Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico

In this research work, our attention was focused on synthesis, characterization, and study of the molecular interaction of C-alkyl and C-phenyl-pyrogallol[4]arenes with three important biological important organic cations known as neurotransmitters. In this sense, the polyphenolic macrocycles tetra(...

Full description

Autores:
Casas Hinestroza, José Luis
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77999
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77999
Palabra clave:
540 - Química y ciencias afines
543 - Química analítica
547 - Química orgánica
pirogalol[4]arenos
sistemas huésped-hospedero
funcionalización
interacciones moleculares no covalentes
ensambles supramoleculares
pyrogallol[4]arenes
host-guest systems
functionalization
noncovalent interactions
supramolecular assemblies
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_c04544d4037e93e4a50bfd4c02c789f5
oai_identifier_str oai:repositorio.unal.edu.co:unal/77999
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
title Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
spellingShingle Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
540 - Química y ciencias afines
543 - Química analítica
547 - Química orgánica
pirogalol[4]arenos
sistemas huésped-hospedero
funcionalización
interacciones moleculares no covalentes
ensambles supramoleculares
pyrogallol[4]arenes
host-guest systems
functionalization
noncovalent interactions
supramolecular assemblies
title_short Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
title_full Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
title_fullStr Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
title_full_unstemmed Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
title_sort Síntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológico
dc.creator.fl_str_mv Casas Hinestroza, José Luis
dc.contributor.advisor.spa.fl_str_mv Maldonado Villamil, Mauricio
dc.contributor.author.spa.fl_str_mv Casas Hinestroza, José Luis
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia
dc.contributor.researchgroup.spa.fl_str_mv Aplicaciones Analíticas de Compuesto Orgánicos
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
543 - Química analítica
547 - Química orgánica
topic 540 - Química y ciencias afines
543 - Química analítica
547 - Química orgánica
pirogalol[4]arenos
sistemas huésped-hospedero
funcionalización
interacciones moleculares no covalentes
ensambles supramoleculares
pyrogallol[4]arenes
host-guest systems
functionalization
noncovalent interactions
supramolecular assemblies
dc.subject.proposal.spa.fl_str_mv pirogalol[4]arenos
sistemas huésped-hospedero
funcionalización
interacciones moleculares no covalentes
ensambles supramoleculares
dc.subject.proposal.eng.fl_str_mv pyrogallol[4]arenes
host-guest systems
functionalization
noncovalent interactions
supramolecular assemblies
description In this research work, our attention was focused on synthesis, characterization, and study of the molecular interaction of C-alkyl and C-phenyl-pyrogallol[4]arenes with three important biological important organic cations known as neurotransmitters. In this sense, the polyphenolic macrocycles tetra(propyl)-pyrogallol[4]arene, tetra(phenyl)-pyrogallol[4]arene and tetra(4-hidroxyphenyl)-pyrogallol[4]arene were synthesized using butanal, benzaldehyde, and 4-hidroxybenzaldehyde respectively in reaction with pyrogallol in ethanol as solvent in all cases, afterward, the isomers mixture was characterized employing spectroscopic methods (1H-NMR, 13C-RMN, 2D-NMR, and FT-IR) and mass spectrometry(ESI-MS) and, a methodology was developed that allows an efficient separation of each isomer. The three macrocycles were derivatized on the upper rim with acetyl and benzoyl groups employing acetic anhydride and benzoyl chloride achieved a total functionalization of each isomer. Finally, the molecular interaction between the neurotransmitters choline, betaine and carnitine with the macrocycles functionalized and without functionalization in cone and boat conformation was carried out in gas phase and solution. The interaction studies indicated that the macrocycles functionalized form 1:1 complexes host-guest with the three neurotransmitters in the gas phase, while the macrocycles without functionalized, only the tetra(propyl)-pyrogallol[4]arene formed complexes with the neurotransmitters. The noncovalent interactions studies in solution indicated that the cone and boat conformers are affective hosts for the three neurotransmitters and some hosts with potential applications in host-guest systems and supramolecular assemblies.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-08-12T17:51:37Z
dc.date.available.spa.fl_str_mv 2020-08-12T17:51:37Z
dc.date.issued.spa.fl_str_mv 2020-07-14
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv José Luis Casas-Hinestroza
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77999
identifier_str_mv José Luis Casas-Hinestroza
url https://repositorio.unal.edu.co/handle/unal/77999
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Steed, J. W.; Atwood, J. L.; Gale, P. A. Definition and Emergence of Supramolecular ChemistryAdapted in Part from Supramolecular Chemistry , J. W. Steed and J. L. Atwood, Wiley: Chichester, 2nd Ed., 2009. In Supramolecular Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2012
Lehn, J.-M. Towards Complex Matter: Supramolecular Chemistry and Self-Organization. Eur. Rev. 2009, 17 (2), 263–280.
Strekowski, L.; Wilson, B. Noncovalent Interactions with DNA: An Overview. Mutat. Res. Mol. Mech. Mutagen. 2007, 623 (1–2), 3–13.
Harada, A.; Takashima, Y.; Yamaguchi, H. Cyclodextrin-Based Supramolecular Polymers. Chemical Society Reviews. 2009, pp 875–882.
Liu, Z.; Nalluri, S. K. M.; Fraser Stoddart, J. Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chem. Soc. Rev. 2017, 46 (9), 2459–2478.
Kumari, H.; Deakyne, C. A.; Atwood, J. L. Solution Structures of Nanoassemblies Based on Pyrogallol[4]Arenes. Acc. Chem. Res. 2014, 47 (10), 3080–3088.
Jordan, J. H.; Gibb, B. C. Molecular Containers Assembled through the Hydrophobic Effect. Chem. Soc. Rev. 2015, 44 (2), 547–585
Beyeh, N. K.; Rissanen, K. Dimeric Resorcin[4]Arene Capsules in the Solid State. Isr. J. Chem. 2011, 51 (7), 769–780.
Zhang, Q.; Tiefenbacher, K. Hexameric Resorcinarene Capsule Is a Brønsted Acid: Investigation and Application to Synthesis and Catalysis. J. Am. Chem. Soc. 2013, 135 (43), 16213–16219.
Zhang, C.; Wang, F.; Patil, R. S.; Barnes, C. L.; Li, T.; Atwood, J. L. Hierarchical Self-Assembly of Supramolecular Coordination Polymers Using Giant Metal-Organic Nanocapsules as Building Blocks. Chem. - A Eur. J. 2018, 24 (54), 14335–14340.
Cohen, Y.; Slovak, S.; Avram, L. Hydrogen Bond Hexameric Capsules: Structures, Host-Guest Interactions, Guest Affinities, and Catalysis. In Calixarenes and Beyond; Neri, P., Sessler, J. L., Wang, M.-X., Eds.; Springer International Publishing: Cham, 2016; pp 811–842.
Sherman, J. C.; Knobler, C. B.; Cram, J. Syntheses and Properties of Soluble Carceplexes. J. Am. Chem. Soc. 1991, 2204 (4), 2194–2204.
Tanaka, Y.; Miyachi, M.; Kobuke, Y. Selective Vesicle Formation from Calixarenes by Self-Assembly. Angew. Chemie - Int. Ed. 1999, 38 (4), 504–506.
Yan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis , Alkylation Reaction , and Configuration Analysis of Aryl Pyrogallol [ 4 ] Arenes. 2007, 63, 9614–9620
Funck, M.; Guest, D. P.; Cave, G. W. V. Microwave-Assisted Synthesis of Resorcin[4]Arene and Pyrogallol[4]Arene Macrocycles. Tetrahedron Lett. 2010, 51, 6399–6402.
Yasmin, L.; Coyle, T.; Stubbs, K. A.; Raston, C. L. Stereospecific Synthesis of Resorcin[4]Arenes and Pyrogallol[4]Arenes in Dynamic Thin Films. Chem. Commun. 2013, 49 (93), 10932–10934.
Jain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102.
Szumna, A.; Wierzbicki, M.; Iwanek, W.; Stefa, K. Solvent-Free Synthesis and Structure of 2-Naphthol Derivatives of Resorcinarenes. 2015, 71, 2222–2225.
Thomas, H. M.; Kumari, H.; Maddalena, J.; Mayhan, C. M.; Ellis, L. T.; Adams, J. E.; Deakyne, C. A. Conformational Preference and Dynamics of Pyrogallol[4]Arene: Stability, Interconversion, and Solvent Influence. Supramol. Chem. 2018, 30 (5–6), 520–532.
Manzano, S.; Zambrano, C. H.; Mendez, M. A.; Dueno, E. E.; Cazar, R. A.; Torres, F. J. A Theoretical Study of the Conformational Preference of Alkyl- and Aryl-Substituted Pyrogallol[4]Arenes and Evidence of the Accumulation of Negative Electrostatic Potential within the Cavity of Their Rccc Conformers. Mol. Simul. 2014, 40 (4), 327–334.
Gutsche, C. D.; Dhawan, B.; Levine, J. A.; Hyun No, K.; Bauer, L. J. Calixarenes 9. Tetrahedron 1983, 39 (3), 409–426.
Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535.
Mann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539.
Gerkensmeier, T.; Agena, C.; Iwanek, W.; Fröhlich, R.; Kotila, S.; Näther, C.; Mattay, J. Synthesis and Structural Studies of 5, 11, 17, 23-Tetrahydroxyresorc[4]Arenes. Zeitschrift für Naturforsch. B 2001, 56 (10), 1063–1073.
Schiel, C.; Hembury, G. A.; Borovkov, V. V.; Klaes, M.; Agena, C.; Wada, T.; Grimme, S.; Inoue, Y.; Mattay, J. New Insights into the Geometry of Resorc[4]Arenes: Solvent-Mediated Supramolecular Conformational and Chiroptical Control. J. Org. Chem. 2006, 71 (3), 976–982.
Patil, R. S.; Drachnik, A. M.; Kumari, H.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Solvent-Induced Manipulation of Supramolecular Organic Frameworks. Cryst. Growth Des. 2015, 15 (6), 2781–2786.
Alshahateet, S. F.; Kooli, F.; Messali, M.; Judeh, Z. M. A.; ElDouhaibi, A. S. Synthesis and Supramolecularity of C -Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers. Mol. Cryst. Liq. Cryst. 2007, 474 (1), 89–110.
Casas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225.
Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386.
Kulikov, O. V; Negin, S.; Rath, N. P.; Gokel, G. W. Morphologies of Branched-Chain Pyrogallol[4]Arenes in the Solid State. Supramol. Chem. 2014, 26 (7–8), 506–516.
Dalgarno, S. J.; Power, N. P.; Antesberger, J.; Mckinlay, R. M.; Atwood, J. L. Synthesis and Structural Characterisation of Lower Rim Halogenated Pyrogallol [ 4 ] Arenes : Bi-Layers and Hexameric Nano-Capsules. Chem. Commun. 2006, 3803–3805.
Gibb, B. C.; Chapman, R. G.; Sherman, J. C. Synthesis of Hydroxyl-Footed Cavitands. J. Org. Chem. 1996, 61 (4), 1505–1509.
Kobayashi, K.; Asakawa, Y.; Kato, Y.; Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest-Host CH-.Pi. Interaction. J. Am. Chem. Soc. 1992, 114 (26), 10307–10313.
Barrett, E. S.; Dale, T. J.; Rebek, J. Synthesis and Assembly of Monofunctionalized Pyrogallolarene Capsules Monitored by Fluorescence Resonance Energy Transfer. Chem. Commun. 2007, 0 (41), 4224.
Fujimoto, T.; Yanagihara, R.; Kobayashi, K.; Aoyama, Y. C–H··· π Hydrogen Bonding between Electron-Rich Benzene Rings and Polarized C–H Bonds: Selectivity in the Complexation of Highly Hydrophilic Guest Molecules with Calix[4]Resorcarene Hosts in Water. Bull. Chem. Soc. Jpn. 1995, 68, 2113–2124.
Barrett, E. S.; Dale, T. J.; Rebek, J. Assembly and Exchange of Resorcinarene Capsules Monitored by Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc. 2007, 129 (13), 3818–3819.
Fairfull-Smith (née Elson), K.; Redon, P. M. J.; Haycock, J. W.; Williams, N. H. Monofunctionalised Resorcinarenes. Tetrahedron Lett. 2007, 48 (8), 1317–1319.
Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J.; Cave, G. W. V; Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J. Pyridinium Encapsulation within a Novel Cyano- Footed Pyrogallol [ 4 ] Arene Nanocapsule. Supramol. Chem. 2014, 0278 (March 2017), 1–5.
Schröder, T.; Geisler, T.; Walhorn, V.; Schnatwinkel, B.; Anselmetti, D.; Mattay, J. Single-Molecule Force Spectroscopy of Supramolecular Heterodimeric Capsules. Phys. Chem. Chem. Phys. 2010, 12 (36), 10981.
Rafai Far, A.; Lag Cho, Y.; Rang, A.; Rudkevich, D. M.; Rebek, J. Polymer-Bound Self-Folding Cavitands. Tetrahedron 2002, 58 (4), 741–755.
Saitoh, M.; Fukaminato, T.; Irie, M. Photochromism of a Diarylethene Derivative in Aqueous Solution Capping with a Water-Soluble Nano-Cavitand. J. Photochem. Photobiol. A Chem. 2009, 207 (1), 28–31.
Saito, S.; Rudkevich, D. M.; Rebek, J. Lower Rim Functionalized Resorcinarenes: Useful Modules for Supramolecular Chemistry. Org. Lett. 1999, 1 (8), 1241–1244.
Naumann, C.; Román, E.; Peinador, C.; Ren, T.; Patrick, B. O.; Kaifer, A. E.; Sherman, J. C. Expanding Cavitand Chemistry: The Preparation and Characterization of [n]Cavitands Withn≥4. Chemistry (Easton). 2001, 7 (8), 1637–1645.
Åhman, A.; Luostarinen, M.; Schalley, C. A.; Nissinen, M.; Rissanen, K. Derivatisation of Pyrogallarenes. European J. Org. Chem. 2005, 2005 (13), 2793–2801.
Podyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; et al. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61.
Pashirova, T. N.; Leonova, M. V.; Podyachev, S. N.; Sudakova, S. N.; Zakharova, L. Y.; Kudryavtseva, L. A.; Konovalov, A. I. Effect of Structural Preorganization on the Reactivity of Carbazoylmethyl Derivatives of Pyrogallol and Calix[4]Pyrogallol. Russ. Chem. Bull. 2007, 56 (12), 2394–2399.
Luostarinen, M.; Åhman, A.; Nissinen, M.; Rissanen, K. Ethyl Pyrogall[6]Arene and Pyrogall[4]Arene: Synthesis, Structural Analysis and Derivatization. Supramol. Chem. 2004, 16 (7), 505–512.
Han, J.; Song, X.; Liu, L.; Yan, C. Synthesis, Crystal Structure and Configuration of Acetylated Aryl Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2007, 59 (3–4), 257–263.
Krause, T.; Gruner, M.; Kuckling, D.; Habicher, W. D. Novel Starshaped Initiators for the Controlled Radical Polymerization Based on Resorcin[4]- and Pyrogallol[4]Arenes. Tetrahedron Lett. 2004, 45 (52), 9635–9639.
Jordan, J. H.; Gibb, B. C. Water-Soluble Cavitands ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 387–404.
Tero, T.-R.; Nissinen, M. Resorcinarene Crowns ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; pp 375–386.
Salorinne, K.; Nissinen, M. Calixcrowns: Synthesis and Properties. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 11–27.
Biedermann, F.; Schneider, H. J. Experimental Binding Energies in Supramolecular Complexes. Chem. Rev. 2016, 116 (9), 5216–5300.
Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825.
Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chemie - Int. Ed. 2011, 50 (21), 4808–4842.
Casas-Hinestroza, J. L.; Bueno, M.; Ibáñez, E.; Cifuentes, A. Recent Advances in Mass Spectrometry Studies of Non-Covalent Complexes of Macrocycles - A Review. Anal. Chim. Acta 2019.
Waters, M. L. Aromatic Interactions in Model Systems. Curr. Opin. Chem. Biol. 2002, 6 (6), 736–741.
Waters, M. L. Aromatic Interactions in Peptides: Impact on Structure and Function. Biopolymers 2004, 76 (5), 435–445.
Przybylski, M.; Glocker, M. O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions—New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew. Chemie Int. Ed. English 1996, 35 (8), 806–826.
Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 1–40.
Venter, A.; Nefliu, M.; Graham Cooks, R. Ambient Desorption Ionization Mass Spectrometry. TrAC Trends Anal. Chem. 2008, 27 (4), 284–290.
Chen, F.; Mädler, S.; Weidmann, S.; Zenobi, R. MALDI-MS Detection of Noncovalent Interactions of Single Stranded DNA with Escherichia Coli Single-Stranded DNA-Binding Protein. J. Mass Spectrom. 2012, 47 (5), 560–566.
Downard, K. M. Indirect Study of Non-Covalent Protein Complexes by MALDI Mass Spectrometry: Origins, Advantages, and Applications of the “Intensity-Fading” Approach. Mass Spectrom. Rev. 2016, 35 (5), 559–573.
Tong, W.; Wang, G. How Can Native Mass Spectrometry Contribute to Characterization of Biomacromolecular Higher-Order Structure and Interactions? Methods 2018, 144 (April), 3–13.
Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216 (1), 1–27.
Wyttenbach, T.; Bowers, M. T. Intermolecular Interactions in Biomolecular Systems Examined by Mass Spectrometry. Annu. Rev. Phys. Chem. 2007, 58 (1), 511–533.
Chen, F.; Gülbakan, B.; Weidmann, S.; Fagerer, S. R.; Ibáñez, A. J.; Zenobi, R. Applying Mass Spectrometry to Study Non-Covalent Biomolecule Complexes. Mass Spectrom. Rev. 2016, 35 (1), 48–70.
Erba, E. B.; Zenobi, R. Mass Spectrometric Studies of Dissociation Constants of Noncovalent Complexes. Annu. Reports Sect. “C” (Physical Chem. 2011, 107, 199.
Finn, M. G. Emerging Methods for the Rapid Determination of Enantiomeric Excess. Chirality 2002, 14 (7), 534–540.
Sharafutdinova, D. R.; Bazanova, O. B.; Murav´ev, A. A.; Solov´eva, S. E.; Antipin, I. S.; Konovalov, A. I. Composition of Thiacalix[4]Arene Complexes with Monovalent Metal Ions in the Gas Phase: MALDI Mass Spectrometry. Russ. Chem. Bull. 2015, 64 (8), 1823–1828.
Cameron, K. S.; Fielding, L. NMR Diffusion Spectroscopy as a Measure of Host - Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 2001, 66 (4), 6891–6895.
Kovrigin, E. L. NMR Line Shapes and Multi-State Binding Equilibria. J. Biomol. NMR 2012, 53, 257–270.
Funasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S. NMR Chemical Shift References for Binding Constant Determination in Aqueous Solutions. J. Phys. Chem. B 2001, 105 (30), 7361–7365.
Kemmer, G.; Keller, S. Nonlinear Least-Squares Data Fitting in Excel Spreadsheets. Nat. Protoc. 2010, 5 (2), 267–281.
Lowe, A. J.; Pfeffer, F. M.; Thordarson, P. Determining Binding Constants from 1 H NMR Titration Data Using Global and Local Methods: A Case Study Using [ n ]Polynorbornane-Based Anion Hosts. Supramol. Chem. 2012, 24 (8), 585–594.
Hynes, M. J. EQNMR: A Computer Program for the Calculation of Stability Constants from Nuclear Magnetic Resonance Chemical Shift Data. J. Chem. Soc. Dalt. Trans. 1993, No. 2, 311.
Beyeh, N. K.; Pan, F.; Ras, R. H. A. N -Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment. Asian J. Org. Chem. 2016, 1–7.
Kharlamov, S. V; Latypov, S. K. Modern Diffusion-Ordered NMR Spectroscopy in Chemistry of Supramolecular Systems: The Scope and Limitations. Russ. Chem. Rev. 2010, 79 (8), 635–653.
Slovak, S.; Evan-Salem, T.; Cohen, Y. Self-Assembly of a Hexameric Aggregate of a Lipophilic Calix[4]Pyrrole−Resorcinarene Hybrid in Solution: A Diffusion NMR Study. Org. Lett. 2010, 12 (21), 4864–4867.
Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Determining Accurate Molecular Sizes in Solution through NMR Diffusion Spectroscopy. Chem. Soc. Rev. 2008, 37 (3), 479–489.
Horin, I.; Adiri, T.; Zafrani, Y.; Cohen, Y. Bis-Resorcin[4]Arene Selectively Forms Hexameric Capsules in Apolar Solvents: Evidence from Diffusion NMR. Org. Lett. 2018, 20 (13), 3958–3961.
Späth, A.; König, B. Molecular Recognition of Organic Ammonium-Ions in Solution Using Synthetic Receptors. Beilstein J. Org. Chem. 2010, 6, 32–133.
Åhman, A.; Luostarinen, M.; Rissanen, K.; Nissinen, M. Complexation of C-Methyl Pyrogallarene with Small Quaternary and Tertiary Alkyl Ammonium Cations. New J. Chem. 2007, 31 (1), 169–177.
Schnatwinkel, B.; Rekharsky, M. V.; Brodbeck, R.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Thermodynamic Aspects of the Host–Guest Chemistry of Pyrogallol[4]Arenes and Peralkylated Ammonium Cations. Tetrahedron 2009, 65 (13), 2711–2715.
Fujisawa, I.; Aoki, K. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-Pyrogallol[4]Arene and C-Ethyl-Resorcin[4]Arene as Receptors. Crystals 2013, 3 (2), 306–314.
Schnatwinkel, B.; Rekharsky, M. V.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Pyrogallol[4]Arenes as Artificial Receptors for l-Carnitine. Tetrahedron Lett. 2009, 50 (13), 1374–1376.
Ballester, P.; Shivanyuk, A.; Far, A. R.; Rebek, J. A Synthetic Receptor for Choline and Carnitine. J. Am. Chem. Soc. 2002, 124 (47), 14014–14016.
Fujisawa, I.; Kitamura, Y.; Okamoto, R.; Murayama, K.; Kato, R.; Aoki, K. Crystal Structure of Pyrogallol[4]Arene Complex with Phosphocholine: A Molecular Recognition Model for Phosphocholine through Cation–π Interaction. J. Mol. Struct. 2013, 1038, 188–193.
Fujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K. Crystal Structure of an L-Carnitine Complex with Pyrogallol[4]Arene. J. Phys. Conf. Ser. 2012, 352 (1), 012043.
Fowler, D. A.; Pfeiffer, C. R.; Teat, S. J.; Beavers, C. M.; Baker, G. A.; Atwood, J. L. Illuminating Host–Guest Cocrystallization between Pyrogallol[4]Arenes and the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate. CrystEngComm 2014, 16 (27), 6010–6022.
Demura, M.; Yoshida, T.; Hirokawa, T.; Kumaki, Y.; Aizawa, T.; Nitta, K.; Bitter, I.; Tóth, K. Interaction of Dopamine and Acetylcholine with an Amphiphilic Resorcinarene Receptor in Aqueous Micelle System. Bioorg. Med. Chem. Lett. 2005, 15 (5), 1367–1370.
Fowler, D. A.; Tian, J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Cocrystallization of C-Butyl Pyrogallol[4]Arene and C-Propan-3-Ol Pyrogallol[4]Arene with Gabapentin. CrystEngComm 2011, 13 (5), 1446–1449.
Fujisawa, I.; Kitamura, Y.; Kato, R.; Murayama, K.; Aoki, K. Crystal Structures of Resorcin[4]Arene and Pyrogallol[4]Arene Complexes with DL-Pipecolinic Acid. Model Compounds for the Recognition of the Pipecolinyl Ring, a Key Fragment of FK506, through C–H⋯π Interaction. J. Mol. Struct. 2014, 1056–1057, 292–298.
Pfeiffer, C. R.; Fowler, D. a.; Teat, S.; Atwood, J. L. Cocrystallization of Pyrogallol[4]Arenes with 1-(2-Pyridylazo)-2-Naphthol. CrystEngComm 2014, 16 (47), 10760–10773.
Pfeiffer, C. R.; Fowler, D. A.; Atwood, J. L. Endo vs Exo Bowl: Complexation of Xanthone by Pyrogallol[4]Arenes. Cryst. Growth Des. 2014, 14 (8), 4205–4213.
Podyachev, S. N.; Sudakova, S. N.; Syakaev, V. V.; Burmakina, N. E.; Shagidullin, R. R.; Morozov, V. I.; Avvakumova, L. V.; Konovalov, A. I. Synthesis and Properties of Potassium Salts of Per-O-Carboxymethyl-Calix[4]Pyrogallols and Their Complexes with Cu2+, Fe3+, and La3+. Russ. Chem. Bull. 2009, 58 (1), 80–88.
Nikolelis, D. P.; Raftopoulou, G.; Psaroudakis, N.; Nikoleli, G.-P. Development of an Electrochemical Chemosensor for the Rapid Detection of Zinc Based on Air Stable Lipid Films with Incorporated Calix4arene Phosphoryl Receptor. Int. J. Environ. Anal. Chem. 2009, 89 (3), 211–222.
Hof, F.; Trembleau, L.; Ullrich, E. C.; Rebek, Jr., J. Acetylcholine Recognition by a Deep, Biomimetic Pocket. Angew. Chemie Int. Ed. 2003, 42 (27), 3150–3153.
Kim, S. K.; Kang, B.; Koh, H. S.; Yoon, Y. J.; Jung, S. J.; Jeong, B.; Lee, K.; Yoon, J. A New Imidazolium Cavitand for the Recognition of Dicarboxylates. Org. Lett. 2004, 6 (25), 4655–4658.
Dalgarno, S. J. Supramolecular Chemistry. Annu. Reports Sect. “B” (Organic Chem. 2009, 105 (0), 190.
Pradeep, C. P.; Cronin, L. Supramolecular Coordination Chemistry. Annu. Reports Sect. “A” (Inorganic Chem. 2007, 103, 287.
dos Santos, C.; Buera, P.; Mazzobre, F. Novel Trends in Cyclodextrins Encapsulation. Applications in Food Science. Curr. Opin. Food Sci. 2017, 16, 106–113.
Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Functionalized Cucurbiturils and Their Applications. Chem. Soc. Rev. 2007, 36 (2), 267–279.
Negin, S.; Gokel, G. W. The Varied Supramolecular Chemistry of Pyrogallol [ 4 ] Arenes. In Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds; Elsevier Inc.: Missouri, 2016; pp 235–256.
Rebek, J.; Shivanyuk, A. Hydrogen-Bonded Capsules in Polar, Protic Solvents. Chem. Commun. 2001, 2374–2375.
Zhang, Q.; Adams, R. D.; Fenske, D. Stable Hydrogen-Bonded Spherical Capsules Formed from Self-Assembly of Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2005, 53 (3–4), 275–279.
Dalgarno, S. J.; Power, N. P.; Warren, J. E.; Atwood, J. L. Rapid Formation of Metal–Organic Nano-Capsules Gives New Insight into the Self-Assembly Process. Chem. Commun. 2008, 0 (13), 1539.
Avram, L.; Cohen, Y.; Rebek Jr., J. Recent Advances in Hydrogen-Bonded Hexameric Encapsulation Complexes. Chem. Commun. 2011, 47 (19), 5368.
Cave, G. W. V.; Dalgarno, S. J.; Antesberger, J.; Ferrarelli, M. C.; McKinlay, R. M.; Atwood, J. L. Investigations into Chain Length Control over Solid-State Pyrogallol[4]Arene Nanocapsule Packing. Supramol. Chem. 2008, 20 (1–2), 157–159.
M. A. Gangemi, C.; Pappalardo, A.; Trusso Sfrazzetto, G. Assembling of Supramolecular Capsules with Resorcin[4]Arene and Calix[n]Arene Building Blocks. Curr. Org. Chem. 2015, 19 (23), 2281–2308.
Kumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Magnetic Differentiation of Pyrogallol[4]Arene Tubular and Capsular Frameworks. J. Am. Chem. Soc. 2013, 135, 7110–7113.
Dalgarno, S. J.; Cave, G. W. V.; Atwood, J. L. Toward the Isolation of Functional Organic Nanotubes. Angew. Chemie Int. Ed. 2006, 45 (4), 570–574.
Kumari, H.; Kline, S. R.; Wycoff, W. G.; Paul, R. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Solution-Phase Structures of Gallium-Containing Pyrogallol[4]Arene Scaffolds. Angew. Chemie Int. Ed. 2012, 51 (21), 5086–5091.
Power, N. P.; Dalgarno, S. J.; Atwood, J. L. Guest and Ligand Behavior in Zinc-Seamed Pyrogallol[4]Arene Molecular Capsules. Angew. Chemie Int. Ed. 2007, 46 (45), 8601–8604.
Jin, P.; Dalgarno, S. J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Ion Transport to the Interior of Metal−Organic Pyrogallol[4]Arene Nanocapsules. J. Am. Chem. Soc. 2008, 130 (51), 17262–17263.
Kumari, H.; Jin, P.; Teat, S. J.; Barnes, C. L.; Dalgarno, S. J.; Atwood, J. L. Entrapment of Elusive Guests within Metal-Seamed Nanocapsules. Angew. Chemie - Int. Ed. 2014, 53 (48), 13088–13092.
Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Metallo-Supramolecular Capsules. Coord. Chem. Rev. 2008, 252 (8–9), 825–841.
Kumari, H.; Mossine, A. V.; Kline, S. R.; Dennis, C. L.; Fowler, D. A.; Teat, S. J.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules. Angew. Chemie Int. Ed. 2012, 51 (6), 1452–1454.
Kumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Exploring the Magnetic Behavior of Nickel-Coordinated Pyrogallol[4]Arene Nanocapsules. ACS Nano 2012, 6 (1), 272–275.
Adriaenssens, L.; Ballester, P. Hydrogen Bonded Supramolecular Capsules with Functionalized Interiors: The Controlled Orientation of Included Guests. Chem. Soc. Rev. 2013, 42 (8), 3261.
Fowler, D. A.; Mossine, A. V.; Beavers, C. M.; Teat, S. J.; Dalgarno, S. J.; Atwood, J. L. Coordination Polymer Chains of Dimeric Pyrogallol[4]Arene Capsules. J. Am. Chem. Soc. 2011, 133 (29), 11069–11071.
Gangemi, C. M. A.; Pappalardo, A.; Trusso Sfrazzetto, G. Applications of Supramolecular Capsules Derived from Resorcin[4]Arenes, Calix[n]Arenes and Metallo-Ligands: From Biology to Catalysis. RSC Adv. 2015, 5 (64), 51919–51933.
Scott, M. P.; Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 337–374.
Chakraborty, S.; Saha, A.; Basu, K.; Saha, C. Solid-Phase Benzoylation of Phenols and Alcohols in Microwave Reactor: An Ecofriendly Protocol. Synth. Commun. 2015, 45 (20), 2331–2343.
Abrash, H. I.; Shih, D.; Elias, W.; Malekmehr, F. A Kinetic Study of the Air Oxidation of Pyrogallol and Purpurogallin. Int. J. Chem. Kinet. 1989, 21 (6), 465–476.
Cohen, Y.; Evan-Salem, T.; Avram, L. Hydrogen-Bonded Hexameric Capsules of Resorcin[4]Arene, Pyrogallol[4]Arene and Octahydroxypyridine[4]Arene Are Abundant Structures in Organic Solvents: A View from Diffusion NMR. Supramol. Chem. 2008, 20 (1–2), 71–79.
Kass, J. P.; Zambrano, C. H.; Zeller, M.; Hunter, A. D.; Dueno, E. E. 2,8,14,20-Tetraphenylpyrogallol[4]Arene Dimethylformamide Octasolvate. Acta Crystallogr. Sect. E Struct. Reports Online 2006, 62 (8), o3179–o3180.
Patil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207.
Dueno, E. E.; Ray, T.; Salvatore, R. N.; Hunter, A. D. 2,8,14,20-Tetrakis(4-Hydroxyphenyl)- Pyrogallol[4]Arene Dimethylformamide Hexasolvate. Acta Crystallogr. Sect. E 2007, E63, o3533–o3534.
Sheikh, M. C.; Takagi, S.; Yoshimura, T.; Morita, H. Mechanistic Studies of DCC/HOBt-Mediated Reaction of 3-Phenylpropionic Acid with Benzyl Alcohol and Studies on the Reactivities of ‘Active Ester’ and the Related Derivatives with Nucleophiles. Tetrahedron 2010, 66 (36), 7272–7278.
Farshori, N. N.; Banday, M. R.; Zahoor, Z.; Rauf, A. DCC/DMAP Mediated Esterification of Hydroxy and Non-Hydroxy Olefinic Fatty Acids with β-Sitosterol: In Vitro Antimicrobial Activity. Chinese Chem. Lett. 2010, 21 (6), 646–650.
Waghmare, A. A.; Hindupur, R. M.; Pati, H. N. Propylphosphonic Anhydride (T3P®): An Expedient Reagent for Organic Synthesis. Rev. J. Chem. 2014, 4 (2), 53–131.
Lin, Z.; Emge, T. J.; Warmuth, R. Multicomponent Assembly of Cavitand-Based Polyacylhydrazone Nanocapsules. Chem. - A Eur. J. 2011, 17 (34), 9395–9405.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 200
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77999/1/4061194.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77999/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77999/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77999/4/4061194.2020.pdf.jpg
bitstream.checksum.fl_str_mv cf03c69cdd51ff2529cf29285001ba70
e2f63a891b6ceb28c3078128251851bf
217700a34da79ed616c2feb68d4c5e06
614743d8d38f2eb7e2924d59833c79e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089495765581824
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Maldonado Villamil, Mauriciodd02606e-8e95-46f2-be9b-94f54c96697dCasas Hinestroza, José Luise35f09da-4711-48db-96f7-6c2f5c20387dUniversidad Nacional de ColombiaAplicaciones Analíticas de Compuesto Orgánicos2020-08-12T17:51:37Z2020-08-12T17:51:37Z2020-07-14José Luis Casas-Hinestrozahttps://repositorio.unal.edu.co/handle/unal/77999In this research work, our attention was focused on synthesis, characterization, and study of the molecular interaction of C-alkyl and C-phenyl-pyrogallol[4]arenes with three important biological important organic cations known as neurotransmitters. In this sense, the polyphenolic macrocycles tetra(propyl)-pyrogallol[4]arene, tetra(phenyl)-pyrogallol[4]arene and tetra(4-hidroxyphenyl)-pyrogallol[4]arene were synthesized using butanal, benzaldehyde, and 4-hidroxybenzaldehyde respectively in reaction with pyrogallol in ethanol as solvent in all cases, afterward, the isomers mixture was characterized employing spectroscopic methods (1H-NMR, 13C-RMN, 2D-NMR, and FT-IR) and mass spectrometry(ESI-MS) and, a methodology was developed that allows an efficient separation of each isomer. The three macrocycles were derivatized on the upper rim with acetyl and benzoyl groups employing acetic anhydride and benzoyl chloride achieved a total functionalization of each isomer. Finally, the molecular interaction between the neurotransmitters choline, betaine and carnitine with the macrocycles functionalized and without functionalization in cone and boat conformation was carried out in gas phase and solution. The interaction studies indicated that the macrocycles functionalized form 1:1 complexes host-guest with the three neurotransmitters in the gas phase, while the macrocycles without functionalized, only the tetra(propyl)-pyrogallol[4]arene formed complexes with the neurotransmitters. The noncovalent interactions studies in solution indicated that the cone and boat conformers are affective hosts for the three neurotransmitters and some hosts with potential applications in host-guest systems and supramolecular assemblies.En este trabajo de investigación, nuestro interés estuvo centrado en la síntesis, caracterización y estudio de la interacción molecular de C-alquil y C-fenil-pirogalol[4]arenos frente a tres cationes orgánicos de interés biológico conocidos por su acción como neurotransmisores. En este sentido se establecieron las mejores condiciones de reacción para la síntesis de tres polifenoles macrocíclicos tetra(propil)-pirogalol[4]areno, tetra(fenil)-pirogalol[4]areno y tetra(4-hidroxifenil)pirogalol[4]areno a partir de butanal, benzaldehído y p-hidroxi-benzaldehído respectivamente en reacción con pirogalol usando etanol como disolvente. Posteriormente, se determinó y caracterizó completamente por métodos espectroscópicos (RMN-1H, RMN-13C, RMN-2D y FT-IR) y espectrometría de masas(ESI-MS) la identidad de la mezcla de isómeros obtenida en la síntesis de los derivados aromáticos, y además se desarrolló una metodología que permitió la separación eficiente de cada isómero. Los tres macrociclos fueron derivatizados con grupos carboxilo usando anhídrido acético y cloruro de benzoilo logrando su funcionalización total. Finalmente, se evaluó la interacción molecular entre los cationes de interés biológico colina, carnitina y betaína frente a los macrociclos sin funcionalizar y funcionalizados en fase gaseosa y en disolución logrando demostrar que todos los macrociclos derivatizados en el borde superior con los grupos acetil y benzoilo forman complejos en estequiometria 1:1 en fase gaseosa con los tres cationes planteados, mientras que, de los macrociclos sin funcionalizar, solamente el tetra(propil)-pirogalol[4]areno forma complejos estables con los tres cationes usados. De igual manera los estudios en disolución mediante titulaciones por RMN-1H permitió establecer que los confórmeros bote(rccc) y cono(rccc) de los macrociclos sin derivatizar y derivatizados son los mejores hospederos de los neurotransmisores planteados con potencial aplicación en el diseño de sistemas huésped-hospedero y ensambles supramoleculares.SÍNTESIS, CARACTERIZACIÓN DE C-ALQUIL Y C-FENIL-PIROGALOL[4]ARENOS FUNCIONALIZADOS CON GRUPOS CARBOXILO EN EL BORDE SUPERIOR Y EVALUACIÓN DE SU INTERACCIÓN CON CATIONES ORGÁNICOS DE INTERÉS BIOLÓGICOLínea de Investigación: Química Analítica y Síntesis OrgánicaDoctorado200application/pdfspa540 - Química y ciencias afines543 - Química analítica547 - Química orgánicapirogalol[4]arenossistemas huésped-hospederofuncionalizacióninteracciones moleculares no covalentesensambles supramolecularespyrogallol[4]areneshost-guest systemsfunctionalizationnoncovalent interactionssupramolecular assembliesSíntesis, caracterización de c-aquil y c-fenil-pirogalol[4]arenos funcionalizados con grupos carboxilo en el borde superior y evaluación de su interacción con cationes orgánicos de interés biológicoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextBogotá - Ciencias - Doctorado en Ciencias - QuímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáSteed, J. W.; Atwood, J. L.; Gale, P. A. Definition and Emergence of Supramolecular ChemistryAdapted in Part from Supramolecular Chemistry , J. W. Steed and J. L. Atwood, Wiley: Chichester, 2nd Ed., 2009. In Supramolecular Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2012Lehn, J.-M. Towards Complex Matter: Supramolecular Chemistry and Self-Organization. Eur. Rev. 2009, 17 (2), 263–280.Strekowski, L.; Wilson, B. Noncovalent Interactions with DNA: An Overview. Mutat. Res. Mol. Mech. Mutagen. 2007, 623 (1–2), 3–13.Harada, A.; Takashima, Y.; Yamaguchi, H. Cyclodextrin-Based Supramolecular Polymers. Chemical Society Reviews. 2009, pp 875–882.Liu, Z.; Nalluri, S. K. M.; Fraser Stoddart, J. Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chem. Soc. Rev. 2017, 46 (9), 2459–2478.Kumari, H.; Deakyne, C. A.; Atwood, J. L. Solution Structures of Nanoassemblies Based on Pyrogallol[4]Arenes. Acc. Chem. Res. 2014, 47 (10), 3080–3088.Jordan, J. H.; Gibb, B. C. Molecular Containers Assembled through the Hydrophobic Effect. Chem. Soc. Rev. 2015, 44 (2), 547–585Beyeh, N. K.; Rissanen, K. Dimeric Resorcin[4]Arene Capsules in the Solid State. Isr. J. Chem. 2011, 51 (7), 769–780.Zhang, Q.; Tiefenbacher, K. Hexameric Resorcinarene Capsule Is a Brønsted Acid: Investigation and Application to Synthesis and Catalysis. J. Am. Chem. Soc. 2013, 135 (43), 16213–16219.Zhang, C.; Wang, F.; Patil, R. S.; Barnes, C. L.; Li, T.; Atwood, J. L. Hierarchical Self-Assembly of Supramolecular Coordination Polymers Using Giant Metal-Organic Nanocapsules as Building Blocks. Chem. - A Eur. J. 2018, 24 (54), 14335–14340.Cohen, Y.; Slovak, S.; Avram, L. Hydrogen Bond Hexameric Capsules: Structures, Host-Guest Interactions, Guest Affinities, and Catalysis. In Calixarenes and Beyond; Neri, P., Sessler, J. L., Wang, M.-X., Eds.; Springer International Publishing: Cham, 2016; pp 811–842.Sherman, J. C.; Knobler, C. B.; Cram, J. Syntheses and Properties of Soluble Carceplexes. J. Am. Chem. Soc. 1991, 2204 (4), 2194–2204.Tanaka, Y.; Miyachi, M.; Kobuke, Y. Selective Vesicle Formation from Calixarenes by Self-Assembly. Angew. Chemie - Int. Ed. 1999, 38 (4), 504–506.Yan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis , Alkylation Reaction , and Configuration Analysis of Aryl Pyrogallol [ 4 ] Arenes. 2007, 63, 9614–9620Funck, M.; Guest, D. P.; Cave, G. W. V. Microwave-Assisted Synthesis of Resorcin[4]Arene and Pyrogallol[4]Arene Macrocycles. Tetrahedron Lett. 2010, 51, 6399–6402.Yasmin, L.; Coyle, T.; Stubbs, K. A.; Raston, C. L. Stereospecific Synthesis of Resorcin[4]Arenes and Pyrogallol[4]Arenes in Dynamic Thin Films. Chem. Commun. 2013, 49 (93), 10932–10934.Jain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102.Szumna, A.; Wierzbicki, M.; Iwanek, W.; Stefa, K. Solvent-Free Synthesis and Structure of 2-Naphthol Derivatives of Resorcinarenes. 2015, 71, 2222–2225.Thomas, H. M.; Kumari, H.; Maddalena, J.; Mayhan, C. M.; Ellis, L. T.; Adams, J. E.; Deakyne, C. A. Conformational Preference and Dynamics of Pyrogallol[4]Arene: Stability, Interconversion, and Solvent Influence. Supramol. Chem. 2018, 30 (5–6), 520–532.Manzano, S.; Zambrano, C. H.; Mendez, M. A.; Dueno, E. E.; Cazar, R. A.; Torres, F. J. A Theoretical Study of the Conformational Preference of Alkyl- and Aryl-Substituted Pyrogallol[4]Arenes and Evidence of the Accumulation of Negative Electrostatic Potential within the Cavity of Their Rccc Conformers. Mol. Simul. 2014, 40 (4), 327–334.Gutsche, C. D.; Dhawan, B.; Levine, J. A.; Hyun No, K.; Bauer, L. J. Calixarenes 9. Tetrahedron 1983, 39 (3), 409–426.Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535.Mann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539.Gerkensmeier, T.; Agena, C.; Iwanek, W.; Fröhlich, R.; Kotila, S.; Näther, C.; Mattay, J. Synthesis and Structural Studies of 5, 11, 17, 23-Tetrahydroxyresorc[4]Arenes. Zeitschrift für Naturforsch. B 2001, 56 (10), 1063–1073.Schiel, C.; Hembury, G. A.; Borovkov, V. V.; Klaes, M.; Agena, C.; Wada, T.; Grimme, S.; Inoue, Y.; Mattay, J. New Insights into the Geometry of Resorc[4]Arenes: Solvent-Mediated Supramolecular Conformational and Chiroptical Control. J. Org. Chem. 2006, 71 (3), 976–982.Patil, R. S.; Drachnik, A. M.; Kumari, H.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Solvent-Induced Manipulation of Supramolecular Organic Frameworks. Cryst. Growth Des. 2015, 15 (6), 2781–2786.Alshahateet, S. F.; Kooli, F.; Messali, M.; Judeh, Z. M. A.; ElDouhaibi, A. S. Synthesis and Supramolecularity of C -Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers. Mol. Cryst. Liq. Cryst. 2007, 474 (1), 89–110.Casas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225.Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386.Kulikov, O. V; Negin, S.; Rath, N. P.; Gokel, G. W. Morphologies of Branched-Chain Pyrogallol[4]Arenes in the Solid State. Supramol. Chem. 2014, 26 (7–8), 506–516.Dalgarno, S. J.; Power, N. P.; Antesberger, J.; Mckinlay, R. M.; Atwood, J. L. Synthesis and Structural Characterisation of Lower Rim Halogenated Pyrogallol [ 4 ] Arenes : Bi-Layers and Hexameric Nano-Capsules. Chem. Commun. 2006, 3803–3805.Gibb, B. C.; Chapman, R. G.; Sherman, J. C. Synthesis of Hydroxyl-Footed Cavitands. J. Org. Chem. 1996, 61 (4), 1505–1509.Kobayashi, K.; Asakawa, Y.; Kato, Y.; Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest-Host CH-.Pi. Interaction. J. Am. Chem. Soc. 1992, 114 (26), 10307–10313.Barrett, E. S.; Dale, T. J.; Rebek, J. Synthesis and Assembly of Monofunctionalized Pyrogallolarene Capsules Monitored by Fluorescence Resonance Energy Transfer. Chem. Commun. 2007, 0 (41), 4224.Fujimoto, T.; Yanagihara, R.; Kobayashi, K.; Aoyama, Y. C–H··· π Hydrogen Bonding between Electron-Rich Benzene Rings and Polarized C–H Bonds: Selectivity in the Complexation of Highly Hydrophilic Guest Molecules with Calix[4]Resorcarene Hosts in Water. Bull. Chem. Soc. Jpn. 1995, 68, 2113–2124.Barrett, E. S.; Dale, T. J.; Rebek, J. Assembly and Exchange of Resorcinarene Capsules Monitored by Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc. 2007, 129 (13), 3818–3819.Fairfull-Smith (née Elson), K.; Redon, P. M. J.; Haycock, J. W.; Williams, N. H. Monofunctionalised Resorcinarenes. Tetrahedron Lett. 2007, 48 (8), 1317–1319.Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J.; Cave, G. W. V; Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J. Pyridinium Encapsulation within a Novel Cyano- Footed Pyrogallol [ 4 ] Arene Nanocapsule. Supramol. Chem. 2014, 0278 (March 2017), 1–5.Schröder, T.; Geisler, T.; Walhorn, V.; Schnatwinkel, B.; Anselmetti, D.; Mattay, J. Single-Molecule Force Spectroscopy of Supramolecular Heterodimeric Capsules. Phys. Chem. Chem. Phys. 2010, 12 (36), 10981.Rafai Far, A.; Lag Cho, Y.; Rang, A.; Rudkevich, D. M.; Rebek, J. Polymer-Bound Self-Folding Cavitands. Tetrahedron 2002, 58 (4), 741–755.Saitoh, M.; Fukaminato, T.; Irie, M. Photochromism of a Diarylethene Derivative in Aqueous Solution Capping with a Water-Soluble Nano-Cavitand. J. Photochem. Photobiol. A Chem. 2009, 207 (1), 28–31.Saito, S.; Rudkevich, D. M.; Rebek, J. Lower Rim Functionalized Resorcinarenes: Useful Modules for Supramolecular Chemistry. Org. Lett. 1999, 1 (8), 1241–1244.Naumann, C.; Román, E.; Peinador, C.; Ren, T.; Patrick, B. O.; Kaifer, A. E.; Sherman, J. C. Expanding Cavitand Chemistry: The Preparation and Characterization of [n]Cavitands Withn≥4. Chemistry (Easton). 2001, 7 (8), 1637–1645.Åhman, A.; Luostarinen, M.; Schalley, C. A.; Nissinen, M.; Rissanen, K. Derivatisation of Pyrogallarenes. European J. Org. Chem. 2005, 2005 (13), 2793–2801.Podyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; et al. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61.Pashirova, T. N.; Leonova, M. V.; Podyachev, S. N.; Sudakova, S. N.; Zakharova, L. Y.; Kudryavtseva, L. A.; Konovalov, A. I. Effect of Structural Preorganization on the Reactivity of Carbazoylmethyl Derivatives of Pyrogallol and Calix[4]Pyrogallol. Russ. Chem. Bull. 2007, 56 (12), 2394–2399.Luostarinen, M.; Åhman, A.; Nissinen, M.; Rissanen, K. Ethyl Pyrogall[6]Arene and Pyrogall[4]Arene: Synthesis, Structural Analysis and Derivatization. Supramol. Chem. 2004, 16 (7), 505–512.Han, J.; Song, X.; Liu, L.; Yan, C. Synthesis, Crystal Structure and Configuration of Acetylated Aryl Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2007, 59 (3–4), 257–263.Krause, T.; Gruner, M.; Kuckling, D.; Habicher, W. D. Novel Starshaped Initiators for the Controlled Radical Polymerization Based on Resorcin[4]- and Pyrogallol[4]Arenes. Tetrahedron Lett. 2004, 45 (52), 9635–9639.Jordan, J. H.; Gibb, B. C. Water-Soluble Cavitands ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 387–404.Tero, T.-R.; Nissinen, M. Resorcinarene Crowns ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; pp 375–386.Salorinne, K.; Nissinen, M. Calixcrowns: Synthesis and Properties. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 11–27.Biedermann, F.; Schneider, H. J. Experimental Binding Energies in Supramolecular Complexes. Chem. Rev. 2016, 116 (9), 5216–5300.Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825.Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chemie - Int. Ed. 2011, 50 (21), 4808–4842.Casas-Hinestroza, J. L.; Bueno, M.; Ibáñez, E.; Cifuentes, A. Recent Advances in Mass Spectrometry Studies of Non-Covalent Complexes of Macrocycles - A Review. Anal. Chim. Acta 2019.Waters, M. L. Aromatic Interactions in Model Systems. Curr. Opin. Chem. Biol. 2002, 6 (6), 736–741.Waters, M. L. Aromatic Interactions in Peptides: Impact on Structure and Function. Biopolymers 2004, 76 (5), 435–445.Przybylski, M.; Glocker, M. O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions—New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew. Chemie Int. Ed. English 1996, 35 (8), 806–826.Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 1–40.Venter, A.; Nefliu, M.; Graham Cooks, R. Ambient Desorption Ionization Mass Spectrometry. TrAC Trends Anal. Chem. 2008, 27 (4), 284–290.Chen, F.; Mädler, S.; Weidmann, S.; Zenobi, R. MALDI-MS Detection of Noncovalent Interactions of Single Stranded DNA with Escherichia Coli Single-Stranded DNA-Binding Protein. J. Mass Spectrom. 2012, 47 (5), 560–566.Downard, K. M. Indirect Study of Non-Covalent Protein Complexes by MALDI Mass Spectrometry: Origins, Advantages, and Applications of the “Intensity-Fading” Approach. Mass Spectrom. Rev. 2016, 35 (5), 559–573.Tong, W.; Wang, G. How Can Native Mass Spectrometry Contribute to Characterization of Biomacromolecular Higher-Order Structure and Interactions? Methods 2018, 144 (April), 3–13.Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216 (1), 1–27.Wyttenbach, T.; Bowers, M. T. Intermolecular Interactions in Biomolecular Systems Examined by Mass Spectrometry. Annu. Rev. Phys. Chem. 2007, 58 (1), 511–533.Chen, F.; Gülbakan, B.; Weidmann, S.; Fagerer, S. R.; Ibáñez, A. J.; Zenobi, R. Applying Mass Spectrometry to Study Non-Covalent Biomolecule Complexes. Mass Spectrom. Rev. 2016, 35 (1), 48–70.Erba, E. B.; Zenobi, R. Mass Spectrometric Studies of Dissociation Constants of Noncovalent Complexes. Annu. Reports Sect. “C” (Physical Chem. 2011, 107, 199.Finn, M. G. Emerging Methods for the Rapid Determination of Enantiomeric Excess. Chirality 2002, 14 (7), 534–540.Sharafutdinova, D. R.; Bazanova, O. B.; Murav´ev, A. A.; Solov´eva, S. E.; Antipin, I. S.; Konovalov, A. I. Composition of Thiacalix[4]Arene Complexes with Monovalent Metal Ions in the Gas Phase: MALDI Mass Spectrometry. Russ. Chem. Bull. 2015, 64 (8), 1823–1828.Cameron, K. S.; Fielding, L. NMR Diffusion Spectroscopy as a Measure of Host - Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 2001, 66 (4), 6891–6895.Kovrigin, E. L. NMR Line Shapes and Multi-State Binding Equilibria. J. Biomol. NMR 2012, 53, 257–270.Funasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S. NMR Chemical Shift References for Binding Constant Determination in Aqueous Solutions. J. Phys. Chem. B 2001, 105 (30), 7361–7365.Kemmer, G.; Keller, S. Nonlinear Least-Squares Data Fitting in Excel Spreadsheets. Nat. Protoc. 2010, 5 (2), 267–281.Lowe, A. J.; Pfeffer, F. M.; Thordarson, P. Determining Binding Constants from 1 H NMR Titration Data Using Global and Local Methods: A Case Study Using [ n ]Polynorbornane-Based Anion Hosts. Supramol. Chem. 2012, 24 (8), 585–594.Hynes, M. J. EQNMR: A Computer Program for the Calculation of Stability Constants from Nuclear Magnetic Resonance Chemical Shift Data. J. Chem. Soc. Dalt. Trans. 1993, No. 2, 311.Beyeh, N. K.; Pan, F.; Ras, R. H. A. N -Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment. Asian J. Org. Chem. 2016, 1–7.Kharlamov, S. V; Latypov, S. K. Modern Diffusion-Ordered NMR Spectroscopy in Chemistry of Supramolecular Systems: The Scope and Limitations. Russ. Chem. Rev. 2010, 79 (8), 635–653.Slovak, S.; Evan-Salem, T.; Cohen, Y. Self-Assembly of a Hexameric Aggregate of a Lipophilic Calix[4]Pyrrole−Resorcinarene Hybrid in Solution: A Diffusion NMR Study. Org. Lett. 2010, 12 (21), 4864–4867.Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Determining Accurate Molecular Sizes in Solution through NMR Diffusion Spectroscopy. Chem. Soc. Rev. 2008, 37 (3), 479–489.Horin, I.; Adiri, T.; Zafrani, Y.; Cohen, Y. Bis-Resorcin[4]Arene Selectively Forms Hexameric Capsules in Apolar Solvents: Evidence from Diffusion NMR. Org. Lett. 2018, 20 (13), 3958–3961.Späth, A.; König, B. Molecular Recognition of Organic Ammonium-Ions in Solution Using Synthetic Receptors. Beilstein J. Org. Chem. 2010, 6, 32–133.Åhman, A.; Luostarinen, M.; Rissanen, K.; Nissinen, M. Complexation of C-Methyl Pyrogallarene with Small Quaternary and Tertiary Alkyl Ammonium Cations. New J. Chem. 2007, 31 (1), 169–177.Schnatwinkel, B.; Rekharsky, M. V.; Brodbeck, R.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Thermodynamic Aspects of the Host–Guest Chemistry of Pyrogallol[4]Arenes and Peralkylated Ammonium Cations. Tetrahedron 2009, 65 (13), 2711–2715.Fujisawa, I.; Aoki, K. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-Pyrogallol[4]Arene and C-Ethyl-Resorcin[4]Arene as Receptors. Crystals 2013, 3 (2), 306–314.Schnatwinkel, B.; Rekharsky, M. V.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Pyrogallol[4]Arenes as Artificial Receptors for l-Carnitine. Tetrahedron Lett. 2009, 50 (13), 1374–1376.Ballester, P.; Shivanyuk, A.; Far, A. R.; Rebek, J. A Synthetic Receptor for Choline and Carnitine. J. Am. Chem. Soc. 2002, 124 (47), 14014–14016.Fujisawa, I.; Kitamura, Y.; Okamoto, R.; Murayama, K.; Kato, R.; Aoki, K. Crystal Structure of Pyrogallol[4]Arene Complex with Phosphocholine: A Molecular Recognition Model for Phosphocholine through Cation–π Interaction. J. Mol. Struct. 2013, 1038, 188–193.Fujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K. Crystal Structure of an L-Carnitine Complex with Pyrogallol[4]Arene. J. Phys. Conf. Ser. 2012, 352 (1), 012043.Fowler, D. A.; Pfeiffer, C. R.; Teat, S. J.; Beavers, C. M.; Baker, G. A.; Atwood, J. L. Illuminating Host–Guest Cocrystallization between Pyrogallol[4]Arenes and the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate. CrystEngComm 2014, 16 (27), 6010–6022.Demura, M.; Yoshida, T.; Hirokawa, T.; Kumaki, Y.; Aizawa, T.; Nitta, K.; Bitter, I.; Tóth, K. Interaction of Dopamine and Acetylcholine with an Amphiphilic Resorcinarene Receptor in Aqueous Micelle System. Bioorg. Med. Chem. Lett. 2005, 15 (5), 1367–1370.Fowler, D. A.; Tian, J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Cocrystallization of C-Butyl Pyrogallol[4]Arene and C-Propan-3-Ol Pyrogallol[4]Arene with Gabapentin. CrystEngComm 2011, 13 (5), 1446–1449.Fujisawa, I.; Kitamura, Y.; Kato, R.; Murayama, K.; Aoki, K. Crystal Structures of Resorcin[4]Arene and Pyrogallol[4]Arene Complexes with DL-Pipecolinic Acid. Model Compounds for the Recognition of the Pipecolinyl Ring, a Key Fragment of FK506, through C–H⋯π Interaction. J. Mol. Struct. 2014, 1056–1057, 292–298.Pfeiffer, C. R.; Fowler, D. a.; Teat, S.; Atwood, J. L. Cocrystallization of Pyrogallol[4]Arenes with 1-(2-Pyridylazo)-2-Naphthol. CrystEngComm 2014, 16 (47), 10760–10773.Pfeiffer, C. R.; Fowler, D. A.; Atwood, J. L. Endo vs Exo Bowl: Complexation of Xanthone by Pyrogallol[4]Arenes. Cryst. Growth Des. 2014, 14 (8), 4205–4213.Podyachev, S. N.; Sudakova, S. N.; Syakaev, V. V.; Burmakina, N. E.; Shagidullin, R. R.; Morozov, V. I.; Avvakumova, L. V.; Konovalov, A. I. Synthesis and Properties of Potassium Salts of Per-O-Carboxymethyl-Calix[4]Pyrogallols and Their Complexes with Cu2+, Fe3+, and La3+. Russ. Chem. Bull. 2009, 58 (1), 80–88.Nikolelis, D. P.; Raftopoulou, G.; Psaroudakis, N.; Nikoleli, G.-P. Development of an Electrochemical Chemosensor for the Rapid Detection of Zinc Based on Air Stable Lipid Films with Incorporated Calix4arene Phosphoryl Receptor. Int. J. Environ. Anal. Chem. 2009, 89 (3), 211–222.Hof, F.; Trembleau, L.; Ullrich, E. C.; Rebek, Jr., J. Acetylcholine Recognition by a Deep, Biomimetic Pocket. Angew. Chemie Int. Ed. 2003, 42 (27), 3150–3153.Kim, S. K.; Kang, B.; Koh, H. S.; Yoon, Y. J.; Jung, S. J.; Jeong, B.; Lee, K.; Yoon, J. A New Imidazolium Cavitand for the Recognition of Dicarboxylates. Org. Lett. 2004, 6 (25), 4655–4658.Dalgarno, S. J. Supramolecular Chemistry. Annu. Reports Sect. “B” (Organic Chem. 2009, 105 (0), 190.Pradeep, C. P.; Cronin, L. Supramolecular Coordination Chemistry. Annu. Reports Sect. “A” (Inorganic Chem. 2007, 103, 287.dos Santos, C.; Buera, P.; Mazzobre, F. Novel Trends in Cyclodextrins Encapsulation. Applications in Food Science. Curr. Opin. Food Sci. 2017, 16, 106–113.Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Functionalized Cucurbiturils and Their Applications. Chem. Soc. Rev. 2007, 36 (2), 267–279.Negin, S.; Gokel, G. W. The Varied Supramolecular Chemistry of Pyrogallol [ 4 ] Arenes. In Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds; Elsevier Inc.: Missouri, 2016; pp 235–256.Rebek, J.; Shivanyuk, A. Hydrogen-Bonded Capsules in Polar, Protic Solvents. Chem. Commun. 2001, 2374–2375.Zhang, Q.; Adams, R. D.; Fenske, D. Stable Hydrogen-Bonded Spherical Capsules Formed from Self-Assembly of Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2005, 53 (3–4), 275–279.Dalgarno, S. J.; Power, N. P.; Warren, J. E.; Atwood, J. L. Rapid Formation of Metal–Organic Nano-Capsules Gives New Insight into the Self-Assembly Process. Chem. Commun. 2008, 0 (13), 1539.Avram, L.; Cohen, Y.; Rebek Jr., J. Recent Advances in Hydrogen-Bonded Hexameric Encapsulation Complexes. Chem. Commun. 2011, 47 (19), 5368.Cave, G. W. V.; Dalgarno, S. J.; Antesberger, J.; Ferrarelli, M. C.; McKinlay, R. M.; Atwood, J. L. Investigations into Chain Length Control over Solid-State Pyrogallol[4]Arene Nanocapsule Packing. Supramol. Chem. 2008, 20 (1–2), 157–159.M. A. Gangemi, C.; Pappalardo, A.; Trusso Sfrazzetto, G. Assembling of Supramolecular Capsules with Resorcin[4]Arene and Calix[n]Arene Building Blocks. Curr. Org. Chem. 2015, 19 (23), 2281–2308.Kumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Magnetic Differentiation of Pyrogallol[4]Arene Tubular and Capsular Frameworks. J. Am. Chem. Soc. 2013, 135, 7110–7113.Dalgarno, S. J.; Cave, G. W. V.; Atwood, J. L. Toward the Isolation of Functional Organic Nanotubes. Angew. Chemie Int. Ed. 2006, 45 (4), 570–574.Kumari, H.; Kline, S. R.; Wycoff, W. G.; Paul, R. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Solution-Phase Structures of Gallium-Containing Pyrogallol[4]Arene Scaffolds. Angew. Chemie Int. Ed. 2012, 51 (21), 5086–5091.Power, N. P.; Dalgarno, S. J.; Atwood, J. L. Guest and Ligand Behavior in Zinc-Seamed Pyrogallol[4]Arene Molecular Capsules. Angew. Chemie Int. Ed. 2007, 46 (45), 8601–8604.Jin, P.; Dalgarno, S. J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Ion Transport to the Interior of Metal−Organic Pyrogallol[4]Arene Nanocapsules. J. Am. Chem. Soc. 2008, 130 (51), 17262–17263.Kumari, H.; Jin, P.; Teat, S. J.; Barnes, C. L.; Dalgarno, S. J.; Atwood, J. L. Entrapment of Elusive Guests within Metal-Seamed Nanocapsules. Angew. Chemie - Int. Ed. 2014, 53 (48), 13088–13092.Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Metallo-Supramolecular Capsules. Coord. Chem. Rev. 2008, 252 (8–9), 825–841.Kumari, H.; Mossine, A. V.; Kline, S. R.; Dennis, C. L.; Fowler, D. A.; Teat, S. J.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules. Angew. Chemie Int. Ed. 2012, 51 (6), 1452–1454.Kumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Exploring the Magnetic Behavior of Nickel-Coordinated Pyrogallol[4]Arene Nanocapsules. ACS Nano 2012, 6 (1), 272–275.Adriaenssens, L.; Ballester, P. Hydrogen Bonded Supramolecular Capsules with Functionalized Interiors: The Controlled Orientation of Included Guests. Chem. Soc. Rev. 2013, 42 (8), 3261.Fowler, D. A.; Mossine, A. V.; Beavers, C. M.; Teat, S. J.; Dalgarno, S. J.; Atwood, J. L. Coordination Polymer Chains of Dimeric Pyrogallol[4]Arene Capsules. J. Am. Chem. Soc. 2011, 133 (29), 11069–11071.Gangemi, C. M. A.; Pappalardo, A.; Trusso Sfrazzetto, G. Applications of Supramolecular Capsules Derived from Resorcin[4]Arenes, Calix[n]Arenes and Metallo-Ligands: From Biology to Catalysis. RSC Adv. 2015, 5 (64), 51919–51933.Scott, M. P.; Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 337–374.Chakraborty, S.; Saha, A.; Basu, K.; Saha, C. Solid-Phase Benzoylation of Phenols and Alcohols in Microwave Reactor: An Ecofriendly Protocol. Synth. Commun. 2015, 45 (20), 2331–2343.Abrash, H. I.; Shih, D.; Elias, W.; Malekmehr, F. A Kinetic Study of the Air Oxidation of Pyrogallol and Purpurogallin. Int. J. Chem. Kinet. 1989, 21 (6), 465–476.Cohen, Y.; Evan-Salem, T.; Avram, L. Hydrogen-Bonded Hexameric Capsules of Resorcin[4]Arene, Pyrogallol[4]Arene and Octahydroxypyridine[4]Arene Are Abundant Structures in Organic Solvents: A View from Diffusion NMR. Supramol. Chem. 2008, 20 (1–2), 71–79.Kass, J. P.; Zambrano, C. H.; Zeller, M.; Hunter, A. D.; Dueno, E. E. 2,8,14,20-Tetraphenylpyrogallol[4]Arene Dimethylformamide Octasolvate. Acta Crystallogr. Sect. E Struct. Reports Online 2006, 62 (8), o3179–o3180.Patil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207.Dueno, E. E.; Ray, T.; Salvatore, R. N.; Hunter, A. D. 2,8,14,20-Tetrakis(4-Hydroxyphenyl)- Pyrogallol[4]Arene Dimethylformamide Hexasolvate. Acta Crystallogr. Sect. E 2007, E63, o3533–o3534.Sheikh, M. C.; Takagi, S.; Yoshimura, T.; Morita, H. Mechanistic Studies of DCC/HOBt-Mediated Reaction of 3-Phenylpropionic Acid with Benzyl Alcohol and Studies on the Reactivities of ‘Active Ester’ and the Related Derivatives with Nucleophiles. Tetrahedron 2010, 66 (36), 7272–7278.Farshori, N. N.; Banday, M. R.; Zahoor, Z.; Rauf, A. DCC/DMAP Mediated Esterification of Hydroxy and Non-Hydroxy Olefinic Fatty Acids with β-Sitosterol: In Vitro Antimicrobial Activity. Chinese Chem. Lett. 2010, 21 (6), 646–650.Waghmare, A. A.; Hindupur, R. M.; Pati, H. N. Propylphosphonic Anhydride (T3P®): An Expedient Reagent for Organic Synthesis. Rev. J. Chem. 2014, 4 (2), 53–131.Lin, Z.; Emge, T. J.; Warmuth, R. Multicomponent Assembly of Cavitand-Based Polyacylhydrazone Nanocapsules. Chem. - A Eur. J. 2011, 17 (34), 9395–9405.ORIGINAL4061194.2020.pdf4061194.2020.pdfapplication/pdf14791547https://repositorio.unal.edu.co/bitstream/unal/77999/1/4061194.2020.pdfcf03c69cdd51ff2529cf29285001ba70MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/77999/2/license.txte2f63a891b6ceb28c3078128251851bfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77999/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL4061194.2020.pdf.jpg4061194.2020.pdf.jpgGenerated Thumbnailimage/jpeg6543https://repositorio.unal.edu.co/bitstream/unal/77999/4/4061194.2020.pdf.jpg614743d8d38f2eb7e2924d59833c79e0MD54unal/77999oai:repositorio.unal.edu.co:unal/779992024-07-09 23:20:15.432Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==