Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación

ilustraciones, gráficas, mapas, tablas

Autores:
León Gil, Luis Miguel
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80804
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80804
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Mixed integer Linear Programming MILP
Energy not supplied
Small-scale microgrid
Optimal sizing
Generation unavailability
Critical loads
Load shedding
Energía no suministrada
Microrred de pequeña escala
Dimensionamiento óptimo
Indisponibilidad de generación
Cargas críticas
Deslastre de carga
Energía eléctrica
Abastecimiento de energía
Ingeniería eléctrica
Electric power
Energy supply
Electrical engineering
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_bf3b961ea0c4cece54689a89b8b0b206
oai_identifier_str oai:repositorio.unal.edu.co:unal/80804
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
dc.title.translated.eng.fl_str_mv Microgrid design strategy focused on critical load supplying under intermittent generation conditions
title Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
spellingShingle Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Mixed integer Linear Programming MILP
Energy not supplied
Small-scale microgrid
Optimal sizing
Generation unavailability
Critical loads
Load shedding
Energía no suministrada
Microrred de pequeña escala
Dimensionamiento óptimo
Indisponibilidad de generación
Cargas críticas
Deslastre de carga
Energía eléctrica
Abastecimiento de energía
Ingeniería eléctrica
Electric power
Energy supply
Electrical engineering
title_short Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
title_full Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
title_fullStr Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
title_full_unstemmed Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
title_sort Estrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generación
dc.creator.fl_str_mv León Gil, Luis Miguel
dc.contributor.advisor.spa.fl_str_mv Cortés Guerrero, Camilo Andrés
dc.contributor.author.spa.fl_str_mv León Gil, Luis Miguel
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Emc-Un
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Mixed integer Linear Programming MILP
Energy not supplied
Small-scale microgrid
Optimal sizing
Generation unavailability
Critical loads
Load shedding
Energía no suministrada
Microrred de pequeña escala
Dimensionamiento óptimo
Indisponibilidad de generación
Cargas críticas
Deslastre de carga
Energía eléctrica
Abastecimiento de energía
Ingeniería eléctrica
Electric power
Energy supply
Electrical engineering
dc.subject.proposal.eng.fl_str_mv Mixed integer Linear Programming MILP
Energy not supplied
Small-scale microgrid
Optimal sizing
Generation unavailability
Critical loads
Load shedding
dc.subject.proposal.spa.fl_str_mv Energía no suministrada
Microrred de pequeña escala
Dimensionamiento óptimo
Indisponibilidad de generación
Cargas críticas
Deslastre de carga
dc.subject.unesco.spa.fl_str_mv Energía eléctrica
Abastecimiento de energía
Ingeniería eléctrica
dc.subject.unesco.eng.fl_str_mv Electric power
Energy supply
Electrical engineering
description ilustraciones, gráficas, mapas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12
dc.date.accessioned.none.fl_str_mv 2022-01-11T22:09:57Z
dc.date.available.none.fl_str_mv 2022-01-11T22:09:57Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80804
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80804
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv S. D. P. E. Y. G. D. T. D. G. D. ENERGÍA, “Zonas no interconectadas – zni, informe sectorial de la prestaciÓn del servicio de energÍa elÉctrica 2020,” tech. rep., 2020.
C. Franco, “Contribución de la energía al desarrollo de comunidades aisladas no interconectadas : un caso de aplicación de la dinámica de sistemas y los medios de vida sostenibles en el suroccidente colombiano,” DYNA, Volumen 75, Número 154, pp. 199–214, 2007.
NERC: North American Electric Reliability Corporation, “Distributed Energy Resources: Modeling, Connection Considerations, Reliability,” Tech. Rep. February, Atlanta, GA, 2017.
N. Hatziargyriou, Microgrids Architectures and Control. United Kingdom: IEEE, 2014.
R. Sioshansi and A. Conejo, Optimization in Engineering Models and Algorithms. Springer Books, 2017.
Instituto de Hidrología meteorología y estudios ambientales - IDEAM, “Mapa Colombiano de Irradiación Global Horizontal multianual,” tech. rep., 2014.
Instituto de planificación y promoción de soluciones energéticas para las zonas no interconectadas. (IPSE), “Informe telemetría mensual de septiembre 2019,” tech. rep., 2019.
El Tiempo, “Puerto Carreño contará con soberanía eléctrica por al menos 20 años,” dec 2020.
C. Bustos and D. Watts, “Novel methodology for microgrids in isolated communities : Electricity cost-coverage trade-off with 3-stage technology mix , dispatch & configuration optimizations,” Applied Energy, vol. 195, pp. 204–221, 2017.
A. A. Anderson and S. Suryanarayanan, “A Comprehensive Review of Energy Management and Planning of Islanded Microgrids : Part 1 – Optimization Formulations,” CSEE Journal of Power and Energy Systems, pp. 1–15, 2019.
A. Ghasemi and M. Enayatzare, “Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response,” Renewable Energy, 2018.
L. Zhao and Z. Wu, “The Day - Ahead Economical Optimal Dispatch for Independent Community Microgrid,” 2018 International Conference on Power System Technology (POWERCON), pp. 1306–1313, 2018.
S. Bayhan, “Predictive Load Shedding Method for Islanded AC Microgrid with Limited Generation Sources,” 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), pp. 1–5, 2018.
K. P. Detroja, “Optimal autonomous microgrid operation : A holistic view,” APPLIED ENERGY, vol. 173, pp. 320–330, 2016.
X. Fang, Q. Yang, J. Wang, and W. Yan, “Coordinated dispatch in multiple cooperative autonomous islanded microgrids,” APPLIED ENERGY, vol. 162, pp. 40–48, 2016.
Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “Design , Analysis , and Real-Time Testing of a Controller for Multibus Microgrid System,” IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 19, no. 5, pp. 1195–1204, 2004.
C. Chen, J. Wang, F. Qiu, and D. Zhao, “Resilient Distribution System by Microgrids Formation after Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 958–966, 2016.
J. Cervantes and F. Choobineh, “Optimal sizing of a nonutility-scale solar power system and its battery storage,” Applied Energy, vol. 216, no. February, pp. 105–115, 2018.
A. Kumar, V. Ashu, and T. Rajbans, “Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities,” Energy, vol. 208, 2020.
L. G. González, R. Chacon, B. Delgado, D. Benavides, and J. Espinoza, “Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks,” Energies, vol. 13, no. 15, 2020.
M. Mehrtash, F. Capitanescu, P. K. Heiselberg, T. Gibon, and A. Bertrand, “An Enhanced Optimal PV and Battery Sizing Model for Zero Energy Buildings Considering Environmental Impacts,” vol. 56, no. 6, pp. 6846–6856, 2020.
F. Kazhamiaka, C. Rosenberg, S. Keshav, and K. H. Pettinger, “Li-Ion storage models for energy system optimization: The accuracy- Tractability tradeoff,” Proceedings of the 7th International Conference on Future Energy Systems, e-Energy 2016, 2016.
Á. Arcos-Vargas, D. Canca, and F. Núñez, “Impact of battery technological progress on electricity arbitrage: An application to the Iberian market,” Applied Energy, vol. 260, no. November 2019, p. 114273, 2020.
M. Gaetani-Liseo, C. Alonso, and B. Jammes, “Impacts of supercapacitors on battery lifetime in hybrid energy storage system in building integrated photovoltaic DC micro-grid,” 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, no. December, pp. 1247–1252, 2018.
W. Jing, C. H. Lai, D. K. Ling, W. S. Wong, and M. L. Wong, “Battery lifetime enhancement via smart hybrid energy storage plug-in module in standalone photovoltaic power system,” Journal of Energy Storage, vol. 21, no. July, pp. 586–598, 2019.
A. Narvaez, C. Cortes, and C. Trujillo, “Topologies for the interconnection of Batteries and Supercapacitors in resisi- dential type Microgrids with Intermittent generation Topologías para la interconexión de baterías y supercondensadores en micro- rredes de tipo residencial con generación inter,” vol. 25, no. 1, pp. 1–13, 2020.
F. Nadeem, S. M. Hussain, P. K. Tiwari, A. K. Goswami, and T. S. Ustun, “Comparative review of energy storage systems, their roles, and impacts on future power systems,” IEEE Access, vol. 7, pp. 4555–4585, 2019.
Y. E. García-Vera, R. Dufo-López, and J. L. Bernal-Agustín, “Optimization of isolated hybrid microgrids with renewable energy based on different battery models and technologies,” Energies, vol. 13, no. 3, 2020.
D. Silva Herran and T. Nakata, “Renewable technologies for rural electrification in Colombia : a multiple objective approach,” International Journal of Energy Sector Management, vol. 2, no. 1, pp. 139 – 154, 2008.
D. Silva and T. Nakata, “Multi-objective assessment of rural electrification in remote areas with poverty considerations,” Energy Policy, vol. 37, pp. 3096–3108, 2009.
E. Ojeda-camargo, J. E. Candelo-becerra, and A. S. Mercado, “Lexicographic Multi-objective Optimisation of Hybrid Power Generation Systems for Communities in Non-interconnected Zones,” International Journal of Energy Economics and Policy, vol. 9, no. 3, pp. 205–217, 2019.
G. Valencia, A. Benavides, and C. Yulineth, “Economic and Environmental Multiobjective Optimization of a Wind – Solar – Fuel Cell Hybrid,” Energies, vol. 12, no. 11, 2019.
A. M. Rosso and V. Kafarov, “Analysis on the Economic Feasibility of Power Generation from Renewable Energy Systems in Non-Interconnected Zones of Colombia , Study of Cases,” Chemical engineering transactions, vol. 43, pp. 1447–1452, 2015.
M. Bueno-López and S. Garzón Lemos, “Electrification in Non-Interconnected Areas,” IEEE Technology and society magazine, no. December, pp. 73–79, 2017.
L. Obregon, G. Valencia, and J. Duarte, “Study on the Applicability of Sustainable Development Policies in Electricity Generation Systems in Colombia,” International Journal of Energy Economics and Policy, vol. 9, no. 6, pp. 492–502, 2019.
E. E. Gaona, C. L. Trujillo, and J. A. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 2015.
E. Banguero, A. J. Aristizábal, A. Habib, and D. Ospina, “Experimental investigation and optimal power flow modelling of the first renewable microgrid in Chocó , Colombia,” Energy Procedia, vol. 157, pp. 953–965, 2019.
A. Henao-muñoz, A. Saavedra-montes, and C. Ramos-paja, “Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory,” Energies, vol. 11, no. 7, 2018.
J. Hernandez, C. L. Trujillo, F. Santamaria, U. Distrital, F. Jose, U. Distrital, and F. Jose, “Photovoltaic Projects Developed in Non-Interconnected Zones in Colombia,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015.
D. Rodríguez-urrego and L. Rodríguez-urrego, “Photovoltaic energy in Colombia : Current status, inventory , policies and future prospects,” Renewable and Sustainable Energy Reviews, vol. 92, no. May 2017, pp. 160–170, 2018.
L. Palomino, “El monumento de la corrupción en Vichada,” La W Radio, Sept. 2018.
C. Lugo Lopez, “Demanda energética del departamento de vichada,” tech. rep., 2018.
CIGRE Task Force, “METHODS TO CONSIDER CUSTOMER INTERRUPTION COSTS IN POWER SYSTEM ANALYSIS,” Technical Brochure 191, vol. 44, no. 3, pp. 222–223, 2001.
P. Vásquez and Á. Vaca, “Methodology for Estimating the Cost of Energy not Supplied -Ecuadorian Case-,” Proceedings of the 2012 6th IEEE/PES Transmission and Distribution: Latin America Conference and Exposition, T and D-LA 2012, 2012.
G. H. Kjølle, K. Samdal, B. Singh, and O. A. Kvitastein, “Customer costs related to interruptions and voltage problems: Methodology and results,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1030–1038, 2008.
Unidad de Planeación Minero Energética (UPME), “Desarrollo de una metodología para determinar los costos de racionamiento de los sectores de electricidad y gas natural,” tech. rep., 2015.
Á. M. Bustamante Lozano, A. Páez Martínez, J. E. Espitia Barrera, and E. Cárdenas Castro, “Análisis de datos meteorológicos para identificar y definir el clima en Yopal, Casanare,” Revista de Medicina Veterinaria, no. 25, p. 85, 2013.
Miniterio de Minas y Energía de Colombia, “Anexo General Reglamento Técnico de Instalaciones Eléctricas - RETIE,” 2013.
Hospital San Juan de Dios E.S.E. Puerto Carreño, “Asistencial, revisado en Agosto 2021,” 2014.
“Health care during electricity failure: The hidden costs,” PLoS ONE, vol. 15, 11 2020.
Comision de Regulacion de Energia y Gas CREG, “Resolución No. 30 de mayo de 2018,” 2018.
T. Dierauf, A. Growitz, S. Kurtz, and C. Hansen, “Weather-Corrected Performance Ratio,” NREL Technical Report NREL/TP-5200-57991, no. April, pp. 1–16, 2013.
D. L. King, W. E. Boyson, and J. A. Kratochvil, “Photovoltaic array performance model, SANDIA Report SAND2004-3535,” Sandia Report No. 2004-3535, vol. 8, no. December, pp. 1–19, 2004.
J. Czyzyk, M. P. Mesnier and J. J. More, "The NEOS Server," in IEEE Computational Science and Engineering, vol. 5, no. 3, pp. 68-75, July-Sept. 1998, doi: 10.1109/99.714603.
E. D. Dolan, “The neos server 4.0 administrative guide,” Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory, 2001.
W. Gropp and J. J. Moré, “Optimization environments and the neos server,” in Approximation Theory and Optimization (M. D. Buhman and A. Iserles, eds.), p. 167, Cambridge University Press, 1997.
Y.WANG, Z. ZHOU, A. BOTTERUD, K. ZHANG, and Q. DING, “Stochastic coordinated operation of wind and battery energy storage system considering battery degradation,” Journal of Modern Power Systems and Clean Energy, vol. 4, no. 4, 2016.
W. Zhuo and A. V. Savkin, “Profit maximizing control of a microgrid with renewable generation and bess based on a battery cycle life model and energy price forecasting,” Energies, vol. 12, no. 15, 2019.
A. Kadri and F. Mohammadi, “Energy storage optimization for global adjustment charge reduction in ontario,” Journal of Energy Storage, vol. 30, p. 101491, 08 2020.
A. Bera, S. Almasabi, Y. Tian, R. Byrne, B. Chalamala, T. Nguyen, and J. Mitra, “Maximising the investment returns of a grid- connected battery considering degradation cost,” IET Generation, Transmission and Distribution, vol. 14, 09 2020.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vi, 58 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80804/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80804/2/1020819879.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80804/3/1020819879.2021.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
07686d1a6be12d71983d85612980c934
e3ef06467755af649340c7a39daca7a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089365363621888
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Guerrero, Camilo Andrés7f8ae2adc53274e372e9ae39030efb28600León Gil, Luis Miguel92d839c7d3d0ef23c61e835b58a1076d600Grupo de Investigación Emc-Un2022-01-11T22:09:57Z2022-01-11T22:09:57Z2021-12https://repositorio.unal.edu.co/handle/unal/80804Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, mapas, tablasEn este documento se propone una metodología para el dimensionamiento óptimo de microrredes de pequeña escala conformadas por activos de generación fotovoltaica y almacenamiento en baterías utilizando la Programación Lineal con Enteros-Mixtos (MILP). La investigación surge desde el caso de estudio de la ciudad de Puerto Carreño en Colombia, para la cual se modelaron sus parámetros eléctricos, meteorológicos y económicos con base en la información libre publicada en internet. La metodología propuesta en este documento cuenta con una versatilidad para ser empleada en cualquier sitio siempre que se cuente con la información de parámetros de entrada y puede ser elaborada con aún más detalle para alcanzar una generalización mayor. Los resultados que se encontraron con esta metodología son los que minimizan los costos de inversión y operación de las microrredes de estudio en un periodo de un año para diferentes valores de inversión, áreas de instalación y diversos parámetros tecno-económicos de interés. Adicionalmente, esta investigación propone una manera de determinar los recambios necesarios de los activos de almacenamiento empleados en la microrred durante la vida útil del proyecto. (Texto tomado de la fuente).In this document, a new methodology for the optimal dimensioning of small-scale microgrids conformed by photovoltaic generation and battery energy storage using Mixed-Integer Linear Programming (MILP) is proposed. The research emerges from a case study situated at Puerto Carreño, Colombia, for which their electrical, meteorological, and economical parameteres were modeled based on open-access online information. The proposed methodology has enough versatility to be used anywhere as long as input parameter information is available and it can be futher elaborated to achieve greater generalization. Results found with this methodology minimize investment and operation costs, having a one-year operation horizon, for different investment budgets, installation areas and diverse techno-economical parameters of interest. Moreover, this methodology proposes a new way to determine the future changes in storage assets used during the whole project’s useful life.MaestríaMagíster en Ingeniería - Ingeniería EléctricaEnergías renovables, optimizaciónvi, 58 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaMixed integer Linear Programming MILPEnergy not suppliedSmall-scale microgridOptimal sizingGeneration unavailabilityCritical loadsLoad sheddingEnergía no suministradaMicrorred de pequeña escalaDimensionamiento óptimoIndisponibilidad de generaciónCargas críticasDeslastre de cargaEnergía eléctricaAbastecimiento de energíaIngeniería eléctricaElectric powerEnergy supplyElectrical engineeringEstrategia para el diseño de una microrred enfocada en el abastecimiento de energía a cargas críticas bajo condiciones de intermitencia de generaciónMicrogrid design strategy focused on critical load supplying under intermittent generation conditionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. D. P. E. Y. G. D. T. D. G. D. ENERGÍA, “Zonas no interconectadas – zni, informe sectorial de la prestaciÓn del servicio de energÍa elÉctrica 2020,” tech. rep., 2020.C. Franco, “Contribución de la energía al desarrollo de comunidades aisladas no interconectadas : un caso de aplicación de la dinámica de sistemas y los medios de vida sostenibles en el suroccidente colombiano,” DYNA, Volumen 75, Número 154, pp. 199–214, 2007.NERC: North American Electric Reliability Corporation, “Distributed Energy Resources: Modeling, Connection Considerations, Reliability,” Tech. Rep. February, Atlanta, GA, 2017.N. Hatziargyriou, Microgrids Architectures and Control. United Kingdom: IEEE, 2014.R. Sioshansi and A. Conejo, Optimization in Engineering Models and Algorithms. Springer Books, 2017.Instituto de Hidrología meteorología y estudios ambientales - IDEAM, “Mapa Colombiano de Irradiación Global Horizontal multianual,” tech. rep., 2014.Instituto de planificación y promoción de soluciones energéticas para las zonas no interconectadas. (IPSE), “Informe telemetría mensual de septiembre 2019,” tech. rep., 2019.El Tiempo, “Puerto Carreño contará con soberanía eléctrica por al menos 20 años,” dec 2020.C. Bustos and D. Watts, “Novel methodology for microgrids in isolated communities : Electricity cost-coverage trade-off with 3-stage technology mix , dispatch & configuration optimizations,” Applied Energy, vol. 195, pp. 204–221, 2017.A. A. Anderson and S. Suryanarayanan, “A Comprehensive Review of Energy Management and Planning of Islanded Microgrids : Part 1 – Optimization Formulations,” CSEE Journal of Power and Energy Systems, pp. 1–15, 2019.A. Ghasemi and M. Enayatzare, “Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response,” Renewable Energy, 2018.L. Zhao and Z. Wu, “The Day - Ahead Economical Optimal Dispatch for Independent Community Microgrid,” 2018 International Conference on Power System Technology (POWERCON), pp. 1306–1313, 2018.S. Bayhan, “Predictive Load Shedding Method for Islanded AC Microgrid with Limited Generation Sources,” 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), pp. 1–5, 2018.K. P. Detroja, “Optimal autonomous microgrid operation : A holistic view,” APPLIED ENERGY, vol. 173, pp. 320–330, 2016.X. Fang, Q. Yang, J. Wang, and W. Yan, “Coordinated dispatch in multiple cooperative autonomous islanded microgrids,” APPLIED ENERGY, vol. 162, pp. 40–48, 2016.Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “Design , Analysis , and Real-Time Testing of a Controller for Multibus Microgrid System,” IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 19, no. 5, pp. 1195–1204, 2004.C. Chen, J. Wang, F. Qiu, and D. Zhao, “Resilient Distribution System by Microgrids Formation after Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 958–966, 2016.J. Cervantes and F. Choobineh, “Optimal sizing of a nonutility-scale solar power system and its battery storage,” Applied Energy, vol. 216, no. February, pp. 105–115, 2018.A. Kumar, V. Ashu, and T. Rajbans, “Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities,” Energy, vol. 208, 2020.L. G. González, R. Chacon, B. Delgado, D. Benavides, and J. Espinoza, “Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks,” Energies, vol. 13, no. 15, 2020.M. Mehrtash, F. Capitanescu, P. K. Heiselberg, T. Gibon, and A. Bertrand, “An Enhanced Optimal PV and Battery Sizing Model for Zero Energy Buildings Considering Environmental Impacts,” vol. 56, no. 6, pp. 6846–6856, 2020.F. Kazhamiaka, C. Rosenberg, S. Keshav, and K. H. Pettinger, “Li-Ion storage models for energy system optimization: The accuracy- Tractability tradeoff,” Proceedings of the 7th International Conference on Future Energy Systems, e-Energy 2016, 2016.Á. Arcos-Vargas, D. Canca, and F. Núñez, “Impact of battery technological progress on electricity arbitrage: An application to the Iberian market,” Applied Energy, vol. 260, no. November 2019, p. 114273, 2020.M. Gaetani-Liseo, C. Alonso, and B. Jammes, “Impacts of supercapacitors on battery lifetime in hybrid energy storage system in building integrated photovoltaic DC micro-grid,” 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, no. December, pp. 1247–1252, 2018.W. Jing, C. H. Lai, D. K. Ling, W. S. Wong, and M. L. Wong, “Battery lifetime enhancement via smart hybrid energy storage plug-in module in standalone photovoltaic power system,” Journal of Energy Storage, vol. 21, no. July, pp. 586–598, 2019.A. Narvaez, C. Cortes, and C. Trujillo, “Topologies for the interconnection of Batteries and Supercapacitors in resisi- dential type Microgrids with Intermittent generation Topologías para la interconexión de baterías y supercondensadores en micro- rredes de tipo residencial con generación inter,” vol. 25, no. 1, pp. 1–13, 2020.F. Nadeem, S. M. Hussain, P. K. Tiwari, A. K. Goswami, and T. S. Ustun, “Comparative review of energy storage systems, their roles, and impacts on future power systems,” IEEE Access, vol. 7, pp. 4555–4585, 2019.Y. E. García-Vera, R. Dufo-López, and J. L. Bernal-Agustín, “Optimization of isolated hybrid microgrids with renewable energy based on different battery models and technologies,” Energies, vol. 13, no. 3, 2020.D. Silva Herran and T. Nakata, “Renewable technologies for rural electrification in Colombia : a multiple objective approach,” International Journal of Energy Sector Management, vol. 2, no. 1, pp. 139 – 154, 2008.D. Silva and T. Nakata, “Multi-objective assessment of rural electrification in remote areas with poverty considerations,” Energy Policy, vol. 37, pp. 3096–3108, 2009.E. Ojeda-camargo, J. E. Candelo-becerra, and A. S. Mercado, “Lexicographic Multi-objective Optimisation of Hybrid Power Generation Systems for Communities in Non-interconnected Zones,” International Journal of Energy Economics and Policy, vol. 9, no. 3, pp. 205–217, 2019.G. Valencia, A. Benavides, and C. Yulineth, “Economic and Environmental Multiobjective Optimization of a Wind – Solar – Fuel Cell Hybrid,” Energies, vol. 12, no. 11, 2019.A. M. Rosso and V. Kafarov, “Analysis on the Economic Feasibility of Power Generation from Renewable Energy Systems in Non-Interconnected Zones of Colombia , Study of Cases,” Chemical engineering transactions, vol. 43, pp. 1447–1452, 2015.M. Bueno-López and S. Garzón Lemos, “Electrification in Non-Interconnected Areas,” IEEE Technology and society magazine, no. December, pp. 73–79, 2017.L. Obregon, G. Valencia, and J. Duarte, “Study on the Applicability of Sustainable Development Policies in Electricity Generation Systems in Colombia,” International Journal of Energy Economics and Policy, vol. 9, no. 6, pp. 492–502, 2019.E. E. Gaona, C. L. Trujillo, and J. A. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 2015.E. Banguero, A. J. Aristizábal, A. Habib, and D. Ospina, “Experimental investigation and optimal power flow modelling of the first renewable microgrid in Chocó , Colombia,” Energy Procedia, vol. 157, pp. 953–965, 2019.A. Henao-muñoz, A. Saavedra-montes, and C. Ramos-paja, “Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory,” Energies, vol. 11, no. 7, 2018.J. Hernandez, C. L. Trujillo, F. Santamaria, U. Distrital, F. Jose, U. Distrital, and F. Jose, “Photovoltaic Projects Developed in Non-Interconnected Zones in Colombia,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015.D. Rodríguez-urrego and L. Rodríguez-urrego, “Photovoltaic energy in Colombia : Current status, inventory , policies and future prospects,” Renewable and Sustainable Energy Reviews, vol. 92, no. May 2017, pp. 160–170, 2018.L. Palomino, “El monumento de la corrupción en Vichada,” La W Radio, Sept. 2018.C. Lugo Lopez, “Demanda energética del departamento de vichada,” tech. rep., 2018.CIGRE Task Force, “METHODS TO CONSIDER CUSTOMER INTERRUPTION COSTS IN POWER SYSTEM ANALYSIS,” Technical Brochure 191, vol. 44, no. 3, pp. 222–223, 2001.P. Vásquez and Á. Vaca, “Methodology for Estimating the Cost of Energy not Supplied -Ecuadorian Case-,” Proceedings of the 2012 6th IEEE/PES Transmission and Distribution: Latin America Conference and Exposition, T and D-LA 2012, 2012.G. H. Kjølle, K. Samdal, B. Singh, and O. A. Kvitastein, “Customer costs related to interruptions and voltage problems: Methodology and results,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1030–1038, 2008.Unidad de Planeación Minero Energética (UPME), “Desarrollo de una metodología para determinar los costos de racionamiento de los sectores de electricidad y gas natural,” tech. rep., 2015.Á. M. Bustamante Lozano, A. Páez Martínez, J. E. Espitia Barrera, and E. Cárdenas Castro, “Análisis de datos meteorológicos para identificar y definir el clima en Yopal, Casanare,” Revista de Medicina Veterinaria, no. 25, p. 85, 2013.Miniterio de Minas y Energía de Colombia, “Anexo General Reglamento Técnico de Instalaciones Eléctricas - RETIE,” 2013.Hospital San Juan de Dios E.S.E. Puerto Carreño, “Asistencial, revisado en Agosto 2021,” 2014.“Health care during electricity failure: The hidden costs,” PLoS ONE, vol. 15, 11 2020.Comision de Regulacion de Energia y Gas CREG, “Resolución No. 30 de mayo de 2018,” 2018.T. Dierauf, A. Growitz, S. Kurtz, and C. Hansen, “Weather-Corrected Performance Ratio,” NREL Technical Report NREL/TP-5200-57991, no. April, pp. 1–16, 2013.D. L. King, W. E. Boyson, and J. A. Kratochvil, “Photovoltaic array performance model, SANDIA Report SAND2004-3535,” Sandia Report No. 2004-3535, vol. 8, no. December, pp. 1–19, 2004.J. Czyzyk, M. P. Mesnier and J. J. More, "The NEOS Server," in IEEE Computational Science and Engineering, vol. 5, no. 3, pp. 68-75, July-Sept. 1998, doi: 10.1109/99.714603.E. D. Dolan, “The neos server 4.0 administrative guide,” Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory, 2001.W. Gropp and J. J. Moré, “Optimization environments and the neos server,” in Approximation Theory and Optimization (M. D. Buhman and A. Iserles, eds.), p. 167, Cambridge University Press, 1997.Y.WANG, Z. ZHOU, A. BOTTERUD, K. ZHANG, and Q. DING, “Stochastic coordinated operation of wind and battery energy storage system considering battery degradation,” Journal of Modern Power Systems and Clean Energy, vol. 4, no. 4, 2016.W. Zhuo and A. V. Savkin, “Profit maximizing control of a microgrid with renewable generation and bess based on a battery cycle life model and energy price forecasting,” Energies, vol. 12, no. 15, 2019.A. Kadri and F. Mohammadi, “Energy storage optimization for global adjustment charge reduction in ontario,” Journal of Energy Storage, vol. 30, p. 101491, 08 2020.A. Bera, S. Almasabi, Y. Tian, R. Byrne, B. Chalamala, T. Nguyen, and J. Mitra, “Maximising the investment returns of a grid- connected battery considering degradation cost,” IET Generation, Transmission and Distribution, vol. 14, 09 2020.EstudiantesInvestigadoresMaestrosResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80804/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1020819879.2021.pdf1020819879.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf4634253https://repositorio.unal.edu.co/bitstream/unal/80804/2/1020819879.2021.pdf07686d1a6be12d71983d85612980c934MD52THUMBNAIL1020819879.2021.pdf.jpg1020819879.2021.pdf.jpgGenerated Thumbnailimage/jpeg4736https://repositorio.unal.edu.co/bitstream/unal/80804/3/1020819879.2021.pdf.jpge3ef06467755af649340c7a39daca7a7MD53unal/80804oai:repositorio.unal.edu.co:unal/808042024-08-02 23:10:27.305Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK