Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation

We study convergence of the semidiscrete and fully discrete formulations of a Fourier- Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of t...

Full description

Autores:
Muñoz Grajales, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66458
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66458
http://bdigital.unal.edu.co/67486/
Palabra clave:
51 Matemáticas / Mathematics
Solitary waves
water waves
spectral methods
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c0955cdbf882980963ffd9f69448b62b
oai_identifier_str oai:repositorio.unal.edu.co:unal/66458
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Grajales, Juan Carlosf91eaa8a-39f3-435b-b854-3e3cdd13bc8b3002019-07-03T02:09:58Z2019-07-03T02:09:58Z2015-07-01ISSN: 2357-4100https://repositorio.unal.edu.co/handle/unal/66458http://bdigital.unal.edu.co/67486/We study convergence of the semidiscrete and fully discrete formulations of a Fourier- Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of the numerical solver is checked using some exact solitary wave solutions. In order to apply the Fourier-spectral scheme in a non periodic setting, we approximate the initial value problem with x ∈ R by the corresponding periodic Cauchy problem for x ∈ [0, L], with a large spatial period L.We study convergence of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of the numerical solver is checked using some exact solitary wave solutions. In order to apply the Fourier-spectral scheme in a non periodic setting, we approximate the initial value problem with x ∈ R by the corresponding periodic Cauchy problem for x ∈ [0, L], with a large spatial period L.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticashttps://revistas.unal.edu.co/index.php/recolma/article/view/60440Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasMuñoz Grajales, Juan Carlos (2015) Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation. Revista Colombiana de Matemáticas, 49 (2). pp. 213-234. ISSN 2357-410051 Matemáticas / MathematicsSolitary waveswater wavesspectral methodsAnalysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL60440-307370-1-PB.pdfapplication/pdf489465https://repositorio.unal.edu.co/bitstream/unal/66458/1/60440-307370-1-PB.pdfaf70a6acdaea2d45243e525349985b05MD51THUMBNAIL60440-307370-1-PB.pdf.jpg60440-307370-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5026https://repositorio.unal.edu.co/bitstream/unal/66458/2/60440-307370-1-PB.pdf.jpgd8993577729fac32e329cf5e5a0dae0bMD52unal/66458oai:repositorio.unal.edu.co:unal/664582023-05-25 23:02:46.909Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
title Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
spellingShingle Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
51 Matemáticas / Mathematics
Solitary waves
water waves
spectral methods
title_short Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
title_full Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
title_fullStr Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
title_full_unstemmed Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
title_sort Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
dc.creator.fl_str_mv Muñoz Grajales, Juan Carlos
dc.contributor.author.spa.fl_str_mv Muñoz Grajales, Juan Carlos
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Solitary waves
water waves
spectral methods
dc.subject.proposal.spa.fl_str_mv Solitary waves
water waves
spectral methods
description We study convergence of the semidiscrete and fully discrete formulations of a Fourier- Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of the numerical solver is checked using some exact solitary wave solutions. In order to apply the Fourier-spectral scheme in a non periodic setting, we approximate the initial value problem with x ∈ R by the corresponding periodic Cauchy problem for x ∈ [0, L], with a large spatial period L.
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:09:58Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:09:58Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2357-4100
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66458
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67486/
identifier_str_mv ISSN: 2357-4100
url https://repositorio.unal.edu.co/handle/unal/66458
http://bdigital.unal.edu.co/67486/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/recolma/article/view/60440
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.references.spa.fl_str_mv Muñoz Grajales, Juan Carlos (2015) Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation. Revista Colombiana de Matemáticas, 49 (2). pp. 213-234. ISSN 2357-4100
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66458/1/60440-307370-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/66458/2/60440-307370-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv af70a6acdaea2d45243e525349985b05
d8993577729fac32e329cf5e5a0dae0b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089339438628864