Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia
Ilustraciones, tablas
- Autores:
-
Puentes Sayo, Paola Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81142
- Palabra clave:
- 570 - Biología
590 - Animales
Filogeografía
Flujo génico
Diversidad genética
Phylogeography
gene flow
genetic diversity
RAD seq
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_c1ac79d115442bd17cc3ea1b903fc380 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81142 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia |
dc.title.translated.eng.fl_str_mv |
Phylogeographic pattern of the common octopus Octopus insularis in the Colombian Caribbean |
title |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia |
spellingShingle |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia 570 - Biología 590 - Animales Filogeografía Flujo génico Diversidad genética Phylogeography gene flow genetic diversity RAD seq |
title_short |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia |
title_full |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia |
title_fullStr |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia |
title_full_unstemmed |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia |
title_sort |
Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia |
dc.creator.fl_str_mv |
Puentes Sayo, Paola Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Campos, Néstor Hernando |
dc.contributor.author.none.fl_str_mv |
Puentes Sayo, Paola Alejandra |
dc.contributor.projectleader.none.fl_str_mv |
Arturo Acero |
dc.contributor.researcher.none.fl_str_mv |
Juan Carlos Narváez |
dc.contributor.researchgroup.spa.fl_str_mv |
Fauna Marina Colombiana: Biodiversidad y Usos |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología 590 - Animales |
topic |
570 - Biología 590 - Animales Filogeografía Flujo génico Diversidad genética Phylogeography gene flow genetic diversity RAD seq |
dc.subject.proposal.spa.fl_str_mv |
Filogeografía Flujo génico Diversidad genética |
dc.subject.proposal.eng.fl_str_mv |
Phylogeography gene flow genetic diversity RAD seq |
description |
Ilustraciones, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-05 |
dc.date.accessioned.none.fl_str_mv |
2022-03-07T18:33:30Z |
dc.date.available.none.fl_str_mv |
2022-03-07T18:33:30Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81142 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81142 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alegría-Ortega, A., Sanín-Pérez, M.J., Quan-Young, L.I. y Londoño-Mesa, M.H. 2020. Genetic structure of Orbicella faveolata population reveals high connectivity among marine protected area and Varadero Reef in the Colombian Caribbean. Aquatic Conservation: Marine and Freshwater Ecosystems, 1–13. Doi: 10.1002/aqc.3489 Almanza-Bernal, M., Márquez, E.J. y Chasqui, L. 2016. Evaluación de amplificación cruzada de microsatélites para estudios de genética poblacional del cazón antillano Rhizoprionodon porosus (Carcharhinidae) en el Caribe colombiano. Boletín de Investigaciones Marinas y Costeras. 45(1): 41–56. Álvarez, C.B. y Ruiz, J.S. 2021. Variabilidad estacional e interanual de la temperatura superficial del mar en el golfo de Urabá. Tesis para optar al título de Ingeniero Oceanográfico. Universidad de Antioquia. Turbo, Colombia. 1–46. Amor, M.D., Laptikhovsky, V, Norman, M.D. y Strugnell, J.M. 2017. Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena. Journal of the Marine Biological Association of the United Kingdom, 97(4):753–758. DOI 10.1017/S0025315415000958. Andrade, C.A. 2001. Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de la Academia Colombiana de Ciencias Exactas, físicas y Naturales, 25, 321–335. Andrews, S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Atencia-Galindo, M.A., Narváez, J.C., Ramírez, A., Paramo, J. y Aguirre-Pabón, J.C. 2021. Genetic structure of the pink shrimp Penaeus (Farfantepenaeus) notialis (Pérez-Farfante, 1967) (Decapoda: Penaeidae) in the Colombian Caribbean. Fisheries Research, 243: 106052. Avendaño, O., Roura, A., Cedillo-Robles, C.E., González, A.F., Rodríguez-Canul, R., Velázquez-Abunader, I. y Guerra, A. Octopus americanus: a cryptic species of the O. vulgaris species complex redescribed from the Caribbean. Aquatic Ecology, https://doi.org/10.1007/s10452-020-09778-6. Avise, J.C. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography, 36: 3-15. https://doi.org/10.1111/j.1365-2699.2008.02032.x. Avise, J.C. 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. y Saunders N.C. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology, Evolution, and Systematics, 18: 489-522. Banks, S.C., Piggott M.P., Williamson J.E et al. 2007. Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology, 88, 3055–3064. Bernal, G., Ruiz-Ochoa, M. y Beier, E. 2010. Variabilidad estacional e interanual océano-atmósfera en la Cuenca Colombia. Cuadernos del Caribe, 14: 49-72. Bernal, G., Poveda, G., Roldán P. y Andrade C. 2006. Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe Colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 3(115): 195–208. Betancur, R, Acero, A., Duque-Caro, H. y Santos, S. 2010. Phylogenetic and morpghologic analyses of a coastal fish reveals a marine biogeographic break of terrestrial origin in the southern Caribbean. PLoS ONE, 5(7): e11566. Blanco, G. 2016. Variación del ADN mitocondrial de Cittarium pica (Prosobranchia: Trochoidea) (Linné, 1758) en el Caribe de Colombia y sus implicaciones para la conservación. Tesis para optar el título de Maestría en Acuicultura. Universidad del Magdalena, Santa Marta, p. 99. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., et al. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15(4): e1006650. Boyle, P. y Rodhouse, P.G. 2005. Cephalopods: Ecology and Fisheries. Blackwell Science, Oxford, UK. Caiafa-Hernández, I., Narváez-Barandica, J.C. y Acero-Pizarro, A. 2018. Genetic variation and genetic structure of Caranx hippos (Teleostei: Carangidae) in the Colombian Caribbean. Revista de Biología tropical, 66(1):122–135. Catchen, J., Hohenlohe, P.A., Bassham, S., Amores A. y Cresko W.A. 2013. Stacks: An analysis tool set for population genomics. Molecular Ecology, 22: 3124–3140. Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W., Postlethwait, J.H., De Koning, D.J. 2011. Stacks: Building and Genotyping Loci De Novo from Short-Read Sequences. G3 Genes|Genomes|Genetics, 1: 171–182. Cowen, R.K., Lwiza, K.M.M., Sponaugle, S., Paris, C.B. y Olson, D. 2002. Connectivity of marine populations: Open or Closed?. Science, 287: 857–859. Cuvier, G.L. 1798. Tableau élementaire de l'Histoire Naturelle des Animaux. Paris, Baudouin. xvi + 710 pp. Available online at http://www.biodiversitylibrary.org/item/42906. Darriba, D., Taboada, G.L., Doallo, R. Y Posada, D. 2012. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8):772 Doi: 10.1038/nmeth.2109. De Luca, D., Catanese, G., Procaccini, G. y Fiorito, G. 2016. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PLoS ONE, 11(2): e0149496. DOI:10.1371/journal.pone.0149496. Domínguez-Contreras, J.F., Munguia-Vega, A., Ceballos-Vázquez, B.P., Arellano-Martínez, M., García-Rodríguez, F.J., Culver, M., Reyes-Bonilla, H., 2018. Life histories predict genetic diversity and population structure within three species of Octopus targeted by small- scale fisheries in Northwest Mexico. PeerJ, 6: e4295. Domínguez-Domínguez, O. y Vázquez-Domínguez, E. 2009. Filogeografía: Aplicaciones en taxonomía y conservación. Animal Biodiversity and Conservation, 32 (1): 59-70. Donoso, M.C. 1990. Circulación de las aguas en el mar Caribe. Trabajo presentado en el VII Seminario de Ciencias y Tecnologías del Mar, Cali, Colombia. Libro de Resúmenes: 345-356. Doubleday, Z.A., Prowse, T.A., Arkhipkin, A, Pierce, G.J., Semmens, J., Steer, M., Leporati, S.C., Lourenço, S., Quetglas, A., Sauer, W. y Gillanders, B.M. 2016. Global proliferation of cephalopods. Current Biology, 26 (10): 406–407. Doubleday, Z.A., Semmens, J.M., Smolenski, A.J. y Shaw, P.W. 2009. Microsatelliite DNA markers and morphometrics reveal a complex population structure in a merobenthic octopus species (Octopus maorum) in south-east Australia and New Zealand. Marine Biology, 156: 1183–1192. Doi: 10.1007/s00227-009-1160-y. Drummond, A.J., Rambaut, A, Shapiro, B. y Pybus, O.G. 2005. Bayesian Coalescent Inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5): 1185–1192. Earl, D.A. y VonHoldt B.M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359–361 DOI: 10.1007/s12686-011-9548-7. Evanno, G., Regnaut, S. y Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology, 14 (8), 2611–2620. Excoffier, L., Laval, G. y Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1: 47–50. FAO. 2020. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma. Doi: https://doi.org/10.4060/ca9229es. Flórez, A. 2003. Colombia: evolución de sus relieves y modelados. Universidad Nacional de Colombia. Red de Estudios de Espacio y Territorio, RET, Bogotá D.C. Flores-Valle, A., Pliego-Cárdenas, R., Jiménez-Badillo, M.D.L., Arredondo-Figueroa, J.L. y Barriga-Sosa, I.D.L.A. 2018. First record of Octopus insularis Leite and Haimovici, 2008 in the octopus fishery of a marine protected area in the Gulf of Mexico. Journal of Shellfish Research, 37(1):221–227. Doi: 10.2983/035.037.0120. Foll, M. y Gaggiotti, O. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics, 180(2):977–993. Foster, N.L., Paris, C.B., Kool, J.T., Baums, I.B., Stevens, J.R., Sánchez, J.A., Bastidas, C., Agudelo, C., Bush, P., Day, O., Ferrari, R., González, P., Gore, S., Guppy, R., McCartney, M.A., McCoy, C., Mendes, J., Srinivasan, A., Steiner, S., Vermeij, M.J.A., Weil, E. y Mumby, P.J. 2012. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Molecular Ecology, 21: 1143–1157. .Freeland J. 2020. Molecular Ecology. The Open University, Milton Keynes. Third Edition, John Wiley y Sons, Ltd. 402 pp. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147: 915–925. Gao, X., Zheng, X., Bo, Q., Li, Q., 2016. Population genetics of the common long-armed octopus Octopus minor (Sasaki 1920) (Cephalopoda: octopoda) in Chinese waters based on microsatellite analysis. Biochemical Systematics and Ecology, 66: 129–136. Gilg, M.R. y Hilbish, T.J. 2003. The geography of marine larval dispersal: Coupling genetics with fine-scale physical oceanography. Ecology, 84(11): 2989–2998. Doi: https://doi.org/10.1890/02-0498. González-Gómez, R., Barriga-Sosa, I.D.L.A., Pliego-Cárdenas, R., Jiménez-Badillo, l., Markaida, U., Meiners-Mandujano, C. y Morillo-Velarde, P.S. 2018. An integrative taxonomic approach reveals Octopus insularis as the dominant species in the Veracruz Reef System (southwestern Gulf of Mexico). PeerJ, 6:e6015 DOI 10.7717/peerj.6015. González-Gómez, R., Meiners-Mandujano, C., Morillo-Velarde, P.S., Jiménez-Badillo, L. y Markaida, U. 2020. Reproductive dynamics and population structure of Octopus insularis from the Veracruz reef system marine protected area, Mexico. Fisheries Research, 221: 105385. Gould, A.A. 1852. Mollusca and shells. In: United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes. Boston. 12: 1-510; atlas 1856: 1-16. Available online at https://www.biodiversitylibrary.org/page/10991152 Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98. Haye, P.A., Segovia, N.I., Muñoz-Herrera, N.C., Gálvez, F.E., Martínez, A., Meynard, A., Pardo-Gandarillas, M.C., Poulin, E. y Faugeron, S. 2014. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. PLoS ONE, 9(2): e88613. doi:10.1371/journal.pone.0088613. Hellberg, M.E., Burton, R.S., Neigel, J.E. y Palumbi, S.R. 2002.Genetic assessment of connectivity among marine populations. Bulletin of Marine Science, 70(1): 273–290. Hickerson, M.J., Carstens, B.C., Cavender-Bares, J, Crandall, K.A., Graham, C.H., Johnson, J.B., Rissler, L. y Victoriano, P.F., Yoder A.D. 2010. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54: 291–301. Higgins, K.L., Semmens, J.M., Doubleday, Z.A. y Burridge, C.P. 2013. Comparison of population structuring in sympatric octopus species with and without a pelagic larval stage. Marine Ecology Progress Series, 486: 203–212. Doi: https://doi.org/10.3354/meps10330. Ibáñez, C.M., Pardo-Gandarillas, M.C., Peña, F., Gleadall, I G., Poulin, E. y Sellanes, J. 2016. Phylogeny and biogeography of Muusoctopus (Cephalopoda: Enteroctopodidae). Zoologica Scripta, 45(5): 494–503. Doi:10.1111/zsc.12171. Judkins, H.L., Vecchione, M., Rosario, K., 2016. Morphological and molecular evidence of Heteroteuthis dagamensis in the Gulf of Mexico. Bulletin of Marine Science, 92 (1): 51–57. Kamvar, Z.N., Tabima, J.F. y Grünwald, N.J. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281 https://doi.org/10.7717/peerj.281. Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A. y Mayrose, I. 2015. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5):1179–1191. Kumar, S., Stecher, G. y Koichiro, T. 2015. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Molecular Biology and Evolution, 33(7): 1870–1874. Landínez-García, R.M., Ospina-Guerrero, S.P., Rodríguez-Castro, D.J., Arango, R. y Márquez, E. 2009. Genetic analysis of Lutjanus synagris in populations in the Colombian Caribbean. Ciencias Marinas, 35(4): 321–331. Leigh, J.W. y Bryant, D. 2015. PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. Leite, T.S., Batista, A.T., Lima, F, Barbosa, J.C. y Mather, J. 2016. Geographic variability of Octopus insularis diet: from oceanic island to continental populations. Aquatic Biology, 25: 17–27. Leite, T.S., Haimovici, M., Mather, J. y Lins Oliveira, J.E. 2009. Habitat, distribution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: information for management of an artisanal fishery inside a marine protected area. Fisheries Research, 98: 85–91. Leite, T., Haimovici, M., Molina, W. y Warnke, K. 2008. Morphological and genetic description of Octopus insularis, a new cryptic species in the Octopus vulgaris complex (Cephalopoda: Octopodidae) form the tropical Southwestern Atlantic. Journal of Molluscan Studies, 74: 63-74. Leporati, S.C., Ziegler, P.E. y Semmens, J.M. 2009. Assessing the stock status of holobenthic octopus fisheries: Is catch per unit effort sufficient? ICES Journal of Marine Science, 66: 478−487. Li, Y.L. y Liu, J.X. 2018. STRUCTURESELECTOR: a web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1):176–177. Librado, P. y Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452. Lima, F.D., Berbel-Filho, W.M., Leite, T.S., Rosas, C, Lima, S. 2017. Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification of octopus fisheries management. Marine Biodiversity, 47: 723–734. Doi: https://doi.org/10.1007/s12526-017-0638-y. Lima, F.D., Leite, T.S., Haimovici, M., Lins, y Oliveira, J.E. 2014. Gonadal development and reproductive strategies of the tropical octopus (Octopus. insularis) in northeast Brazil. Hydrobiologia, 725: 7–21. Lonin, S.C., Prada, M. y Erick, C. 2010. Simulación de dispersión de las larvas de caracol pala Strombus gigas en la Reserva de Biósfera Seaflower, Caribe occidental Colombiano. Boletín Científico CIOH, 28: 8–24. Doi: 10.26640/22159045.212. Lopera, L., Cardona, Y. y Zapata-Ramírez, A. 2020. Circulation in the Seaflower Reserve and its potential impact on biological connectivity. Frontiers in Marine Science, 7:385. Doi: 10.3389/fmars.2020.00385. Lozano-Duque, Y., Medellín-Mora, J. y Navas, G.R. 2010. Contexto climatológico y oceanográfico del mar Caribe colombiano, en Biodiversidad del margen continental del Caribe colombiano, INVEMAR, Serie de Publicaciones Especiales N°20. Santa Marta. Márquez, E., Landínez-García, R.M., Ospina-Guerrrero, S.P., Segura, J.A., Prada, M, Castro, E., Correa, J.L., Borda, C. 2013. Genetic Analysis of queen conch Strombus gigas from the southwest Caribbean. Proceedings of the 65th Gulf and Caribbean Fisheries Institute. 410–416. Melis, R., Vacca, L., Cuccu, D., Mereu, M., Cau, A. y Follesa, M.C., Cannas R. 2018. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia, 807: 277–296. Doi: https://doi.org/10.1007/s10750-017-3399-5. Mendoza-Ureche, R., Quintero-Galvis, J. y Narváez-Barandica, J.C. 2019. Baja variabilidad y diferenciación genética poblacional en la “lisa”, Mugil incilis (Teleostei: Mugilidae) del Caribe colombiano. Revista de Biología Tropical, 67(3): 501–517. Morse, P., Kjeldsen, S.R., Meekan, M.G., Mccormick, M.I., Finn, J.K., Huffard, C.L. y Zenger, K.R. 2018. Genome-wide comparisons reveal a clinal species pattern within a holobenthic octopod-the Australian Southern blue-ringed octopus, Hapalochlaena maculosa (Cephalopoda: Octopodidae). Ecology and Evolution, 8:2253–2267. Doi: 10.1002/ece3.3845 Nadukkalam-Ravindran, P., Bentzen, P., Bradbury, I.R. y Beiko, R.G. 2018. RADProc: A computationally efficient de novo locus assembler for population studies using RADseq data. Molecular Ecology Resources, Doi:10.1111/1755-0998.12954. Norman, M.D., Hochberg, F.G. y Finn, J.K. 2014. World octopod fisheries. In: Jereb P, Roper C.F.E., Norman M.D., Finn J.K (eds). Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to Date. Octopods and vampire squids. Food and Agriculture Organization of the United Nations, Rome, pp 9–21. Pardo-Gandarillas, M.C., Ibáñez, C.M., Yamashiro, C., Méndez, M.A. y Poulin, E. 2017. Demographic inference and genetic diversity of Octopus mimus (Cephalopoda: Octopodidae) throughout the Humboldt Current System. Hydrobiologia, 808(1): 125–135. Doi: 10.1007/s10750-017-3339-4. Peakall R, Smouse P.E. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537–2539 Planes, S., Parroni, M. y Chauvet, C. 1998. Evidence of limited gene flow in three species of coral reef fishes in the lagoon of New Caledonia. Marine Biology, 130: 361–368. Pritchard, J.K., Stephens, M. y Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. Puechmaille, S.J. 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3): 608–627. Puentes-Sayo, A., Torres-Rodríguez, J. y Lecompte, O.P. 2021. Solving the identity of the common shallow-water octopus of the Colombian Caribbean based on mitochondrial analysis. Journal of Molluscan Studies, IN PRESS. Puentes-Sayo, A. 2016. Determinación de identidades genéticas de pulpos (Cephalopoda: Octopodidae) del Caribe colombiano a partir de marcadores mitocondriales: COIII y 16S. Tesis para optar al título de Biólogo Marino. Universidad Jorge Tadeo Lozano. Santa Marta, Colombia. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rambaut, A. y Drummond, A.J. 2009. Tracer v1.5 http://tree.bio.ed.ac.uk/software/tracer/. Rangel-Buitrago, N. y Dragax-García, J. 2010. Geología general, morfología submarina y facies sedimentarias en el margen continental y los fondos oceánicos del mar Caribe colombiano. (pp 31-51). En INVEMAR (Eds.). Biodiversidad del margen continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar No. 20 p. 4588. Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution, 43(1): 223–225. Riginos, C., Douglas, K.E., Jin, Y., Shanahan, D.F. y Treml, E.A. 2011. Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography, 34(4): 566–575. Doi:10.1111/j.1600-0587.2010.06511.x Riginos, C. y Liggins, L. 2013. Seascape genetics: populations, individuals, and genes marooned and adrift. Geography, compass, 7/3: 197–216. Doi: 10.1111/gec3.12032. Riginos, C. y Victor, B.C. 2001. Larval spatial distributions and other early life-history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proceedings of the Royal Society B: Biological Sciences, 268(1479): 1931–1936. Doi:10.1098/rspb.2001.1748 Rocha, F., Guerra, A., González, A.F. 2001. A review of reproductive strategies in cephalopods. Biological Reviews, 76: 291–304. Rochette, N.C., Rivera-Colón, A.G. y Catchen, J.M. 2019. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology, 28: 4737–4754. Sales, J.B.D.L., Rego, P.S.D., Hilsdorf, A.W.S., Moreira, A.A., Haimovici, M., Tomás, A.R., Sampaio, I. 2013. Phylogeographical features of Octopus vulgaris and Octopus insularis in the southeastern Atlantic based on the analysis of mitochondrial markers. Journal of Shellfish Research, 32(2): 325–339. Doi:10.2983/035.032.0211. Selkoe, K.A. y Toonen, R.J. 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Marine Ecology Progress Series, 436: 291–305. Strugnell, J, M., Watts, P.C., Smith, P.J. y Allcock, A.L. 2012. Persistent genetic signatures of historic climate events in an Antarctic octopus. Molecular Ecology, 21: 2775–2787. Tajima, F. 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics, 23: 585–595. Taylor, M.S. y Hellberg M.E. 2003. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107-109. Timm, L.E., Bracken-Grissom, H.D., Sosnowski, A, Breitbart, A., Vecchione, M. y Judkins, H. 2020. Population genomics of three deep-sea cephalopod species reveals connectivity between the Gulf of Mexico and northwestern Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers (158): 103222. Doi: 10.1016/j.dsr.2020.103222. Torrecilla-Batista, A. y Leite, T.S. 2016. Octopus insularis (Cephalopoda: Octopodidae) on the tropical coast of Brazil: where it lives and what it eats. Brazilian Journal of oceanography, 64(4): 353–364. Vences, M., Meike, T., van der Meijden, A., Chiari, Y. y Vieites D. 2005. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2(5): 1–12. DOI: 10.1186/1742-9994-2-5. Villanueva, R., Vidal, E.A.G., Fernández-Álvarez, F.A.A., Nabhitabhata, J. 2016. Early Mode of Life and Hatchling Size in Cephalopod Molluscs: Influence on the Species Distributional Ranges. PLoS ONE, 11(11): e0165334. Doi:10.1371/journal.pone.0165334. Wagner, C.E., Keller, I., Wittwer, S., Selz, O.M., Mwaiko, S., Greuter, L., Sivasundar, A. y Seehausen, O. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria chichlid adaptive radiation. Molecular Ecology, 22:787-798. Wiley, E.O. y Lieberman, B.S. 2011. Phylogenetics: Theory and Practice of Phylogenetic Systematics, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons. Zuur, A.F., Leno, E.N., Smith, G.M. 2007. Principal coordinate analysis and non-metric multidimensional scaling. In: Analysing Ecological Data. Statistics for Biology and Heal, Springer, New York, NY. Doi: https://doi.org/10.1007/978-0-387 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
43 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Caribe - Caribe - Maestría en Ciencias - Biología |
dc.publisher.department.spa.fl_str_mv |
Centro de estudios en Ciencias del mar-CECIMAR |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Sede Caribe, Santa Marta |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Caribe |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81142/3/1018467742.2021%20%282%29.pdf https://repositorio.unal.edu.co/bitstream/unal/81142/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81142/7/1018467742.2021%20%282%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
a10b34c95553d478323679e374d020b2 8153f7789df02f0a4c9e079953658ab2 0298e06ea77952db70dc964ee278f5c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089893570150400 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Campos, Néstor Hernando40898be8e6fb04630a3e835fbc20965dPuentes Sayo, Paola Alejandra088cf55d458ea4fd0fc452b1055dc2aaArturo AceroJuan Carlos NarváezFauna Marina Colombiana: Biodiversidad y Usos2022-03-07T18:33:30Z2022-03-07T18:33:30Z2021-10-05https://repositorio.unal.edu.co/handle/unal/81142Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasOctopus insularis es una especie de pulpo de aguas someras explotada por las pesquerías artesanales y distribuida a lo largo del Atlántico occidental, el Golfo de México, el Caribe y una extensa región del Atlántico sur. Con el fin de evaluar su patrón filogeográfico se analizaron marcadores mitocondriales (16S rRNA y COIII) y marcadores nucleares (SNP’s) a lo largo del genoma de individuos provenientes de la pesca artesanal, en diferentes localidades de la costa Caribe colombiana: Providencia, San Andrés, Cabo de la Vela, Santa Marta, isla Ceycén e isla Fuerte. Los análisis mitocondriales mostraron haplotipos nuevos ((16S = H2, H3 y H4) (COIII = H2 – H7)) y haplotipos compartidos con áreas geográficas distantes ((16S = H1) (COIII = H1)). La prueba de FST por pares no mostró diferenciación genética entre localidades con los genes mitocondriales evaluados. El análisis demográfico de COIII indicó que el tamaño efectivo poblacional de la especie se ha mantenido constante. Se hicieron inferencias a partir de datos genómicos de última generación con ADN asociado a sitios de restricción (ddRAD-seq) y se obtuvieron en total 6769 loci polimórficos, dichos datos mostraron, mediante la prueba de FST por pares, que existen diferencias bajas pero significativas entre localidades (Cabo de la Vela-Santa Marta; Cabo de la Vela-Isla Fuerte/Isla Ceycén; Santa Marta-Isla Fuerte/Isla Ceycén). No obstante, el análisis de varianza molecular (AMOVA) general y el análisis de coordenadas principales mostraron que no existe diferenciación genética entre las poblaciones geográficas analizadas. No se encontró correlación entre la distancia genética y la distancia geográfica mediante la prueba de Mantel y los análisis de estructura indicaron la presencia de un único stock genético distribuido homogéneamente a lo largo de todas las localidades. La información obtenida en este estudio permite evidenciar la falta de estructuración y conectividad genética poblacional de O. insularis debido a la ausencia de barreras biogeográficas putativas que afecten su flujo génico en el Caribe sur; a la alta capacidad de dispersión que posee por sus estrategias de historia de vida larval (paralarva planctónica) y a los factores oceanográficos que operan en el área de estudio.Octopus insularis is a shallow-water octopus species exploited by artisanal fisheries and distributed throughout the western Atlantic, the Gulf of Mexico, the Caribbean, and an extensive region of the South Atlantic. In order to evaluate its phylogeographic pattern, mitochondrial markers (16S rRNA and COIII) and nuclear markers (SNP's) were analyzed along the genome of individuals from artisanal fishing, in different locations on the Colombian Caribbean coast: Providencia, San Andres, Cabo de la Vela, Santa Marta, Isla Ceycén and Isla Fuerte. Mitochondrial analyzes showed new haplotypes ((16S = H2, H3 and H4) (COIII = H2 - H7)) and haplotypes shared with distant geographic areas ((16S = H1) (COIII = H1)). The pair-wise FST test did not show genetic differentiation between localities with the evaluated mitochondrial genes. The COIII demographic analysis indicated that the effective population size of the species has remained constant. Inferences were made from the latest generation genomic data with DNA associated with restriction sites (ddRAD-seq) and a total of 6769 polymorphic loci were obtained; these data showed, by means of the pair-wise FST test, that there are low but significant differences between locations (Cabo de la Vela-Santa Marta; Cabo de la VelaIsla Fuerte / Isla Ceycén; Santa Marta-Isla Fuerte / Isla Ceycén). However, the general molecular analysis of variance (AMOVA) and the principal coordinate analysis showed that there is no genetic differentiation between the geographic populations analyzed. No correlation was found between genetic distance and geographic distance using the Mantel test and the structure analyzes indicated the presence of a single genetic stock homogeneously distributed throughout all localities. The information obtained in this study shows the lack of structure and population genetic connectivity of O. insularis due to the absence of putative biogeographic barriers that affect its gene flow in the southern Caribbean; to the high dispersal capacity of its larval life history (planktonic paralarva) and to the oceanographic factors that operate in the study area.MaestríaMagíster en Ciencias - BiologíaSe usaron marcadores mitocondriales (COIII y 16S) y nucleares (SNP"s) para analizar el patrón filogeográfico de Octopus insularis en el Caribe colombiano.43 p.application/pdfspaUniversidad Nacional de ColombiaCaribe - Caribe - Maestría en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad de CienciasSede Caribe, Santa MartaUniversidad Nacional de Colombia - Sede Caribe570 - Biología590 - AnimalesFilogeografíaFlujo génicoDiversidad genéticaPhylogeographygene flowgenetic diversityRAD seqPatrón filogeográfico del pulpo común Octopus insularis en el Caribe de ColombiaPhylogeographic pattern of the common octopus Octopus insularis in the Colombian CaribbeanTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlegría-Ortega, A., Sanín-Pérez, M.J., Quan-Young, L.I. y Londoño-Mesa, M.H. 2020. Genetic structure of Orbicella faveolata population reveals high connectivity among marine protected area and Varadero Reef in the Colombian Caribbean. Aquatic Conservation: Marine and Freshwater Ecosystems, 1–13. Doi: 10.1002/aqc.3489 Almanza-Bernal, M., Márquez, E.J. y Chasqui, L. 2016. Evaluación de amplificación cruzada de microsatélites para estudios de genética poblacional del cazón antillano Rhizoprionodon porosus (Carcharhinidae) en el Caribe colombiano. Boletín de Investigaciones Marinas y Costeras. 45(1): 41–56. Álvarez, C.B. y Ruiz, J.S. 2021. Variabilidad estacional e interanual de la temperatura superficial del mar en el golfo de Urabá. Tesis para optar al título de Ingeniero Oceanográfico. Universidad de Antioquia. Turbo, Colombia. 1–46. Amor, M.D., Laptikhovsky, V, Norman, M.D. y Strugnell, J.M. 2017. Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena. Journal of the Marine Biological Association of the United Kingdom, 97(4):753–758. DOI 10.1017/S0025315415000958. Andrade, C.A. 2001. Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de la Academia Colombiana de Ciencias Exactas, físicas y Naturales, 25, 321–335. Andrews, S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Atencia-Galindo, M.A., Narváez, J.C., Ramírez, A., Paramo, J. y Aguirre-Pabón, J.C. 2021. Genetic structure of the pink shrimp Penaeus (Farfantepenaeus) notialis (Pérez-Farfante, 1967) (Decapoda: Penaeidae) in the Colombian Caribbean. Fisheries Research, 243: 106052. Avendaño, O., Roura, A., Cedillo-Robles, C.E., González, A.F., Rodríguez-Canul, R., Velázquez-Abunader, I. y Guerra, A. Octopus americanus: a cryptic species of the O. vulgaris species complex redescribed from the Caribbean. Aquatic Ecology, https://doi.org/10.1007/s10452-020-09778-6. Avise, J.C. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography, 36: 3-15. https://doi.org/10.1111/j.1365-2699.2008.02032.x. Avise, J.C. 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. y Saunders N.C. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology, Evolution, and Systematics, 18: 489-522. Banks, S.C., Piggott M.P., Williamson J.E et al. 2007. Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology, 88, 3055–3064. Bernal, G., Ruiz-Ochoa, M. y Beier, E. 2010. Variabilidad estacional e interanual océano-atmósfera en la Cuenca Colombia. Cuadernos del Caribe, 14: 49-72. Bernal, G., Poveda, G., Roldán P. y Andrade C. 2006. Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe Colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 3(115): 195–208. Betancur, R, Acero, A., Duque-Caro, H. y Santos, S. 2010. Phylogenetic and morpghologic analyses of a coastal fish reveals a marine biogeographic break of terrestrial origin in the southern Caribbean. PLoS ONE, 5(7): e11566. Blanco, G. 2016. Variación del ADN mitocondrial de Cittarium pica (Prosobranchia: Trochoidea) (Linné, 1758) en el Caribe de Colombia y sus implicaciones para la conservación. Tesis para optar el título de Maestría en Acuicultura. Universidad del Magdalena, Santa Marta, p. 99. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., et al. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15(4): e1006650. Boyle, P. y Rodhouse, P.G. 2005. Cephalopods: Ecology and Fisheries. Blackwell Science, Oxford, UK. Caiafa-Hernández, I., Narváez-Barandica, J.C. y Acero-Pizarro, A. 2018. Genetic variation and genetic structure of Caranx hippos (Teleostei: Carangidae) in the Colombian Caribbean. Revista de Biología tropical, 66(1):122–135. Catchen, J., Hohenlohe, P.A., Bassham, S., Amores A. y Cresko W.A. 2013. Stacks: An analysis tool set for population genomics. Molecular Ecology, 22: 3124–3140. Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W., Postlethwait, J.H., De Koning, D.J. 2011. Stacks: Building and Genotyping Loci De Novo from Short-Read Sequences. G3 Genes|Genomes|Genetics, 1: 171–182. Cowen, R.K., Lwiza, K.M.M., Sponaugle, S., Paris, C.B. y Olson, D. 2002. Connectivity of marine populations: Open or Closed?. Science, 287: 857–859. Cuvier, G.L. 1798. Tableau élementaire de l'Histoire Naturelle des Animaux. Paris, Baudouin. xvi + 710 pp. Available online at http://www.biodiversitylibrary.org/item/42906. Darriba, D., Taboada, G.L., Doallo, R. Y Posada, D. 2012. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8):772 Doi: 10.1038/nmeth.2109. De Luca, D., Catanese, G., Procaccini, G. y Fiorito, G. 2016. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PLoS ONE, 11(2): e0149496. DOI:10.1371/journal.pone.0149496. Domínguez-Contreras, J.F., Munguia-Vega, A., Ceballos-Vázquez, B.P., Arellano-Martínez, M., García-Rodríguez, F.J., Culver, M., Reyes-Bonilla, H., 2018. Life histories predict genetic diversity and population structure within three species of Octopus targeted by small- scale fisheries in Northwest Mexico. PeerJ, 6: e4295. Domínguez-Domínguez, O. y Vázquez-Domínguez, E. 2009. Filogeografía: Aplicaciones en taxonomía y conservación. Animal Biodiversity and Conservation, 32 (1): 59-70. Donoso, M.C. 1990. Circulación de las aguas en el mar Caribe. Trabajo presentado en el VII Seminario de Ciencias y Tecnologías del Mar, Cali, Colombia. Libro de Resúmenes: 345-356. Doubleday, Z.A., Prowse, T.A., Arkhipkin, A, Pierce, G.J., Semmens, J., Steer, M., Leporati, S.C., Lourenço, S., Quetglas, A., Sauer, W. y Gillanders, B.M. 2016. Global proliferation of cephalopods. Current Biology, 26 (10): 406–407. Doubleday, Z.A., Semmens, J.M., Smolenski, A.J. y Shaw, P.W. 2009. Microsatelliite DNA markers and morphometrics reveal a complex population structure in a merobenthic octopus species (Octopus maorum) in south-east Australia and New Zealand. Marine Biology, 156: 1183–1192. Doi: 10.1007/s00227-009-1160-y. Drummond, A.J., Rambaut, A, Shapiro, B. y Pybus, O.G. 2005. Bayesian Coalescent Inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5): 1185–1192. Earl, D.A. y VonHoldt B.M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359–361 DOI: 10.1007/s12686-011-9548-7. Evanno, G., Regnaut, S. y Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology, 14 (8), 2611–2620. Excoffier, L., Laval, G. y Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1: 47–50. FAO. 2020. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma. Doi: https://doi.org/10.4060/ca9229es. Flórez, A. 2003. Colombia: evolución de sus relieves y modelados. Universidad Nacional de Colombia. Red de Estudios de Espacio y Territorio, RET, Bogotá D.C. Flores-Valle, A., Pliego-Cárdenas, R., Jiménez-Badillo, M.D.L., Arredondo-Figueroa, J.L. y Barriga-Sosa, I.D.L.A. 2018. First record of Octopus insularis Leite and Haimovici, 2008 in the octopus fishery of a marine protected area in the Gulf of Mexico. Journal of Shellfish Research, 37(1):221–227. Doi: 10.2983/035.037.0120. Foll, M. y Gaggiotti, O. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics, 180(2):977–993. Foster, N.L., Paris, C.B., Kool, J.T., Baums, I.B., Stevens, J.R., Sánchez, J.A., Bastidas, C., Agudelo, C., Bush, P., Day, O., Ferrari, R., González, P., Gore, S., Guppy, R., McCartney, M.A., McCoy, C., Mendes, J., Srinivasan, A., Steiner, S., Vermeij, M.J.A., Weil, E. y Mumby, P.J. 2012. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Molecular Ecology, 21: 1143–1157. .Freeland J. 2020. Molecular Ecology. The Open University, Milton Keynes. Third Edition, John Wiley y Sons, Ltd. 402 pp. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147: 915–925. Gao, X., Zheng, X., Bo, Q., Li, Q., 2016. Population genetics of the common long-armed octopus Octopus minor (Sasaki 1920) (Cephalopoda: octopoda) in Chinese waters based on microsatellite analysis. Biochemical Systematics and Ecology, 66: 129–136. Gilg, M.R. y Hilbish, T.J. 2003. The geography of marine larval dispersal: Coupling genetics with fine-scale physical oceanography. Ecology, 84(11): 2989–2998. Doi: https://doi.org/10.1890/02-0498. González-Gómez, R., Barriga-Sosa, I.D.L.A., Pliego-Cárdenas, R., Jiménez-Badillo, l., Markaida, U., Meiners-Mandujano, C. y Morillo-Velarde, P.S. 2018. An integrative taxonomic approach reveals Octopus insularis as the dominant species in the Veracruz Reef System (southwestern Gulf of Mexico). PeerJ, 6:e6015 DOI 10.7717/peerj.6015. González-Gómez, R., Meiners-Mandujano, C., Morillo-Velarde, P.S., Jiménez-Badillo, L. y Markaida, U. 2020. Reproductive dynamics and population structure of Octopus insularis from the Veracruz reef system marine protected area, Mexico. Fisheries Research, 221: 105385. Gould, A.A. 1852. Mollusca and shells. In: United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes. Boston. 12: 1-510; atlas 1856: 1-16. Available online at https://www.biodiversitylibrary.org/page/10991152 Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98. Haye, P.A., Segovia, N.I., Muñoz-Herrera, N.C., Gálvez, F.E., Martínez, A., Meynard, A., Pardo-Gandarillas, M.C., Poulin, E. y Faugeron, S. 2014. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. PLoS ONE, 9(2): e88613. doi:10.1371/journal.pone.0088613. Hellberg, M.E., Burton, R.S., Neigel, J.E. y Palumbi, S.R. 2002.Genetic assessment of connectivity among marine populations. Bulletin of Marine Science, 70(1): 273–290. Hickerson, M.J., Carstens, B.C., Cavender-Bares, J, Crandall, K.A., Graham, C.H., Johnson, J.B., Rissler, L. y Victoriano, P.F., Yoder A.D. 2010. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54: 291–301. Higgins, K.L., Semmens, J.M., Doubleday, Z.A. y Burridge, C.P. 2013. Comparison of population structuring in sympatric octopus species with and without a pelagic larval stage. Marine Ecology Progress Series, 486: 203–212. Doi: https://doi.org/10.3354/meps10330. Ibáñez, C.M., Pardo-Gandarillas, M.C., Peña, F., Gleadall, I G., Poulin, E. y Sellanes, J. 2016. Phylogeny and biogeography of Muusoctopus (Cephalopoda: Enteroctopodidae). Zoologica Scripta, 45(5): 494–503. Doi:10.1111/zsc.12171. Judkins, H.L., Vecchione, M., Rosario, K., 2016. Morphological and molecular evidence of Heteroteuthis dagamensis in the Gulf of Mexico. Bulletin of Marine Science, 92 (1): 51–57. Kamvar, Z.N., Tabima, J.F. y Grünwald, N.J. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281 https://doi.org/10.7717/peerj.281. Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A. y Mayrose, I. 2015. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5):1179–1191. Kumar, S., Stecher, G. y Koichiro, T. 2015. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Molecular Biology and Evolution, 33(7): 1870–1874. Landínez-García, R.M., Ospina-Guerrero, S.P., Rodríguez-Castro, D.J., Arango, R. y Márquez, E. 2009. Genetic analysis of Lutjanus synagris in populations in the Colombian Caribbean. Ciencias Marinas, 35(4): 321–331. Leigh, J.W. y Bryant, D. 2015. PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. Leite, T.S., Batista, A.T., Lima, F, Barbosa, J.C. y Mather, J. 2016. Geographic variability of Octopus insularis diet: from oceanic island to continental populations. Aquatic Biology, 25: 17–27. Leite, T.S., Haimovici, M., Mather, J. y Lins Oliveira, J.E. 2009. Habitat, distribution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: information for management of an artisanal fishery inside a marine protected area. Fisheries Research, 98: 85–91. Leite, T., Haimovici, M., Molina, W. y Warnke, K. 2008. Morphological and genetic description of Octopus insularis, a new cryptic species in the Octopus vulgaris complex (Cephalopoda: Octopodidae) form the tropical Southwestern Atlantic. Journal of Molluscan Studies, 74: 63-74. Leporati, S.C., Ziegler, P.E. y Semmens, J.M. 2009. Assessing the stock status of holobenthic octopus fisheries: Is catch per unit effort sufficient? ICES Journal of Marine Science, 66: 478−487. Li, Y.L. y Liu, J.X. 2018. STRUCTURESELECTOR: a web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1):176–177. Librado, P. y Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452. Lima, F.D., Berbel-Filho, W.M., Leite, T.S., Rosas, C, Lima, S. 2017. Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification of octopus fisheries management. Marine Biodiversity, 47: 723–734. Doi: https://doi.org/10.1007/s12526-017-0638-y. Lima, F.D., Leite, T.S., Haimovici, M., Lins, y Oliveira, J.E. 2014. Gonadal development and reproductive strategies of the tropical octopus (Octopus. insularis) in northeast Brazil. Hydrobiologia, 725: 7–21. Lonin, S.C., Prada, M. y Erick, C. 2010. Simulación de dispersión de las larvas de caracol pala Strombus gigas en la Reserva de Biósfera Seaflower, Caribe occidental Colombiano. Boletín Científico CIOH, 28: 8–24. Doi: 10.26640/22159045.212. Lopera, L., Cardona, Y. y Zapata-Ramírez, A. 2020. Circulation in the Seaflower Reserve and its potential impact on biological connectivity. Frontiers in Marine Science, 7:385. Doi: 10.3389/fmars.2020.00385. Lozano-Duque, Y., Medellín-Mora, J. y Navas, G.R. 2010. Contexto climatológico y oceanográfico del mar Caribe colombiano, en Biodiversidad del margen continental del Caribe colombiano, INVEMAR, Serie de Publicaciones Especiales N°20. Santa Marta. Márquez, E., Landínez-García, R.M., Ospina-Guerrrero, S.P., Segura, J.A., Prada, M, Castro, E., Correa, J.L., Borda, C. 2013. Genetic Analysis of queen conch Strombus gigas from the southwest Caribbean. Proceedings of the 65th Gulf and Caribbean Fisheries Institute. 410–416. Melis, R., Vacca, L., Cuccu, D., Mereu, M., Cau, A. y Follesa, M.C., Cannas R. 2018. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia, 807: 277–296. Doi: https://doi.org/10.1007/s10750-017-3399-5. Mendoza-Ureche, R., Quintero-Galvis, J. y Narváez-Barandica, J.C. 2019. Baja variabilidad y diferenciación genética poblacional en la “lisa”, Mugil incilis (Teleostei: Mugilidae) del Caribe colombiano. Revista de Biología Tropical, 67(3): 501–517. Morse, P., Kjeldsen, S.R., Meekan, M.G., Mccormick, M.I., Finn, J.K., Huffard, C.L. y Zenger, K.R. 2018. Genome-wide comparisons reveal a clinal species pattern within a holobenthic octopod-the Australian Southern blue-ringed octopus, Hapalochlaena maculosa (Cephalopoda: Octopodidae). Ecology and Evolution, 8:2253–2267. Doi: 10.1002/ece3.3845 Nadukkalam-Ravindran, P., Bentzen, P., Bradbury, I.R. y Beiko, R.G. 2018. RADProc: A computationally efficient de novo locus assembler for population studies using RADseq data. Molecular Ecology Resources, Doi:10.1111/1755-0998.12954. Norman, M.D., Hochberg, F.G. y Finn, J.K. 2014. World octopod fisheries. In: Jereb P, Roper C.F.E., Norman M.D., Finn J.K (eds). Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to Date. Octopods and vampire squids. Food and Agriculture Organization of the United Nations, Rome, pp 9–21. Pardo-Gandarillas, M.C., Ibáñez, C.M., Yamashiro, C., Méndez, M.A. y Poulin, E. 2017. Demographic inference and genetic diversity of Octopus mimus (Cephalopoda: Octopodidae) throughout the Humboldt Current System. Hydrobiologia, 808(1): 125–135. Doi: 10.1007/s10750-017-3339-4. Peakall R, Smouse P.E. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537–2539 Planes, S., Parroni, M. y Chauvet, C. 1998. Evidence of limited gene flow in three species of coral reef fishes in the lagoon of New Caledonia. Marine Biology, 130: 361–368. Pritchard, J.K., Stephens, M. y Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. Puechmaille, S.J. 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3): 608–627. Puentes-Sayo, A., Torres-Rodríguez, J. y Lecompte, O.P. 2021. Solving the identity of the common shallow-water octopus of the Colombian Caribbean based on mitochondrial analysis. Journal of Molluscan Studies, IN PRESS. Puentes-Sayo, A. 2016. Determinación de identidades genéticas de pulpos (Cephalopoda: Octopodidae) del Caribe colombiano a partir de marcadores mitocondriales: COIII y 16S. Tesis para optar al título de Biólogo Marino. Universidad Jorge Tadeo Lozano. Santa Marta, Colombia. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rambaut, A. y Drummond, A.J. 2009. Tracer v1.5 http://tree.bio.ed.ac.uk/software/tracer/. Rangel-Buitrago, N. y Dragax-García, J. 2010. Geología general, morfología submarina y facies sedimentarias en el margen continental y los fondos oceánicos del mar Caribe colombiano. (pp 31-51). En INVEMAR (Eds.). Biodiversidad del margen continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar No. 20 p. 4588. Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution, 43(1): 223–225. Riginos, C., Douglas, K.E., Jin, Y., Shanahan, D.F. y Treml, E.A. 2011. Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography, 34(4): 566–575. Doi:10.1111/j.1600-0587.2010.06511.x Riginos, C. y Liggins, L. 2013. Seascape genetics: populations, individuals, and genes marooned and adrift. Geography, compass, 7/3: 197–216. Doi: 10.1111/gec3.12032. Riginos, C. y Victor, B.C. 2001. Larval spatial distributions and other early life-history characteristics predict genetic differentiation in eastern Pacific blennioid fishes. Proceedings of the Royal Society B: Biological Sciences, 268(1479): 1931–1936. Doi:10.1098/rspb.2001.1748 Rocha, F., Guerra, A., González, A.F. 2001. A review of reproductive strategies in cephalopods. Biological Reviews, 76: 291–304. Rochette, N.C., Rivera-Colón, A.G. y Catchen, J.M. 2019. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology, 28: 4737–4754. Sales, J.B.D.L., Rego, P.S.D., Hilsdorf, A.W.S., Moreira, A.A., Haimovici, M., Tomás, A.R., Sampaio, I. 2013. Phylogeographical features of Octopus vulgaris and Octopus insularis in the southeastern Atlantic based on the analysis of mitochondrial markers. Journal of Shellfish Research, 32(2): 325–339. Doi:10.2983/035.032.0211. Selkoe, K.A. y Toonen, R.J. 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Marine Ecology Progress Series, 436: 291–305. Strugnell, J, M., Watts, P.C., Smith, P.J. y Allcock, A.L. 2012. Persistent genetic signatures of historic climate events in an Antarctic octopus. Molecular Ecology, 21: 2775–2787. Tajima, F. 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics, 23: 585–595. Taylor, M.S. y Hellberg M.E. 2003. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107-109. Timm, L.E., Bracken-Grissom, H.D., Sosnowski, A, Breitbart, A., Vecchione, M. y Judkins, H. 2020. Population genomics of three deep-sea cephalopod species reveals connectivity between the Gulf of Mexico and northwestern Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers (158): 103222. Doi: 10.1016/j.dsr.2020.103222. Torrecilla-Batista, A. y Leite, T.S. 2016. Octopus insularis (Cephalopoda: Octopodidae) on the tropical coast of Brazil: where it lives and what it eats. Brazilian Journal of oceanography, 64(4): 353–364. Vences, M., Meike, T., van der Meijden, A., Chiari, Y. y Vieites D. 2005. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2(5): 1–12. DOI: 10.1186/1742-9994-2-5. Villanueva, R., Vidal, E.A.G., Fernández-Álvarez, F.A.A., Nabhitabhata, J. 2016. Early Mode of Life and Hatchling Size in Cephalopod Molluscs: Influence on the Species Distributional Ranges. PLoS ONE, 11(11): e0165334. Doi:10.1371/journal.pone.0165334. Wagner, C.E., Keller, I., Wittwer, S., Selz, O.M., Mwaiko, S., Greuter, L., Sivasundar, A. y Seehausen, O. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria chichlid adaptive radiation. Molecular Ecology, 22:787-798. Wiley, E.O. y Lieberman, B.S. 2011. Phylogenetics: Theory and Practice of Phylogenetic Systematics, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons. Zuur, A.F., Leno, E.N., Smith, G.M. 2007. Principal coordinate analysis and non-metric multidimensional scaling. In: Analysing Ecological Data. Statistics for Biology and Heal, Springer, New York, NY. Doi: https://doi.org/10.1007/978-0-387Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de ColombiaCOLCIENCIASEstudiantesGrupos comunitariosInvestigadoresORIGINAL1018467742.2021 (2).pdf1018467742.2021 (2).pdfapplication/pdf1552900https://repositorio.unal.edu.co/bitstream/unal/81142/3/1018467742.2021%20%282%29.pdfa10b34c95553d478323679e374d020b2MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81142/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1018467742.2021 (2).pdf.jpg1018467742.2021 (2).pdf.jpgGenerated Thumbnailimage/jpeg4531https://repositorio.unal.edu.co/bitstream/unal/81142/7/1018467742.2021%20%282%29.pdf.jpg0298e06ea77952db70dc964ee278f5c2MD57unal/81142oai:repositorio.unal.edu.co:unal/811422022-08-29 09:54:33.428Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |