Implementación de un método para el pronóstico de demanda de computadores portátiles
ilustraciones, diagramas
- Autores:
-
Garavito Veléz, Karen Briyith
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79792
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Pronóstico
Previsión
Alta tecnología
Demanda
Portátil
Hardware
Forecasting
Forecast
Laptop
High-tech
Demand
Comportamiento económico
Consumo
Ordenador
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_bee87fc33e3abbb731bb9c051df53d03 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79792 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Implementación de un método para el pronóstico de demanda de computadores portátiles |
dc.title.translated.eng.fl_str_mv |
Implementation of a method for the demand forecast for laptops |
title |
Implementación de un método para el pronóstico de demanda de computadores portátiles |
spellingShingle |
Implementación de un método para el pronóstico de demanda de computadores portátiles 620 - Ingeniería y operaciones afines Pronóstico Previsión Alta tecnología Demanda Portátil Hardware Forecasting Forecast Laptop High-tech Demand Comportamiento económico Consumo Ordenador |
title_short |
Implementación de un método para el pronóstico de demanda de computadores portátiles |
title_full |
Implementación de un método para el pronóstico de demanda de computadores portátiles |
title_fullStr |
Implementación de un método para el pronóstico de demanda de computadores portátiles |
title_full_unstemmed |
Implementación de un método para el pronóstico de demanda de computadores portátiles |
title_sort |
Implementación de un método para el pronóstico de demanda de computadores portátiles |
dc.creator.fl_str_mv |
Garavito Veléz, Karen Briyith |
dc.contributor.advisor.none.fl_str_mv |
Bula, Gustavo Alfredo |
dc.contributor.author.none.fl_str_mv |
Garavito Veléz, Karen Briyith |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Pronóstico Previsión Alta tecnología Demanda Portátil Hardware Forecasting Forecast Laptop High-tech Demand Comportamiento económico Consumo Ordenador |
dc.subject.proposal.spa.fl_str_mv |
Pronóstico Previsión Alta tecnología Demanda Portátil |
dc.subject.proposal.eng.fl_str_mv |
Hardware Forecasting Forecast Laptop High-tech Demand |
dc.subject.unesco.spa.fl_str_mv |
Comportamiento económico Consumo Ordenador |
description |
ilustraciones, diagramas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-09T21:16:28Z |
dc.date.available.none.fl_str_mv |
2021-07-09T21:16:28Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Image Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79792 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79792 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Agostino, I. R. S., da Silva, W. V., Pereira da Veiga, C., & Souza, A. M. (2020). Forecasting models in the manufacturing processes and operations management: Systematic literature review. Journal of Forecasting, October 2019, 1–14. https://doi.org/10.1002/for.2674 Agrawal, D., & Schorling, C. (1996). Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing, 72(4), 383–407. Aitken, J., Childerhouse, P., & Towill, D. (2003). The impact of product life cycle on supply chain strategy. International Journal of Production Economics, 85(2), 127–140. https://doi.org/10.1016/S0925-5273(03)00105-1 Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: A comparison of artifcial neural networks and traditional methods. Journal of Retailing and Consumer Services, 8(3), 147–156. https://doi.org/10.1016/S0969-6989(00)00011-4 Bajracharya, A., Khan, M. R. A., Michael, S., & Tonkoski, R. (2019). Forecasting Data Center Load Using Hidden Markov Model. 2018 North American Power Symposium, NAPS 2018. https://doi.org/10.1109/NAPS.2018.8600677 Basallo-Triana, M. J., Rodríguez-Sarasty, J. A., & Benitez-Restrepo, H. D. (2017). Analogue-based demand forecasting of short life-cycle products: a regression approach and a comprehensive assessment. International Journal of Production Research, 55(8), 2336–2350. https://doi.org/10.1080/00207543.2016.1241443 Bayus, B. L. (1998). An analysis of product lifetimes in a technologically dynamic industry. Management Science, 44(6), 763–775. https://doi.org/10.1287/mnsc.44.6.763 Ben Taieb, S., & Koo, B. (2019). Regularized regression for hierarchical forecasting without unbiasedness conditions. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1337–1347. https://doi.org/10.1145/3292500.3330976 Box, G. E. ., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis Forecasting and Control. Boylan, J. E., & Syntetos, A. A. (2010). Spare parts management: A review of forecasting research and extensions. IMA Journal of Management Mathematics, 21(3), 227–237. https://doi.org/10.1093/imaman/dpp016 Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting. Burruss, J. (2002). Forecasting for Short-Lived Products. Chanda, U., & Aggarwal, R. (2014). Journal of High Technology Management Research Optimal inventory policies for successive generations of a high technology product. Journal of High Technology Management Research, 25(2), 148–162. https://doi.org/10.1016/j.hitech.2014.07.004 Chanda, U., & Bardhan, A. K. (2008). Modelling innovation and imitation sales of products with multiple technological generations. Journal of High Technology Management Research, 18(2), 173–190. https://doi.org/10.1016/j.hitech.2007.12.004 Chatfield, C. (1993). Neural networks: Forecasting breakthrough or passing fad? International Journal of Forecasting, 9(1), 1–3. https://econpapers.repec.org/RePEc:eee:intfor:v:9:y:1993:i:1:p:1-3 Cho, Y., & Daim, T. (2013). Technology Forecasting Methods (pp. 67–112). https://www.researchgate.net/publication/262725442_Technology_Forecasting_Methods_in_Research_and_Technology_Management_in_the_Electricity_Industry_Methods_Tools_and_Case_Studies Chung, W., Talluri, S., & Narasimhan, R. (2011). Price markdown scheme in a multi-echelon supply chain in a high-tech industry. European Journal of Operational Research, 215(3), 581–589. https://doi.org/10.1016/j.ejor.2011.07.002 Cox, W. E. (1967). Product Life Cycles as Marketing Models. The Journal of Business, 40(4), 375–384. http://www.jstor.org/stable/2351620 Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2012). Urban Water Demand Forecasting: Review of Methods and Models. Journal of Water Resources Planning and Management, 140(2), 146–159. https://doi.org/10.1061/(asce)wr.1943-5452.0000314 Faraway, J. J. (1998). Time series forecasting with neural networks : a comparative study using the airline data. Feng, G., Huang, G., Lin, Q., & Gay, R. (2009). of Hidden Nodes and Incremental Learning. 20(8), 1352–1357. Fildes, R., Nikolopoulos, K., Crone, S. F., & Syntetos, A. A. (2008). Forecasting and operational research: A review. Journal of the Operational Research Society, 59(9), 1150–1172. https://doi.org/10.1057/palgrave.jors.2602597 Franses, P. H., & Legerstee, R. (2009). Properties of expert adjustments on model-based SKU-level forecasts. International Journal of Forecasting, 25(1), 35–47. https://doi.org/10.1016/j.ijforecast.2008.11.009 Gelper, S., Fried, R., & Croux, C. (2010). Robust forecasting with exponential and holt-winters smoothing. Journal of Forecasting, 29(3), 285–300. https://doi.org/10.1002/for.1125 Goldman, A., & Marketing, A. (1982). Short product life cycles : implications for the marketing activities of small high-technology companies *. R & D Management, 1&2, 81–89. Goodwin, P., & Wright, G. (2010). The limits of forecasting methods in anticipating rare events. Technological Forecasting and Social Change, 77(3), 355–368. Helo, P. (2004). Managing agility and productivity in the electronics industry. Industrial Management and Data Systems, 104(7), 567–577. https://doi.org/10.1108/02635570410550232 Hu, K., Acimovic, J., Erize, F., Thomas, D. J., Mieghem, J. A. Van, Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Mieghem, A. Van. (2019). Manufacturing & Service Operations Management Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis. May. Huang, G. Bin, & Babri, H. A. (1998). Comments on “approximation capability in C(R̄n) by multilayer feedforward networks and related problems.” IEEE Transactions on Neural Networks, 9(4), 714–715. https://doi.org/10.1109/72.701184 Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. https://doi.org/10.1016/j.csda.2011.03.006 J. Scott Armstrong. (2002). PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners. https://doi.org/10.1007/978-0-306-47630-3 Jaakkola, H., Gabbouj, M., & Neuvo, Y. (1998). Fundamentals of technology diffusion and mobile phone case study. Circuits, Systems, and Signal Processing, 17, 421–448. https://doi.org/10.1007/BF01202301 Ju, M., & Yang, Y. A. N. (2010). Forecasting Global Generation of Obsolete Personal Computers. 44(9), 3232–3237. Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431–438. https://doi.org/10.1016/j.ijepes.2014.12.036 Kim, H. J., Jee, S. J., & Sohn, S. Y. (2021). Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy. PLoS ONE, 16(4 April), 1–17. https://doi.org/10.1371/journal.pone.0249124 Klimberg, R. K., Sillup, G. P., Boyle, K. J., & Tavva, V. (2010). Forecasting performance measures - What are their practical meaning? In Advances in Business and Management Forecasting (Vol. 7). Elsevier. https://doi.org/10.1108/S1477-4070(2010)0000007012 Kou, T. C., & Lee, B. C. Y. (2015). The influence of supply chain architecture on new product launch and performance in the high-tech industry. Journal of Business and Industrial Marketing, 30(5), 677–687. https://doi.org/10.1108/JBIM-08-2013-0176 Kurawarwala, A. A., & Matsuo, H. (1996). Forecasting and Inventory Management of Short Life-Cycle Products. Operations Research, 44(1), 131–150. http://www.jstor.org/stable/171910 Lapide, L. (2006). Evolution of the forecasting function. Journal of Business Forecasting, 25(1), 22–28. Lenort, R., & Besta, P. (2013). Hierarchical sales forecasting system for apparel companies and supply chains. Fibres and Textiles in Eastern Europe, 21(6), 7–11. Lin, R. J., Che, R. H., & Ting, C. Y. (2012). Turning knowledge management into innovation in the high-tech industry. Industrial Management and Data Systems, 112(1), 42–63. https://doi.org/10.1108/02635571211193635 Lin, V. S. (2018). Judgmental adjustments in tourism forecasting practice: How good are they? In Tourism Economics. https://doi.org/10.1177/1354816618806727 Lu, C. J. (2014). Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128, 491–499. https://doi.org/10.1016/j.neucom.2013.08.012 Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). Introduction Time Series Analysis and Forecasting. 671. Moon, J., Chang, N., & Cho, W. (2015). Demand Forecasting for B2B Electronic Products : The Case of Personal Computer Market. Journal of the Korea Society of IT Services, 14, 185–197. https://doi.org/10.9716/KITS.2015.14.4.185 Neelamegham, R., & Chintagunta, P. K. (2004). Modeling and Forecasting the Sales of Technology Products. 195–232. Nenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand forecasting in the fashion industry: A review. International Journal of Engineering Business Management, 5(SPL.ISSUE). https://doi.org/10.5772/56840 Nikolopoulos, K., Goodwin, P., Patelis, A., & Assimakopoulos, V. (2007). Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research, 180(1), 354–368. https://doi.org/10.1016/j.ejor.2006.03.047 Olhager, J. (2012). The role of decoupling points in value chain management. Contributions to Management Science, 37–47. https://doi.org/10.1007/978-3-7908-2747-7_2 Pankratz, A. (2014). Forecasting With Dynamic Regression Models. Journal of the American Statistical Association, 88(422), 705–706. Puneeth Kumar, K., Manjunath, T. N., & Hegadi, R. S. (2018). Literature Review on Big Data Analytics and Demand Modeling in Supply Chain. 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2018, December, 1246–1252. https://doi.org/10.1109/ICEECCOT43722.2018.9001513 Ren, S., Chan, H.-L., & Ram, P. (2017). A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty. Annals of Operations Research, 257(1), 335–355. https://doi.org/10.1007/s10479-016-2204-6 Ren, S., Chan, H. L., & Siqin, T. (2020). Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Annals of Operations Research, 291(1–2), 761–777. https://doi.org/10.1007/s10479-019-03148-8 Rivera-Castro, R., Nazarov, I., Xiang, Y., Maksimov, I., Pletnev, A., & Burnaev, E. (2019). An industry case of large-scale demand forecasting of hierarchical components. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, 134–139. https://doi.org/10.1109/ICMLA.2019.00029 Roberts, E. B. (1976). Technology Strategy for the Medium-Size Company. Res Manage, 19(4), 29–32. https://doi.org/10.1080/00345334.1976.11756363 Sanders, N. R., & Manrodt, K. B. (1994). Forecasting Practices in US Corporations: Survey Results. Interfaces, 24(2), 92–100. https://doi.org/10.1287/inte.24.2.92 Sanders, N. R., & Ritzman, L. P. (2001). JUDGMENTAL ADJUSTMENT OF STATISTICAL FORECASTS. Springer Science+Business Media. Shankaranarayanan, G., & Cai, Y. (2006). Supporting data quality management in decision-making. Decision Support Systems, 42(1), 302–317. https://doi.org/10.1016/j.dss.2004.12.006 Simchi-levi, D. (2005). Supply Chain Architecture in a High Demand Variability Environment by. 1999. Srinivasan, S. R., Ramakrishnan, S., & Grasman, S. E. (2005). Incorporating cannibalization models into demand forecasting. Marketing Intelligence and Planning, 23(5), 470–485. https://doi.org/10.1108/02634500510612645 St. John, H. M. (1978). The Energy Market for High-Technology Companies. Journal of Marketing, 42(4), 46–53. https://doi.org/10.2307/1250085 Styrin, K. (2019). Forecasting Inflation in Russia Using Dynamic Model Averaging. Russian Journal of Money and Finance, 78(1), 03–18. https://doi.org/10.31477/rjmf.201901.03 Sunil Chopra. (2010). Administracion de Cadena de Suministro. https://doi.org/10.1017/CBO9781107415324.004 Tandon, R., Chakraborty, A., Srinivasan, G., Shroff, M., Abdullah, A., Shamasundar, B., Sinha, R., Subramanian, S., Hill, D., & Dhore, P. (2013). Hewlett Packard: Delivering profitable growth for HPDirect.com using operations research. Interfaces, 43(1), 48–61. https://doi.org/10.1287/inte.1120.0661 Trappey, C. V., & Wu, H. Y. (2008). An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles. Advanced Engineering Informatics, 22(4), 421–430. https://doi.org/10.1016/j.aei.2008.05.007 Valencia-Cárdenas, M., Díaz-Serna, F. J., & Correa-Morales, J. C. (2015). Planeación de inventarios con demanda dinámica. Una revisión del estado del arte. DYNA (Colombia), 82(190), 182–191. https://doi.org/10.15446/dyna.v82n190.42828 Wagner, D. (2008). Lecture Notes in Computer Science: Preface. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5157 LNCS. Wei, W. W. S. (2013). Oxford Handbooks Online Time Series Analysis (Vol. 2, Issue April 2018). https://doi.org/10.1093/oxfordhb/9780199934898.013.0022 Wilck IV, J. H., Pope, J., & Kauffmann, P. J. (2014). Literature review for forecasting traffic counts for high tourism areas. IIE Annual Conference and Expo 2014, 1272–1281. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910029456&partnerID=40&md5=32563cd1ae613706f3bba2f7b58e68e0 Wong, W. K., & Guo, Z. X. (2010). A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. International Journal of Production Economics, 128(2), 614–624. Xu, L. Da, Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806 Yang, Y., & Williams, E. (2008). Forecasting Sales and Generation of Obsolete Computers in the U . S . Yang, Y., & Williams, E. (2009). Technological Forecasting & Social Change Logistic model-based forecast of sales and generation of obsolete computers in the U . S . Technological Forecasting & Social Change, 76(8), 1105–1114. https://doi.org/10.1016/j.techfore.2009.03.004 Yelland, P. M. (2009). Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management. International Journal of Production Economics, 118(1), 95–103. https://doi.org/10.1016/j.ijpe.2008.08.027 Zhu, K., & Thonemann, U. W. (2004). An adaptive forecasting algorithm and inventory policy for products with short life cycles. Naval Research Logistics, 51(5), 633–653. https://doi.org/10.1002/nav.10124 Zotteri, G., Kalchschmidt, M., & Caniato, F. (2005). The impact of aggregation level on forecasting performance. 94, 479–491. https://doi.org/10.1016/j.ijpe.2004.06.044 |
dc.rights.spa.fl_str_mv |
Derechos reservados del autor |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados del autor http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
125 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79792/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79792/2/1012381454.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79792/3/1012381454.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 eb41a7e43f5bd52b4c495a4e3dd5ef37 3d2b96d5a68d2a7c7db2c450f91eb3a3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089700695080960 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados del autorhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bula, Gustavo Alfredo6872c52700a60c9ceec6205bc5295bf9Garavito Veléz, Karen Briyithec43016ed846fa61c546f0b7cd1a85d92021-07-09T21:16:28Z2021-07-09T21:16:28Z2021https://repositorio.unal.edu.co/handle/unal/79792Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn la búsqueda de las empresas por aumentar su rentabilidad y ofrecer un nivel de servicio adecuado se implementan herramientas para lograr ese objetivo. En este trabajo se hace uso de la implementación del modelo con enfoque jerárquico propuesto por Radim Lenort Petr Besta en el año 2013 para construir el pronóstico de la demanda de los productos de la categoría hardware línea computador portátil para una compañía comercializadora con modelo de negocio B2B (business to business/empresa a empresa). En el proceso de implementación se realiza previamente una depuración de los datos y se genera el pronóstico de la demanda agregada por subcategoría y por línea con el modelo ARIMA, luego se implementa el modelo con enfoque jerárquico para obtener desagregación del pronóstico de la demanda para la línea de computadores portátiles en función de las proporciones históricas. El trabajo se divide en dos fases. En la primera fase se lleva a cabo una revisión sistemática de la literatura para identificar los modelos que han sido usados en la construcción de predicciones de la demanda de productos similares en mercados semejantes al colombiano y en la segunda fase se implementa el modelo con los datos de la empresa en estudio y se analizan los resultados. Al verificar las investigaciones de la industria en estudio la mayoría se enfocan en los eslabones de fabricante y mayorista, a medida que se va en la cadena de suministro aguas abajo se identifica un cambio en el comportamiento de la demanda para el eslabón distribuidor gracias a la cantidad de empresas, el tipo de cliente y el manejo del sistema de inventario pull. Se identifica el modelo propuesto por Lenort en la industria de moda como homóloga a la industria en estudio en su comportamiento de demanda para el eslabón distribuidor. Varios estudios en la industria moda se enfocan en redes neuronales haciendo frecuente precisión en el requerimiento de gran cantidad de datos. La industria de alta tecnología se caracteriza por ciclos de vida cortos lo que limita la cantidad de datos históricos. Se considera que los modelos de redes neuronales son de difícil implementación en la práctica diaria por los recursos requeridos para el entrenamiento de las redes y la elección de los parámetros. El enfoque busca tener un impacto en la facilidad de adopción y la implementación del modelo propuesto y generar eficiencia en los costos ocultos de mantenimiento de inventario, orientados a: depreciación por obsolescencia, tasas de interés por apalancamiento de capital y costos de oportunidad. Con la implementación del modelo propuesto se obtiene un ahorro de $306 millones anuales en los costos ocultos de mantenimiento de inventario relacionados. De los $306 millones, $296 millones se obtienen de la limpieza de los datos y $10 millones por el cambio en el uso del modelo promedio móvil simple al modelo ARIMA con posterior implementación del modelo con enfoque jerárquico. (Apartes del texto)In the search of companies to increase their profitability and offer an adequate level of service, tools are implemented to achieve this objective. In this search, the implementation of the model with a hierarchical approach proposed by Radim Lenort Petr Besta in 2013 is used to build the forecast of demand for the products of the category hardware laptop line for a retailer company with a B2B business model (business to business / business to business). In the implementation process a data refinement is previously performed and the forecast of aggregate demand is generated by subcategory and by line with the ARIMA model, then the model is implemented with a hierarchical approach to obtain a breakdown of the demand forecast for the laptop line based on historical proportions. The work is divided into two phases. In the first phase, a systematic literature review to identify the models that have been used in the construction of predictions of the demand for similar products in markets similar to Colombia, and in the second phase the model is implemented with data from the company and the results are analyzed. When verifying the state of the art of the industry under study, most of them focus on the manufacturer and wholesaler links, as one goes in the downstream supply chain a change in the behavior of demand for the distributor link is identified by the quantity of companies, the type of client and the management of the pull inventory system. The model proposed by Lenort in the fashion industry is identified as homologous to the high-tech industry by the behavior of demand for the distributor link. Several studies in the fashion industry focus on neural networks making precision in the requirement of large amounts of data. The high-tech industry is characterized by short life cycles, which limits the amount of historical data. Neural network models are considered as difficult to implement in daily practice due to the resources required for the training of the networks and the choice of parameters. The approach seeks to have an impact on the ease of adoption and implementation of the proposed model and generate efficiency in the hidden costs of inventory maintenance by depreciation due to obsolescence, interest rates due to capital leverage and opportunity costs. With the implementation of the proposed model, savings of $ 306 million per year are obtained in related hidden inventory maintenance costs. Of the $ 306 million, $ 296 million are by the data cleaning and $ 10 million by the change in the use of the simple moving average model to the ARIMA model with subsequent implementation of the model with a hierarchical process. (Text taken from source)MaestríaMagíster en Ingeniería IndustrialGestión de operaciones125 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería IndustrialDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesPronósticoPrevisiónAlta tecnologíaDemandaPortátilHardwareForecastingForecastLaptopHigh-techDemandComportamiento económicoConsumoOrdenadorImplementación de un método para el pronóstico de demanda de computadores portátilesImplementation of a method for the demand forecast for laptopsTrabajo de grado - Maestríainfo:eu-repo/semantics/acceptedVersionImageTexthttp://purl.org/redcol/resource_type/TMAgostino, I. R. S., da Silva, W. V., Pereira da Veiga, C., & Souza, A. M. (2020). Forecasting models in the manufacturing processes and operations management: Systematic literature review. Journal of Forecasting, October 2019, 1–14. https://doi.org/10.1002/for.2674Agrawal, D., & Schorling, C. (1996). Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing, 72(4), 383–407.Aitken, J., Childerhouse, P., & Towill, D. (2003). The impact of product life cycle on supply chain strategy. International Journal of Production Economics, 85(2), 127–140. https://doi.org/10.1016/S0925-5273(03)00105-1Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: A comparison of artifcial neural networks and traditional methods. Journal of Retailing and Consumer Services, 8(3), 147–156. https://doi.org/10.1016/S0969-6989(00)00011-4Bajracharya, A., Khan, M. R. A., Michael, S., & Tonkoski, R. (2019). Forecasting Data Center Load Using Hidden Markov Model. 2018 North American Power Symposium, NAPS 2018. https://doi.org/10.1109/NAPS.2018.8600677Basallo-Triana, M. J., Rodríguez-Sarasty, J. A., & Benitez-Restrepo, H. D. (2017). Analogue-based demand forecasting of short life-cycle products: a regression approach and a comprehensive assessment. International Journal of Production Research, 55(8), 2336–2350. https://doi.org/10.1080/00207543.2016.1241443Bayus, B. L. (1998). An analysis of product lifetimes in a technologically dynamic industry. Management Science, 44(6), 763–775. https://doi.org/10.1287/mnsc.44.6.763Ben Taieb, S., & Koo, B. (2019). Regularized regression for hierarchical forecasting without unbiasedness conditions. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1337–1347. https://doi.org/10.1145/3292500.3330976Box, G. E. ., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis Forecasting and Control.Boylan, J. E., & Syntetos, A. A. (2010). Spare parts management: A review of forecasting research and extensions. IMA Journal of Management Mathematics, 21(3), 227–237. https://doi.org/10.1093/imaman/dpp016Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting.Burruss, J. (2002). Forecasting for Short-Lived Products.Chanda, U., & Aggarwal, R. (2014). Journal of High Technology Management Research Optimal inventory policies for successive generations of a high technology product. Journal of High Technology Management Research, 25(2), 148–162. https://doi.org/10.1016/j.hitech.2014.07.004Chanda, U., & Bardhan, A. K. (2008). Modelling innovation and imitation sales of products with multiple technological generations. Journal of High Technology Management Research, 18(2), 173–190. https://doi.org/10.1016/j.hitech.2007.12.004Chatfield, C. (1993). Neural networks: Forecasting breakthrough or passing fad? International Journal of Forecasting, 9(1), 1–3. https://econpapers.repec.org/RePEc:eee:intfor:v:9:y:1993:i:1:p:1-3Cho, Y., & Daim, T. (2013). Technology Forecasting Methods (pp. 67–112). https://www.researchgate.net/publication/262725442_Technology_Forecasting_Methods_in_Research_and_Technology_Management_in_the_Electricity_Industry_Methods_Tools_and_Case_StudiesChung, W., Talluri, S., & Narasimhan, R. (2011). Price markdown scheme in a multi-echelon supply chain in a high-tech industry. European Journal of Operational Research, 215(3), 581–589. https://doi.org/10.1016/j.ejor.2011.07.002Cox, W. E. (1967). Product Life Cycles as Marketing Models. The Journal of Business, 40(4), 375–384. http://www.jstor.org/stable/2351620Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2012). Urban Water Demand Forecasting: Review of Methods and Models. Journal of Water Resources Planning and Management, 140(2), 146–159. https://doi.org/10.1061/(asce)wr.1943-5452.0000314Faraway, J. J. (1998). Time series forecasting with neural networks : a comparative study using the airline data.Feng, G., Huang, G., Lin, Q., & Gay, R. (2009). of Hidden Nodes and Incremental Learning. 20(8), 1352–1357.Fildes, R., Nikolopoulos, K., Crone, S. F., & Syntetos, A. A. (2008). Forecasting and operational research: A review. Journal of the Operational Research Society, 59(9), 1150–1172. https://doi.org/10.1057/palgrave.jors.2602597Franses, P. H., & Legerstee, R. (2009). Properties of expert adjustments on model-based SKU-level forecasts. International Journal of Forecasting, 25(1), 35–47. https://doi.org/10.1016/j.ijforecast.2008.11.009Gelper, S., Fried, R., & Croux, C. (2010). Robust forecasting with exponential and holt-winters smoothing. Journal of Forecasting, 29(3), 285–300. https://doi.org/10.1002/for.1125Goldman, A., & Marketing, A. (1982). Short product life cycles : implications for the marketing activities of small high-technology companies *. R & D Management, 1&2, 81–89.Goodwin, P., & Wright, G. (2010). The limits of forecasting methods in anticipating rare events. Technological Forecasting and Social Change, 77(3), 355–368.Helo, P. (2004). Managing agility and productivity in the electronics industry. Industrial Management and Data Systems, 104(7), 567–577. https://doi.org/10.1108/02635570410550232Hu, K., Acimovic, J., Erize, F., Thomas, D. J., Mieghem, J. A. Van, Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Mieghem, A. Van. (2019). Manufacturing & Service Operations Management Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis. May.Huang, G. Bin, & Babri, H. A. (1998). Comments on “approximation capability in C(R̄n) by multilayer feedforward networks and related problems.” IEEE Transactions on Neural Networks, 9(4), 714–715. https://doi.org/10.1109/72.701184Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. https://doi.org/10.1016/j.csda.2011.03.006J. Scott Armstrong. (2002). PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners. https://doi.org/10.1007/978-0-306-47630-3Jaakkola, H., Gabbouj, M., & Neuvo, Y. (1998). Fundamentals of technology diffusion and mobile phone case study. Circuits, Systems, and Signal Processing, 17, 421–448. https://doi.org/10.1007/BF01202301Ju, M., & Yang, Y. A. N. (2010). Forecasting Global Generation of Obsolete Personal Computers. 44(9), 3232–3237.Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431–438. https://doi.org/10.1016/j.ijepes.2014.12.036Kim, H. J., Jee, S. J., & Sohn, S. Y. (2021). Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy. PLoS ONE, 16(4 April), 1–17. https://doi.org/10.1371/journal.pone.0249124Klimberg, R. K., Sillup, G. P., Boyle, K. J., & Tavva, V. (2010). Forecasting performance measures - What are their practical meaning? In Advances in Business and Management Forecasting (Vol. 7). Elsevier. https://doi.org/10.1108/S1477-4070(2010)0000007012Kou, T. C., & Lee, B. C. Y. (2015). The influence of supply chain architecture on new product launch and performance in the high-tech industry. Journal of Business and Industrial Marketing, 30(5), 677–687. https://doi.org/10.1108/JBIM-08-2013-0176Kurawarwala, A. A., & Matsuo, H. (1996). Forecasting and Inventory Management of Short Life-Cycle Products. Operations Research, 44(1), 131–150. http://www.jstor.org/stable/171910Lapide, L. (2006). Evolution of the forecasting function. Journal of Business Forecasting, 25(1), 22–28.Lenort, R., & Besta, P. (2013). Hierarchical sales forecasting system for apparel companies and supply chains. Fibres and Textiles in Eastern Europe, 21(6), 7–11.Lin, R. J., Che, R. H., & Ting, C. Y. (2012). Turning knowledge management into innovation in the high-tech industry. Industrial Management and Data Systems, 112(1), 42–63. https://doi.org/10.1108/02635571211193635Lin, V. S. (2018). Judgmental adjustments in tourism forecasting practice: How good are they? In Tourism Economics. https://doi.org/10.1177/1354816618806727Lu, C. J. (2014). Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128, 491–499. https://doi.org/10.1016/j.neucom.2013.08.012Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). Introduction Time Series Analysis and Forecasting. 671.Moon, J., Chang, N., & Cho, W. (2015). Demand Forecasting for B2B Electronic Products : The Case of Personal Computer Market. Journal of the Korea Society of IT Services, 14, 185–197. https://doi.org/10.9716/KITS.2015.14.4.185Neelamegham, R., & Chintagunta, P. K. (2004). Modeling and Forecasting the Sales of Technology Products. 195–232.Nenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand forecasting in the fashion industry: A review. International Journal of Engineering Business Management, 5(SPL.ISSUE). https://doi.org/10.5772/56840Nikolopoulos, K., Goodwin, P., Patelis, A., & Assimakopoulos, V. (2007). Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research, 180(1), 354–368. https://doi.org/10.1016/j.ejor.2006.03.047Olhager, J. (2012). The role of decoupling points in value chain management. Contributions to Management Science, 37–47. https://doi.org/10.1007/978-3-7908-2747-7_2Pankratz, A. (2014). Forecasting With Dynamic Regression Models. Journal of the American Statistical Association, 88(422), 705–706.Puneeth Kumar, K., Manjunath, T. N., & Hegadi, R. S. (2018). Literature Review on Big Data Analytics and Demand Modeling in Supply Chain. 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2018, December, 1246–1252. https://doi.org/10.1109/ICEECCOT43722.2018.9001513Ren, S., Chan, H.-L., & Ram, P. (2017). A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty. Annals of Operations Research, 257(1), 335–355. https://doi.org/10.1007/s10479-016-2204-6Ren, S., Chan, H. L., & Siqin, T. (2020). Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Annals of Operations Research, 291(1–2), 761–777. https://doi.org/10.1007/s10479-019-03148-8Rivera-Castro, R., Nazarov, I., Xiang, Y., Maksimov, I., Pletnev, A., & Burnaev, E. (2019). An industry case of large-scale demand forecasting of hierarchical components. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, 134–139. https://doi.org/10.1109/ICMLA.2019.00029Roberts, E. B. (1976). Technology Strategy for the Medium-Size Company. Res Manage, 19(4), 29–32. https://doi.org/10.1080/00345334.1976.11756363Sanders, N. R., & Manrodt, K. B. (1994). Forecasting Practices in US Corporations: Survey Results. Interfaces, 24(2), 92–100. https://doi.org/10.1287/inte.24.2.92Sanders, N. R., & Ritzman, L. P. (2001). JUDGMENTAL ADJUSTMENT OF STATISTICAL FORECASTS. Springer Science+Business Media.Shankaranarayanan, G., & Cai, Y. (2006). Supporting data quality management in decision-making. Decision Support Systems, 42(1), 302–317. https://doi.org/10.1016/j.dss.2004.12.006Simchi-levi, D. (2005). Supply Chain Architecture in a High Demand Variability Environment by. 1999.Srinivasan, S. R., Ramakrishnan, S., & Grasman, S. E. (2005). Incorporating cannibalization models into demand forecasting. Marketing Intelligence and Planning, 23(5), 470–485. https://doi.org/10.1108/02634500510612645St. John, H. M. (1978). The Energy Market for High-Technology Companies. Journal of Marketing, 42(4), 46–53. https://doi.org/10.2307/1250085Styrin, K. (2019). Forecasting Inflation in Russia Using Dynamic Model Averaging. Russian Journal of Money and Finance, 78(1), 03–18. https://doi.org/10.31477/rjmf.201901.03Sunil Chopra. (2010). Administracion de Cadena de Suministro. https://doi.org/10.1017/CBO9781107415324.004Tandon, R., Chakraborty, A., Srinivasan, G., Shroff, M., Abdullah, A., Shamasundar, B., Sinha, R., Subramanian, S., Hill, D., & Dhore, P. (2013). Hewlett Packard: Delivering profitable growth for HPDirect.com using operations research. Interfaces, 43(1), 48–61. https://doi.org/10.1287/inte.1120.0661Trappey, C. V., & Wu, H. Y. (2008). An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles. Advanced Engineering Informatics, 22(4), 421–430. https://doi.org/10.1016/j.aei.2008.05.007Valencia-Cárdenas, M., Díaz-Serna, F. J., & Correa-Morales, J. C. (2015). Planeación de inventarios con demanda dinámica. Una revisión del estado del arte. DYNA (Colombia), 82(190), 182–191. https://doi.org/10.15446/dyna.v82n190.42828Wagner, D. (2008). Lecture Notes in Computer Science: Preface. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5157 LNCS.Wei, W. W. S. (2013). Oxford Handbooks Online Time Series Analysis (Vol. 2, Issue April 2018). https://doi.org/10.1093/oxfordhb/9780199934898.013.0022Wilck IV, J. H., Pope, J., & Kauffmann, P. J. (2014). Literature review for forecasting traffic counts for high tourism areas. IIE Annual Conference and Expo 2014, 1272–1281. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910029456&partnerID=40&md5=32563cd1ae613706f3bba2f7b58e68e0Wong, W. K., & Guo, Z. X. (2010). A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. International Journal of Production Economics, 128(2), 614–624.Xu, L. Da, Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806Yang, Y., & Williams, E. (2008). Forecasting Sales and Generation of Obsolete Computers in the U . S .Yang, Y., & Williams, E. (2009). Technological Forecasting & Social Change Logistic model-based forecast of sales and generation of obsolete computers in the U . S . Technological Forecasting & Social Change, 76(8), 1105–1114. https://doi.org/10.1016/j.techfore.2009.03.004Yelland, P. M. (2009). Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management. International Journal of Production Economics, 118(1), 95–103. https://doi.org/10.1016/j.ijpe.2008.08.027Zhu, K., & Thonemann, U. W. (2004). An adaptive forecasting algorithm and inventory policy for products with short life cycles. Naval Research Logistics, 51(5), 633–653. https://doi.org/10.1002/nav.10124Zotteri, G., Kalchschmidt, M., & Caniato, F. (2005). The impact of aggregation level on forecasting performance. 94, 479–491. https://doi.org/10.1016/j.ijpe.2004.06.044GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79792/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1012381454.2021.pdf1012381454.2021.pdfTrabajo final de maestría en pronósticos de demandaapplication/pdf1899814https://repositorio.unal.edu.co/bitstream/unal/79792/2/1012381454.2021.pdfeb41a7e43f5bd52b4c495a4e3dd5ef37MD52THUMBNAIL1012381454.2021.pdf.jpg1012381454.2021.pdf.jpgGenerated Thumbnailimage/jpeg4823https://repositorio.unal.edu.co/bitstream/unal/79792/3/1012381454.2021.pdf.jpg3d2b96d5a68d2a7c7db2c450f91eb3a3MD53unal/79792oai:repositorio.unal.edu.co:unal/797922023-07-24 23:03:39.368Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |