, M. R., Bland, T. J., Williams, C. K., & Ives, A. R. (2007). Phylogenetic Measures of Biodiversity. The American Naturalist, 169(3), E68–E83. https://doi.org/10.1086/511334Helmus, M. R., & Ives, A. R. (2012). Phylogenetic diversity–area curves. Ecology, 93(sp8), S31–S43. https://doi.org/10.1890/11-0435.1Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). Landscapemetrics: An open‐source R tool to calculate landscape metrics. Ecography, 1–10. https://doi.org/10.1111/ecog.04617HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking Community Assembly through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics, 43(1), 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411IDEAM, I., IAVH, S., & IIAP, I. (2017). Mapa Ecosistemas Continentales, Costeros y Marinos de Colombia. IDEAM Bogotá DC, Colombia.Iknayan, K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014). Detecting diversity: Emerging methods to estimate species diversity. In Trends in Ecology and Evolution (Vol. 29, Issue 2, pp. 97–106). Elsevier Ltd. https://doi.org/10.1016/j.tree.2013.10.012Detecting the Multiple Facets of Biodiversity, 31 Trends in Ecology and Evolution 527 (2016). https://doi.org/10.1016/j.tree.2016.04.002Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K., & Mooers, A. O. (2014). Global Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology, 24(9), 919–930. https://doi.org/10.1016/j.cub.2014.03.011K. McGarigal. (2002). Landscape pattern metrics. Encyclopedia of Environmetrics, 21(3), 1. https://doi.org/10.1002/9780470057339.val006.pub2Kattan, G. H., & Franco, P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: Area and mass effects. Global Ecology and Biogeography, 13(5), 451–458. https://doi.org/10.1111/j.1466-822X.2004.00117.xKedron, P. J., Frazier, A. E., Ovando-Montejo, G. A., & Wang, J. (2018). Surface metrics for landscape ecology: A comparison of landscape models across ecoregions and scales. Landscape Ecology, 33(9), 1489–1504. https://doi.org/10.1007/s10980-018-0685-1Keinath, D. A., Doak, D. F., Hodges, K. E., Prugh, L. R., Fagan, W., Sekercioglu, C. H., Buchart, S. H. M., & Kauffman, M. (2017). A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography, 26(1), 115–127. https://doi.org/10.1111/geb.12509Kennedy, C. M., Marra, P. P., Fagan, W. F., & Neel, M. C. (2010a). Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecological Monographs, 80(4), 651–669. https://doi.org/10.1890/09-0904.1Kerr, J. T., & Currie, D. J. (1999). The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America. Ecoscience, 6(3), 329–337. https://doi.org/10.1080/11956860.1999.11682546Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592–599. https://doi.org/10.1111/1365-2435.12345Kupfer, J. A. (2012). Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Progress in Physical Geography: Earth and Environment, 36(3), 400–420. https://doi.org/10.1177/0309133312439594Lausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R. U., Tischendorf, L., & Walz, U. (2015). Understanding and quantifying landscape structure—A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295(January), 31–41. https://doi.org/10.1016/j.ecolmodel.2014.08.018Lavorel, S., Storkey, J., Bardgett, R. D., Bello, F. De, Berg, M. P., Roux, X. Le, Moretti, M., Mulder, C., Pakeman, R. J., & Sandra, D. (2013). SPECIAL FEATURE : FUNCTIONAL DIVERSITY A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. 24, 942–948. https://doi.org/10.1111/jvs.12083Li, S., & Yang, B. (2015). Introducing a new method for assessing spatially explicit processes of landscape fragmentation. Ecological Indicators, 56, 116–124. https://doi.org/10.1016/j.ecolind.2015.03.031Lindenmayer, D. B., Fischer, J., & Hobbs, R. (2007). The need for pluralism in landscape models: A reply to Dunn and Majer. Oikos, 116(8), 1419–1421. https://doi.org/10.1111/j.2007.0030-1299.16133.xLoiselle, B. A., Graham, C. H., Goerck, J. M., & Ribeiro, M. C. (2010). Assessing the impact of deforestation and climate change on the range size and environmental niche of bird species in the Atlantic forests, Brazil. Journal of Biogeography, 37(7), 1288–1301. https://doi.org/10.1111/j.1365-2699.2010.02285.xLouis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., & Gascon, F. (2016). Sentinel-2 SEN2COR: L2A processor for users. Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13.Luck, G. W., Carter, A., & Smallbone, L. (2013). Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063671MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Monographs in Population Biology I. Princeton University Press. Princeton, New Jersey.MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003). Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84(8), 2200–2207. https://doi.org/10.1890/02-3090MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier.MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2018). Chapter 4—Basic Presence/Absence Situation (D. I. MacKenzie, J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, & J. E. B. T.-O. E. and M. (Second E. Hines, Eds.; pp. 115–215). Academic Press. https://doi.org/g/10.1016/B978-0-12-407197-1.00006-5Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., & Gascon, F. (2017). Sen2Cor for Sentinel-2. Image and Signal Processing for Remote Sensing XXIII, 10427, 1042704.Mangiafico, S. (2019). Rcompanion: Functions to support extension education program evaluation. R package version 2.0.Martin, C. A. (2018). An early synthesis of the habitat amount hypothesis. Landscape Ecology, 33(11), 1831–1835. https://doi.org/10.1007/s10980-018-0716-yMason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097Mason, N. W. H. H. W. H., De Bello, F., Mouillot, D., Pavoine, S., Dray, S., Bello, F. De, Mouillot, D., Pavoine, S., De Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24(5), 794–806. https://doi.org/10.1111/jvs.12013Matos, F. A. R., Magnago, L. F. S., Gastauer, M., Carreiras, J. M. B., Simonelli, M., Meira-Neto, J. A. A., & Edwards, D. P. (2017). Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. Journal of Ecology, 105(1), 265–276. https://doi.org/10.1111/1365-2745.12661McGarigal, K., & Cushman, S. A. (2005). The gradient concept of landscape structure. In Issues and Perspectives in Landscape Ecology (pp. 112–119). Cambridge University Press. https://doi.org/10.1017/CBO9780511614415.013McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report - US Department of Agriculture, Forest Service, PNW-GTR-351, 122.McGarigal, K., Tagil, S., & Cushman, S. A. (2009). Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landscape Ecology, 24(3), 433–450. https://doi.org/10.1007/s10980-009-9327-yMcMullan, M., Donegan, T. M., & Quevedo, A. (2011). Guia de Campo de las Aves de Colombia. ProAves.Medeiros, H. R., Bochio, G. M., Ribeiro, M. C., Torezan, J. M., & dos Anjos, L. (2015). Combining plant and bird data increases the accuracy of an Index of Biotic Integrity to assess conservation levels of tropical forest fragments. Journal for Nature Conservation, 25, 1–7. https://doi.org/10.1016/j.jnc.2015.01.008Merckx, T., Dantas de Miranda, M., & Pereira, H. M. (2019). Habitat amount, not patch size and isolation, drives species richness of macro-moth communities in countryside landscapes. Journal of Biogeography, 46(5), 956–967. https://doi.org/10.1111/jbi.13544Miguet, P., Fahrig, L., & Lavigne, C. (2017). How to quantify a distance-dependent landscape effect on a biological response. Methods in Ecology and Evolution, 8(12), 1717–1724. https://doi.org/10.1111/2041-210X.12830Mihaljevic, J. R., Maxwell, J. B., & Johnson, P. T. J. (2015). Using multispecies occupancy models to improve the characterization and understanding of metacommunity structure. Ecology, 96(7), 1783–1792. https://doi.org/10.1890/07-1861.1Miller, E. T., Zanne, A. E., & Ricklefs, R. E. (2013). Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecology Letters, 16(9), 1186–1194. https://doi.org/10.1111/ele.12156Moffiet, T., Armston, J. D., & Mengersen, K. (2010a). Motivation, development and validation of a new spectral greenness index: A spectral dimension related to foliage projective cover. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 26–41. https://doi.org/10.1016/j.isprsjprs.2009.08.002Moffiet, T., Armston, J. D., & Mengersen, K. (2010b). Motivation, development and validation of a new spectral greenness index: A spectral dimension related to foliage projective cover. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 26–41. https://doi.org/10.1016/j.isprsjprs.2009.08.002Montoya-Arango, S., Acevedo-Quintero, J. F., & Parra, J. L. (2019). Abundance and size of birds determine the position of the species in plantfrugivore interaction networks in fragmented forests. Community Ecology, 20(1), 75–82. https://doi.org/10.1556/168.2019.20.1.8Morante-Filho, J. C., Arroyo-Rodríguez, V., de Andrade, E. R., Santos, B. A., Cazetta, E., & Faria, D. (2018). Compensatory dynamics maintain bird phylogenetic diversity in fragmented tropical landscapes. Journal of Applied Ecology, 55(1), 256–266. https://doi.org/10.1111/1365-2664.12962Morrison, M. L., & Hall, S. L. (2002). Standard terminology: Toward a common language to advance ecological understanding and application. In Predicting species occurrences. Issues of accuracy and scale (pp. 43–52). Island Press.Mortelliti, A., Fagiani, S., Battisti, C., Capizzi, D., & Boitani, L. (2010). Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Diversity and Distributions, 16(6), 941–951. https://doi.org/10.1111/j.1472-4642.2010.00701.xMühlner, S., Kormann, U., Schmidt-Entling, M., Herzog, F., & Bailey, D. (2010). Structural Versus Functional Habitat Connectivity Measures to Explain Bird Diversity in Fragmented Orchards. Journal of Landscape Ecology, 3(1), 52–64. https://doi.org/10.2478/v10285-012-0023-2Munguía-Rosas, M. A., Jurado-Dzib, S. G., Mezeta-Cob, C. R., Montiel, S., Rojas, A., & Pech-Canché, J. M. (2014). Continuous forest has greater taxonomic, functional and phylogenetic plant diversity than an adjacent naturally fragmented forest. Journal of Tropical Ecology, 30(4), 323–333. https://doi.org/10.1017/S0266467414000194Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691Neuschulz, E. L., Brown, M., & Farwig, N. (2013a). Frequent bird movements across a highly fragmented landscape: The role of species traits and forest matrix. Animal Conservation, 16(2), 170–179. https://doi.org/10.1111/j.1469-1795.2012.00582.xNeuschulz, E. L., Brown, M., & Farwig, N. (2013b). Frequent bird movements across a highly fragmented landscape: The role of species traits and forest matrix. Animal Conservation, 16(2), 170–179. https://doi.org/10.1111/j.1469-1795.2012.00582.xNicolson, M. (2013). Community concepts in plant ecology: From Humboldtian plant geography to the superorganism and beyond. Web Ecology, 13(April), 95–102. https://doi.org/10.5194/we-13-95-2013Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.Petchey, O. L., & Gaston, K. J. (2002). Functional diversity ( FD ), species richness and community composition. Ecology Letters, 5, 402–411.Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.xPetchey, O. L., Hector, A., & Gaston, K. J. (2004). How do different measeures of functional diversity perform. Ecology, 85(3), 847–857. https://doi.org/10.1890/03-0226Pfeifer, M., Lefebvre, V., Gardner, T. A., Arroyo-Rodriguez, V., Baeten, L., Banks-Leite, C., Barlow, J., Betts, M. G., Brunet, J., Cerezo, A., Cisneros, L. M., Collard, S., D’Cruze, N., da Silva Motta, C., Duguay, S., Eggermont, H., Eigenbrod, F., Hadley, A. S., Hanson, T. R., … Ewers, R. M. (2014). BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecology and Evolution, 4(9), 1524–1537. https://doi.org/10.1002/ece3.1036Polasky, S., Csuti, B., Vossler, C. A., & Meyers, S. M. (2001). A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biological Conservation, 97(1), 99–105. https://doi.org/10.1016/S0006-3207(00)00103-8Posadas, P., Miranda Esquivel, D. R., & Crisci, J. V. (2001). Using phylogenetic diversity measures to set priorities in conservation: An example from southern South America. Conservation Biology, 15(5), 1325–1334. https://doi.org/10.1046/j.1523-1739.2001.99404.xPrescott, G. W., Gilroy, J. J., Haugaasen, T., Medina Uribe, C. A., Foster, W. A., & Edwards, D. P. (2016). Managing Neotropical oil palm expansion to retain phylogenetic diversity. Journal of Applied Ecology, 53(1), 150–158. https://doi.org/10.1111/1365-2664.12571Price, B., McAlpine, C. A., Kutt, A. S., Phinn, S. R., Pullar, D. V., & Ludwig, J. A. (2009). Continuum or discrete patch landscape models for savanna birds? Towards a pluralistic approach. Ecography, 32(5), 745–756. https://doi.org/10.1111/j.1600-0587.2009.05670.xR Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.Ramdani, F., Rahman, S., & Giri, C. (2019). Principal polar spectral indices for mapping mangroves forest in South East Asia: Study case Indonesia. International Journal of Digital Earth, 12(10), 1103–1117. https://doi.org/10.1080/17538947.2018.1454516Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21(1), 24–43.Rapacciuolo, G., Graham, C. H., Marin, J., Behm, J. E., Costa, G. C., Hedges, S. B., Helmus, M. R., Radeloff, V. C., Young, B. E., & Brooks, T. M. (2019). Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nature Ecology and Evolution, 3(1), 53–61. https://doi.org/10.1038/s41559-018-0744-7Real, R., Barbosa, A. M., & Vargas, J. M. (2006). Obtaining environmental favourability functions from logistic regression. Environmental and Ecological Statistics, 13(2), 237–245. https://doi.org/10.1007/s10651-005-0003-3Real, R., Márcia Barbosa, A., & Bull, J. W. (2017). Species distributions, quantum theory, and the enhancement of biodiversity measures. Systematic Biology, 66(3), 453–462. https://doi.org/10.1093/sysbio/syw072Redding, D. W., & Mooers, A. O. (2006). Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20(6), 1670–1678. https://doi.org/10.1111/j.1523-1739.2006.00555.xRevell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.xRicotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B. E. L., & Pavoine, S. (2016). Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution, 7(11), 1386–1395. https://doi.org/10.1111/2041-210X.12604Rodríguez, R. A., Herrera, A. M., Riera, R., Santander, J., Miranda, J. V., Quirós, Á., Fernández-Rodríguez, M. J., Fernández-Palacios, J. M., Otto, R., Escudero, C. G., Jiménez-Rodríguez, A., Navarro-Cerrillo, R. M., Perdomo, M. E., & Delgado, J. D. (2015). Distribution of species diversity values: A link between classical and quantum mechanics in ecology. Ecological Modelling, 313, 162–180. https://doi.org/10.1016/j.ecolmodel.2015.06.021Salgueiro, P. A., Mira, A., Rabaça, J. E., Silva, C., Eufrázio, S., Medinas, D., Manghi, G., Silva, B., & Santos, S. M. (2018). Thinking outside the patch: A multi-species comparison of conceptual models from real-world landscapes. Landscape Ecology, 33(3), 353–370. https://doi.org/10.1007/s10980-017-0603-yScrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. The R Journal, 8(1), 289–317. https://doi.org/10.1016/j.physbeh.2017.03.040Shafer, C. L. (1990). Nature reserves: Island theory and conservation practice. Smithsonian Institution Press.Smith, A. C., Fahrig, L., & Francis, C. M. (2011). Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography, 34(1), 103–113. https://doi.org/10.1111/j.1600-0587.2010.06201.xSmith, M. A., Hallwachs, W., & Janzen, D. H. (2014). Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography, 37(8), 720–731. https://doi.org/10.1111/j.1600-0587.2013.00631.xStein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. https://doi.org/10.1111/ele.12277Stevens, R. D., & Gavilanez, M. M. (2015). Dimensionality of community structure: Phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients. Ecography, 38(9), 861–875. https://doi.org/10.1111/ecog.00847Terraube, J., Archaux, F., Deconchat, M., van Halder, I., Jactel, H., & Barbaro, L. (2016). Forest edges have high conservation value for bird communities in mosaic landscapes. Ecology and Evolution, 6(15), 5178–5189. https://doi.org/10.1002/ece3.2273Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes—Eight hypotheses. In Biological Reviews (Vol. 87, Issue 3, pp. 661–685). https://doi.org/10.1111/j.1469-185X.2011.00216.xTurner, M. G. (2005). Landscape Ecology: What Is the State of the Science? Annual Review of Ecology, Evolution, and Systematics, 36(1), 319–344. https://doi.org/10.1146/annurev.ecolsys.36.102003.152614Valente, J. J., & Betts, M. G. (2019). Response to fragmentation by avian communities is mediated by species traits. Diversity and Distributions, 25(1), 48–60. https://doi.org/10.1111/ddi.12837Emerging patterns in the comparative analysis of phylogenetic community structure, 18 Molecular Ecology 572 (2009). https://doi.org/10.1111/j.1365-294X.2008.04001.xVenables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media.Villard, M. A., Kurtis Trzcinski, M., & Merriam, G. (1999). Fragmentation effects on forest birds: Relative influence of woodland cover and configuration on landscape occupancy. Conservation Biology, 13(4), 774–783. https://doi.org/10.1046/j.1523-1739.1999.98059.xVogt, P., Ferrari, J. R., Lookingbill, T. R., Gardner, R. H., Riitters, K. H., & Ostapowicz, K. (2009). Mapping functional connectivity. Ecological Indicators, 9(1), 64–71. https://doi.org/10.1016/j.ecolind.2008.01.011Walter, S. T., Browne, L., Freile, J., Olivo, J., González, M., & Karubian, J. (2017a). Landscape-level tree cover predicts species richness of large-bodied frugivorous birds in forest fragments. Biotropica, 49(6), 838–847. https://doi.org/10.1111/btp.12469Walter, S. T., Browne, L., Freile, J., Olivo, J., González, M., & Karubian, J. (2017b). Landscape-level tree cover predicts species richness of large-bodied frugivorous birds in forest fragments. Biotropica, 49(6), 838–847. https://doi.org/10.1111/btp.12469Wang, X., Swenson, N. G., Wiegand, T., Wolf, A., Howe, R., Lin, F., Ye, J., Yuan, Z., Shi, S., Bai, X., Xing, D., & Hao, Z. (2013). Phylogenetic and functional diversity area relationships in two temperate forests. Ecography, 36(8), 883–893. https://doi.org/10.1111/j.1600-0587.2012.00011.xWatling, J. I., Arroyo‐Rodríguez, V., Pfeifer, M., Baeten, L., Banks‐Leite, C., Cisneros, L. M., Fang, Re., Hamel‐Leigue, A. C., Lachat, T., Leal, I. R., Lens, L., Possingham, H. P., Raheem, D. C., Ribeiro, D. B., Slade, E. M., Urbina‐Cardona, J. N., Wood, E. M., & Fahrig, L. (2020). Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, ele.13471. https://doi.org/10.1111/ele.13471Webb, C. O., Ackerly, D. D., Mcpeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annu. Rev. Ecol. Syst, 33(2002), 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448Wiens, J. J. (2011). The niche, biogeography and species interactions. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 366, Issue 1576, pp. 2336–2350). https://doi.org/10.1098/rstb.2011.0059Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. In Ecology Letters (Vol. 13, Issue 10, pp. 1310–1324). https://doi.org/10.1111/j.1461-0248.2010.01515.xWilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology, 95(7), 2027–2027. https://doi.org/10.1890/13-1917.1Wilson, M. C., Chen, X.-Y., Corlett, R. T., Didham, R. K., Ding, P., Holt, R. D., Holyoak, M., Hu, G., Hughes, A. C., Jiang, L., Laurance, W. F., Liu, J., Pimm, S. L., Robinson, S. K., Russo, S. E., Si, X., Wilcove, D. S., Wu, J., & Yu, M. (2016). Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landscape Ecology, 31(2), 219–227. https://doi.org/10.1007/s10980-015-0312-3Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to movement: A review. Landscape Ecology, 27(6), 777–797. https://doi.org/10.1007/s10980-012-9737-0Zipkin, E. F., Andrew Royle, J., Dawson, D. K., & Bates, S. (2010). Multi-species occurrence models to evaluate the effects of conservation and management actions. Biological Conservation, 143(2), 479–484. https://doi.org/10.1016/j.biocon.2009.11.016Zupan, L., Cabeza, M., Maiorano, L., Roquet, C., Devictor, V., Lavergne, S., Mouillot, D., Mouquet, N., Renaud, J., & Thuiller, W. (2014). Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Diversity and Distributions, 20(6), 674–685. https://doi.org/10.1111/ddi.12186ISAGENUniversidad de AntioquiaMinisterio de Ciencia, Tecnología e Innovación de Colombia (Minciencias)EstudiantesInvestigadoresORIGINALTesisDoctorado_CarlosOrtizY_Final2023.pdfTesisDoctorado_CarlosOrtizY_Final2023.pdfTesis de Doctorado en Ecología - Carlos Ortiz Yustyapplication/pdf9110401https://repositorio.unal.edu.co/bitstream/unal/83795/2/TesisDoctorado_CarlosOrtizY_Final2023.pdf2bfc0364e4e6339bf2a9c6c97a413d0cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83795/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAILTesisDoctorado_CarlosOrtizY_Final2023.pdf.jpgTesisDoctorado_CarlosOrtizY_Final2023.pdf.jpgGenerated Thumbnailimage/jpeg4086https://repositorio.unal.edu.co/bitstream/unal/83795/3/TesisDoctorado_CarlosOrtizY_Final2023.pdf.jpge896e3afa69a9238fc0469c03cae8c88MD53unal/83795oai:repositorio.unal.edu.co:unal/837952024-08-05 23:10:09.848Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=