Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation

We study convergence of the semidiscrete and fully discrete formulations of a Fourier- Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of t...

Full description

Autores:
Muñoz Grajales, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66458
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66458
http://bdigital.unal.edu.co/67486/
Palabra clave:
51 Matemáticas / Mathematics
Solitary waves
water waves
spectral methods
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We study convergence of the semidiscrete and fully discrete formulations of a Fourier- Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with at bottom. The accuracy of the numerical solver is checked using some exact solitary wave solutions. In order to apply the Fourier-spectral scheme in a non periodic setting, we approximate the initial value problem with x ∈ R by the corresponding periodic Cauchy problem for x ∈ [0, L], with a large spatial period L.