Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation
We study convergence of the semidiscrete and fully discrete formulations of a Fourier- Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of t...
- Autores:
-
Muñoz Grajales, Juan Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66458
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66458
http://bdigital.unal.edu.co/67486/
- Palabra clave:
- 51 Matemáticas / Mathematics
Solitary waves
water waves
spectral methods
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | We study convergence of the semidiscrete and fully discrete formulations of a Fourier- Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of the numerical solver is checked using some exact solitary wave solutions. In order to apply the Fourier-spectral scheme in a non periodic setting, we approximate the initial value problem with x ∈ R by the corresponding periodic Cauchy problem for x ∈ [0, L], with a large spatial period L. |
---|