Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia

ilustraciones, diagramas, fotografías, mapas, planos

Autores:
Gómez Alba, Sebastián Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84799
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84799
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Hidrocarburos
Hydrocarbons
Sismología
Seismology
Ingeniería sísmica
Earthquake engineering
Sismicidad Inducida
Inyección de agua
Tomografia
Anisotropia Sisimica
Campo de esfuerzos
Induced Seismicity
Water injection
Tomography
>Seismic Anisotropy
Stress Field
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_beca28da97bb014c1eba0e41005b06cf
oai_identifier_str oai:repositorio.unal.edu.co:unal/84799
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
dc.title.translated.none.fl_str_mv Imaging of velocity and attenuation anomalies, local stresses fields, based on the analysis of anthropogenic seismicity generated in hydrocarbon reservoirs in Colombia
title Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
spellingShingle Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Hidrocarburos
Hydrocarbons
Sismología
Seismology
Ingeniería sísmica
Earthquake engineering
Sismicidad Inducida
Inyección de agua
Tomografia
Anisotropia Sisimica
Campo de esfuerzos
Induced Seismicity
Water injection
Tomography
>Seismic Anisotropy
Stress Field
title_short Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
title_full Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
title_fullStr Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
title_full_unstemmed Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
title_sort Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
dc.creator.fl_str_mv Gómez Alba, Sebastián Alejandro
dc.contributor.advisor.none.fl_str_mv Vargas Jiménez, Carlos Alberto
dc.contributor.author.none.fl_str_mv Gómez Alba, Sebastián Alejandro
dc.contributor.orcid.spa.fl_str_mv Gómez Alba, Sebastián [0000000206162663]
dc.contributor.cvlac.spa.fl_str_mv Gómez Alba, Sebastián [GÓMEZ ALBA, SEBASTIÁN]
dc.contributor.scopus.spa.fl_str_mv Gómez Alba, Sebastián [56862335600]
dc.contributor.googlescholar.spa.fl_str_mv Gómez Alba, Sebastián [Sebastian Gomez Alba]
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
topic 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Hidrocarburos
Hydrocarbons
Sismología
Seismology
Ingeniería sísmica
Earthquake engineering
Sismicidad Inducida
Inyección de agua
Tomografia
Anisotropia Sisimica
Campo de esfuerzos
Induced Seismicity
Water injection
Tomography
>Seismic Anisotropy
Stress Field
dc.subject.lemb.none.fl_str_mv Hidrocarburos
Hydrocarbons
Sismología
Seismology
Ingeniería sísmica
Earthquake engineering
dc.subject.proposal.spa.fl_str_mv Sismicidad Inducida
Inyección de agua
Tomografia
Anisotropia Sisimica
Campo de esfuerzos
dc.subject.proposal.eng.fl_str_mv Induced Seismicity
Water injection
Tomography
>Seismic Anisotropy
Stress Field
description ilustraciones, diagramas, fotografías, mapas, planos
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-10-12T15:33:19Z
dc.date.available.none.fl_str_mv 2023-10-12T15:33:19Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84799
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84799
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abercrombie, R.E. (1995). J. Geophys. Res. 100, 24015-24036.
Adamek, S., Frohlich, C., and Pennington, W.D. (1988). Seismicity of the Caribbean-Nazca boundary: Constraints on microplate tectonics of the Panama region. Journal of Geophysical Research 93: doi: 10.1029/88JB01269. ISSN: 0148-0227.
Ake J, Mahrer K, O’Connell D, Block L. 2005. Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado. Bull. Seismol. Soc. Am. 95:664–83
Aki, K., 1965. Maximum likelihood estimate of b in the formula log N = a - b M and its confidence limits, Bull. seism. Soc. Am., 43, 237–239.
Alessandro, A., Danet, A., Grecu, B., 2012. Location performance and detection magnitude threshold of the Romanian national seismic network. Pure Appl. Geophys. 169 (2012), 2149e2164. http://dx.doi.org/10.1007/s00024-012-0475-7
Alghannam, M., Juanes, R., 2020. Understanding rate effects in injection-induced earthquakes. Nature communications 11, 1–6
Alt RC, Zoback MD. 2016. In situ stress and active faulting in Oklahoma. Bull. Seismol. Soc. Am. 107:216–28
Aspden, J.A., McCourt, W.J., 1986. Mesozoic oceanic terrane in the central Andes of Colombia. Geology 14, 415e418.
Aspectos hidrodinámicos, estructurales y estratigráficos del Campo Rubiales. Cuenca de los Llanos Orientales, Colombia. In: VI Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 9, pp. 4e10
Atkinson GM, Eaton DW, Ghofrani H, Walker D, Cheadle B, et al. 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol. Res. Lett. 87:631–47
Atkinson, G.M., 2015. Ground-motion prediction equation for small-to-moderate events at short hypocentral distances, with application to induced-seismicity hazards. Bulletin of the Seismological Society of America 105, 981–992.
Atkinson, G.M., 2020. The intensity of ground motions from induced earthquakes with implications for damage potential. Bulletin of the Seismological Society of America 110, 2366–2379.
Atkinson, G.M., Eaton, D.W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R. & Liu, Y., 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin, Seismol. Res. Lett., 87, 631–647.
Atkinson, G.M., Wald, D., Worden, C.B., Quitoriano, V., 2018. The intensity signature of induced seismicity. Bulletin of the Seismological Society of America 108, 1080–1086.
Baisch, S., Koch, C., Muntendam-Bos, A., 2019. Traffic light systems: To what extent can induced seismicity be controlled? Seismological Research Letters 90, 1145–1154.
Bao, X. & Eaton, D.W., 2016. Fault activation by hydraulic fracturing in western Canada, Science, 354(6318), 1046–1409
Barnhart WD, Benz HM, Hayes GP, Rubinstein JL, Bergman E. 2014. Seismological and geodetic constraints on the 2011 Mw5.3 Trinidad, Colorado earthquake and induced deformation in the Raton Basin. J. Geophys. Res. 119:7923–33
Barrera, D., Pardo, A., Vargas, C.A., Martínez, J., 2007. Petroleum geology of Colombian basins. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.
Barros, L, Cappa, F., Guglielmi, Y., Duboeuf, L. & Grasso, J.R., 2019. Energy of injection-induced seismicity predicted from in-situ experiments, Scientific Reports, 9, 10.1038/s41598-019-41306-x.
Bayer, B., Kind, R., Hoffmann, M., Yuan, X., Meier, T., 2012. Tracking unilateral earthquake rupture by P-wave polarization analysis. Geophys. J. Int. 188, 1141e1153.
Ben-Avraham, Z., Nur, A., 1987. Effects of collisions at trenches on oceanic ridges and passive margins. In: Monger, J.W.H., Francheteau, J. (Eds.), Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin: American Geophysical Union, Geodynamics Series, vol. 18, pp. 9e18.
Bender, B., 1983. Maximum likelihood estimation of b values for magnitude grouped data, Bull. seism. Soc. Am., 73, 831–851.
Bernal-Olaya, R., Mann, P., & Escalona, A. (2015). Cenozoic tectonostratigraphic evolution of the Lower Magdalena Basin, Colombia: An example of an under- to overfilled forearc basin. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 345–398). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531943M1083645
Bernal-Olaya, R., Mann, P., & Vargas, C. A. (2015). Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 247–270). Tulsa, OK: Association of Petroleum Geologists. https://doi.org/10.1306/13531939M1083642
Bird, P & Kagan, Y, 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings, Bull. seism. Soc. Am., 94 (6), 2380–2399.
Block, L.V., Wood, C.K., Yeck, W.L. & King, V.M., 2014. The 24 January 2013 ML earthquake near Paradox, Colorado, and its relation to deep well injection, Seismol. Res. Lett., 85(3), 609–624.
Bokelmann, G., 1995. P-wave array polarization analysis and effective anisotropy of the brittle crust. Geophysical Journal International 120, 145–162.
Bommer, J.J., Crowley, H., Pinho, R., 2015. A risk-mitigation approach to the management of induced seismicity. Journal of Seismology 19, 623–646.
Bommer, J.J., Dost, B., Edwards, B., Staord, P.J., van Elk, J., Doornhof, D., Ntinalexis, M., 2016. Developing an application-specific ground-motion model for induced seismicity. Bulletin of the Seismological Society of America 106, 158–173.
Bommer, J.J., Stafford, P.J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A., Kruiver, P., van Elk, J., Doornhof, D., Ntinalexis, M., 2017. Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen gas field, the Netherlands. Earthquake Spectra 33, 481–498.
Boroumand, N. & Eaton, D.W., 2012 Comparing energy calculation: hydraulic fracture and Microseismic monitoring, in Proceedings of the Geo-Convention: Vision, Calgary, Canada, 14–18 May 2012.
Bossu, R., et al. (1996). Bull. Seismol. Soc. Am. 86, 959-971.
Bouchon, M., 1981. A Simple Method to calculate Green's functions in Elastic Layered Media, Bull. Seismol. Soc. Am. 71, 959e971.
Bourne, S., Oates, S., Van Elk, J., 2018. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk. Geophysical Journal International 213, 1693–1700.
Bourne, S.J., Oates, S.J., 2017. Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field. Netherlands Journal of Geosciences 96, s175–s182.
Brace, W. F. y D. L. Kohlstedt (1980), Limits on lithospheric stress impossed by laboratory experiments, Journal of Geophysical Research, 85, 6248-6252.
Brantut, N., Passelègue, F. X., Deldicque, D., Rouzaud, J. N. & Schubnel, A. Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology 44, 607–610, doi:10.1130/G37932.1 (2016).
Broccardo, M., Mignan, A., Wiemer, S., Stojadinovic, B., Giardini, D., 2017. Hierarchical Bayesian modeling of fluid-induced seismicity. Geophysical Research Letters 44, 11–357.
Brooks, E.M., Stein, S., Spencer, B.D., Salditch, L., Petersen, M.D., McNamara, D.E., 2018. Assessing earthquake hazard map performance for natural and induced seismicity in the central and eastern United States. Seismological Research Letters 89, 118–126.
Brudy, M., et al. (1997). J. Geophys. Res. 102, 18453-18475.
Bürgl, H., 1961. Sedimentación cíclica en el geosinclinal Cretáceo de la Cordillera Oriental de Colombia. Servicio Geológico Nacional, p. 60. Informe No. 1347.
Burke, K., 1988. Tectonic evolution of the Caribbean. Annu. Rev. Earth Planet. Sci. 16, 201e230.
Butler, K., Schamel, S., 1988. Structure along the eastern margin of the Central cordillera, upper Magdalena Valley, Colombia. J. S. Am. Earth Sci. 1, 109e120.
Bydlon, S.A., Gupta, A., Dunham, E.M., 2017. Using simulated ground motions to constrain near source ground-motion prediction equations in areas experiencing induced seismicity. Bulletin of the Seismological Society of America 107, 2078–2093.
Bydlon, S.A., Withers, K.B., Dunham, E.M., 2019. Combining Dynamic Rupture Simulations with Ground-Motion Data to Characterize Seismic Hazard from Mw 3 to 5.8 Earthquakes in Oklahoma and Kansas. Bulletin of the Seismological Society of America 109, 652–671.
Byerlee, J. D. (1978), Friction of rocks, Pure and Applied Geophysics, 116, 615-626.
Casero, P., Salel, J.F., Rosato, A., 1997. Multidisciplinary correlative evidences for pholyphase geological evolution of the foot-hills of the Cordillera oriental. In: VI Simposio Bolivariano- Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 1, pp. 100e118.
Cediel, F., Shaw, R.P. & Cáceres, C., 2003. Tectonic assembly of the northern Andean block, in the circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, AAPG Mem., 79, 1–34.
Cesca, S. et al., 2014. The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophys. J. Int., 182(2), 941–953.
Chan, A.W. & Zoback, M.D., 2007. The role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana coastal zone, Journal of Coastal Research, 23, 771-786.
Chang, K.W., Yoon, H., Martinez, M.J., 2018. Seismicity rate surge on faults after shut-in: Poroelastic response to fluid injection. Bulletin of the Seismological Society of America 108, 1889–1904.
Chang, Ying & Warren, Linda & Prieto, German. (2017). Precise Locations for Intermediate‐Depth Earthquakes in the Cauca Cluster, Colombia. Bulletin of the Seismological Society of America. 107. 1-15. 10.1785/0120170127.
Chen, R., Xue, X., Park, J., Datta-Gupta, A., King, M.J., 2020. New insights into the mechanisms of seismicity in the Azle area, North Texas. Geophysics 85, EN1–EN15.
Chen, X. et al., 2017. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks, Sci. Rep., 7. doi:10.1038/s41598-017-04992-z.
Chiarabba, C., De Gori, P., Faccena, C., Speranza, F., Deccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochem. Geophys. Geosyst.17, 16–27. http://dx.doi.org/10.1002/2015GC006048.
Connolly JAD. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J. Geophys. Res. 102:18149–73
Cooper, M.A., Addison, F.T., Álvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Peñas, R., Pulham, A., Taborda, A., 1995a. Basin development and tectonic history of the Llanos basin, Eastern Cordillera and middle Magdalena Valley, Colombia. AAPG Bull. 79 (10), 1421e1443.
Cooper, M.A., Addison, F.T., Alvarez, R., Hayward, A.B., Howe, S., Pulham, A.J., Taborda, A., 1995b. Basin development and tectonic history of the Llanos basin, Colombia. In: Tankard, A.J., Suárez, R., Welsink, H.J. (Eds.), Petroleum Basins of South America: AAPG Memoir 62, pp. 659e665.
Cornet, F.H., 2016. Seismic and aseismic motions generated by fluid injections, Geomech. Ener. Environ., 5, 42–54.
Cortés, M., Angelier, J., 2005. Current state of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics403, 29–58. http://dx.doi.org/10.1016/j.tecto.2005.03.020.
Coutant, O., 1989. Numerical Study of the diffraction of elastic waves by fluid-filled cracks. J. Geophys. Res. 94, 17805e17818.
Cremen, G., Gupta, A., Baker, J., 2017. Evaluation of ground motion intensities from induced earthquakes using “Did You Feel It?” data, in: 16th World Conf. on Earthquake Engineering.
Cremen, G., Werner, M.J., Baptie, B., 2020. A new procedure for evaluating ground-motion models, with application to hydraulic-fracture-induced seismicity in the United Kingdom. Bulletin of the Seismological Society of America 110, 2380–2397.
Dasilva, A., Gómez, Y., Villa, M.A., Yoris, F., Morales, D., 2014. Oil distribution in the carbonera formation, Arenas Basales unit. A case study in the Quifa and Rubiales Fields, Eastern Llanos basin, Colombia. In: Adapted from Extended Abstract Prepared for a Poster Presentation at AAPG International Conference & Exhibition, Cartagena, Colombia, September 8-11, 2013.
Davies, R., Foulger, G., Bindley, A. & Styles, P., 2013. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons, Mar. Petrol. Geol., 45, 171–185
Davis SD, Frohlich C. 1993. Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment. Seismol. Res. Lett. 64:207–24
Davis SD, Pennington WD. 1989. Induced seismic deformation in the Cogdell oil field of west Texas. Bull. Seismol. Soc. Am. 79:1477–95
De Barros, L., Guglielmi, Y.D., Cappa, F. & Duboeuf, L., 2018. Seismicity and fault aseismic deformation caused by fluid injection in decametric in-situ experiments, Comptes Rendus Geoscience, 350 (8), 464–475.
Dempsey, D., Suckale, J., 2017. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophysical Research Letters 44, 7773–7782.
Dengo, C., and M. Covey (1993), Structure of the eastern cordillera of Colombia: Implications for trap styles and regional tectonics, AAPG Bull., 77, 1315–1315.
Dieterich, J.H., Richards-Dinger, K.B. & Kroll, K.A., 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQ Sim, Seismol. Res. Lett., 86(4), 1102–1109.
Dodge DA, Beroza GC, Ellsworth WL. 1996. Detailed observations of California foreshock sequences: implications for the earthquake initiation process. J. Geophys. Res. 101:22371–92
Dost, B., Ruigrok, E., Spetzler, J., 2017. Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Netherlands Journal of Geosciences 96, s235–s245.
Duque-Caro, H., 1991. Contributions to the geology of the Pacific and Caribbean coastal areas of northwestern Colombia and South America: Princeton University, PhD. thesis, 132 p.
Eaton, D.W. & Igonin, N., 2018. What controls the maximum magnitude of injection-induced earthquakes? Leading Edge, 37(2), 135–140.
Eberhart-Phillips, D. (1986). Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times, Bull. Seismol. Soc. Am. 76, 1025–1052.
Ellsworth, W., 2013. Injection-induced earthquakes, Science, 341, 1225942.
Ellsworth, W.L., Llenos, A.L., McGarr, A.F., Michael, A.J., Rubinstein, J.L., Mueller, C.S., Petersen, M.D., Calais, E., 2015. Increasing seismicity in the US midcontinent: Implications for earthquake hazard. The Leading Edge 34, 618–626.
Espurt, N., F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset (2008), Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling, Tectonics, 27, TC3011, doi:10.1029/2007TC002175.
Etayo-Serna, F., 1979. Zonation of the Cretaceous of Central Colombia by ammonites, vol. 2. Publicación Especial INGEOMINAS, pp. 1e186
Fabre, A., 1983. La subsidencia de la Cuenca del Cocuy (Cordillera Oriental de Colombia) durante el Cretáceo y el Terciario, Segunda parte: Esquema de Evolución Tectónica. Geol. NorAndina 8, 49e61.
Farhadi, A., Pezeshk, S., Khoshnevis, N., 2018. Assessing the Applicability of Ground-Motion Models for Induced Seismicity Application in Central and Eastern North America. Bulletin of the Seismological Society of America 108, 2265–2277.
Farris, D. W., Jaramillo, C., Bayona, G., Restrepo-moreno, S. A., Montes, C., Cardona, A., Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007–1010.
Faul, U.H., Jackson, I., 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett.234 (1–2), 119–134. http://dx.doi.org/10.1016/j.epsl.2005.02.008.
Flinch, J. F. (2003). Structural evolution of the Sinu-Lower Magdalena area (northern Colombia). AAPG Memoir, 79(1), 776–796.
Folesky, J.T., 2013. Rupture Propagation Imaging at Microseismic Scale. Berlin Freie University, Berlin.
Fouch, M., Rondenay, S., 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors 158, 292–320.
Freymuller, J., Kellogg, J., Vega, V., 1993. Plate motions in the North Andean region. J. Geophys. Res. 98 (21), 21853e21863.
Frohlich C, Walter JI, Gale JF. 2015. Analysis of transportable array (USArray) data shows earthquakes are scarce near injection wells in the Williston Basin, 2008–2011. Seismol. Res. Lett. 86:492–99
Frohlich, C. & Davis, S., 1993. Teleseismic b-values: or, much ado about 1.0, J. geophys. Res., 98, 631–644.
Frohlich, C., 2012. Two-year survey comparing earthquake activity and injection-well locations in Barnett Shale, Texas, Proc. Natl Acad. Sci. USA, 109, 13934–13938
Gailler, A., P. Charvis, and E. R. Flueh (2007), Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide angle seismic profiles, Earth Planet. Sci. Lett., 260, 444–464.
Galis, M., Ampuero, J.P., Mai, P.M. & Cappa, F., 2017. Induced seismicity provides insight into why earthquake ruptures stop, Sci. Adv., 3(12)
Ghofrani, H., Atkinson, G.M., Schultz, R., Assatourians, K., 2019. Short-term hindcasts of seismic hazard in the western Canada sedimentary basin caused by induced and natural earthquakes. Seismological Research Letters 90, 1420–1435.
Gobel T. 2015. A comparison of seismicity rates and fluid-injection operations in Oklahoma and California: ¨ implications for crustal stresses. Lead. Edge 34:640–48
Godano, C. & Pingue, F., 2002. Is the seismic moment-frequency relation universal? Geophys. J. Int., 142, 193–198, 10.1046/j.1365-246x.2000.00149.
Goebel THW, Hosseini SM, Cappa F, Hauksson E, Ampuero JP, et al. 2016. Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California. Geophys. Res. Lett. 43:1092–99
Goebels, T.H.W, Weingartenb, M., Chenc, X., Haffenerc, J. & Brodskya, E.E., 2017. The 2016 Fair view Oklahoma earthquakes: Evidence for long range poroelastic stress triggering at >40 km from fluid disposal wells, Earth planet. Sci. Lett., 472, 50–61.
Goertz-Allmann, B.P., Gibbons, S.J., Oye, V., Bauer, R. & Will, R., 2017. Characterization of induced seismicity patterns derived from internal structure in event clusters, J. geophys. Res., 122, 3875–3894.
Gómez, E.T., Jordan, R.W., Allmendinger, Cardozo, N., 2005. Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of northern Andes. Geol. Soc. Am. Bull. 117, 1272e1292.
Gómez, Y., Yoris, F., Rodríguez, J., Portillo, F., Araujo, Y., Pacific Rubiales Energy, 2010.
Gómez-Alba, S., Fajardo-Zarate, C.E. & Vargas, C.A., 2015. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia), J. S. Am. Earth Sci., 71, 320–332
Gono, V., Olson, J.E., Gale, J.F., et al., 2015. Understanding the correlation between induced seismicity and wastewater injection in the Fort Worth basin, in: 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
Grasso, J.R., 1992. Mechanics of seismic instabilities induced by the recovery of hydrocarbons, Pure and Applied Geophysics, 139, 507-534.
Graterol, V. & Rey, C.A., 2009. Mediciones Aero gravimétricas y magnetométricas en los Llanos Orientales de Colombia, X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia.
Grigoli, F. et al., 2018. The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea, Science, 360(6392), 1003–1006.
Grigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020a. Earthquakes induced by wastewater injection, part I: Model development and hindcasting. Bulletin of the Seismological Society of America 110, 2466–2482.
Grigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020b. Earthquakes induced by wastewater injection, part II: Statistical evaluation of causal factors and seismicity rate forecasting. Bulletin of the Seismological Society of America 110, 2483–2497.
Gupta, A., Baker, J.W., 2017. Estimating spatially varying event rates with a change point using Bayesian statistics: Application to induced seismicity. Structural safety 65, 1–11.
Gupta, A., Baker, J.W., 2019. A framework for time-varying induced seismicity risk assessment, with application in Oklahoma. Bulletin of Earthquake Engineering 17, 4475–4493.
Gutscher, M. A., W. Spakman, H. Bijward, and E. R. Engdahl (2000), Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin, Tectonics, 19, 814–833.
Gutscher, M., J. Malavieille, S. Lallemand, and J. Collot (1999), Tectonic segmentation of the North Andean margin: Impact of the Carnegie ridge collision, Earth Planet. Sci. Lett., 168, 255–270.
Hacker BR. 1997. Diagenesis and fault valve seismicity of crustal faults. J. Geophys. Res. 102:24459–67
Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 108, B12030, doi:10.1029/2001JB001129 (2003).
Haddad, M., Eichhubl, P., et al., 2020. Poroelastic Modeling of Basement Fault Reactivation Caused by Saltwater Disposal Near Venus, Johnson County, Texas, in: 54th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
Hammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J. Geophys. Res.105 (B5), 10,975–10,986. http://dx.doi.org/10.1029/2000JB900041.
Havskov, J., Ottemoller, L., 2000. SEISAN. The earthquake analysis software. Institute of solid Earth Physics. University of Bergen, Bergen, Norway, p. 250.
Healy, J., Rubey, W., Griggs, D. & Raleigh, C., 1968. The Denver earthquakes, Science, 161, 1301–1310.
Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Muller B. 2010. Global crustal stress pattern based ¨ on the World Stress Map database release 2008. Tectonophysics 482:3–15
Heidbach, O., M. Rajabi, X. Cui, K. Fuchs, B. Müller, J. Reinecker, K. Reiter, M. Tingay, F. Wenzel, F. Xie, M. O. Ziegler, M.-L. Zoback, and M. D. Zoback. 2018, The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744,484-498. http://doi.org/10.1016/j.tecto.2018.07.007
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B., 2009. The World Stress Map Based on the Database Release 2008, Equatorial Scale 1:46,000,000, Commission for the Geological Map of the World, Paris. http://dx.doi.org/10.1594/GFZ.WSM.Map2009.
Hennings, P.H., Lund Snee, J.E., Osmond, J.L., DeShon, H.R., Dommisse, R., Horne, E., Lemons, C., Zoback, M.D., 2019. Injection-induced seismicity and fault-slip potential in the Fort Worth Basin, Texas. Bulletin of the Seismological Society of America 109, 1615–1634.
Herrmann, R.B., Park, S.-K., Wang, C.-Y., 1981. The Denver earthquakes of 1967e1968. Bull. Seismol. Soc. Am. 71, 731e745.
Hettner, A., 1892. Die kordillere von Bogota: Ergzh zu Petermanns Mitteilungen Bd. 22. Erganzungsheft 104, 1e131.
Hickman SH, Healy JH, ZobackMD. 1985. In situ stress, natural fracture distribution, and borehole elongation in the Auburn geothermal well, Auburn, New York. J. Geophys. Res. 90:5497–512
Hitzman, M.W. et al., 2012. Induced Seismicity Potential in Energy Technologies, The National Academies Press, Washington D.C.
Holland AA. 2013a. Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bull. Seismol. Soc. Am. 103:1784–92
Holland AA. 2013b. Optimal fault orientations within Oklahoma. Seismol. Res. Lett. 84:876–90
Hornbach MJ, Jones M, Scales M, DeShon HR, Magnani MB, et al. 2016. Ellenburger wastewater injection and seismicity in North Texas. Phys. Earth Planet. Inter. 261:54–68
Horton, S., 2012. Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Seismological Research Letters 83, 250–260.
Houston, H. 4.13 - Deep Earthquakes. In: Schubert, G. (ed). Treatise on Geophysics (Second Edition). Elsevier, Oxford, pp 329–354 (2015).
Hsieh PA, Bredehoeft JD. 1981. A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J. Geophys. Res. 86:903–20
Huang Y, Beroza GC, Ellsworth WL. 2016. Stress drop estimates of potentially induced earthquakes in the Guy-Greenbrier sequence. J. Geophys. Res. 121:6597–607
Huang, Y., Ellsworth, W.L., Beroza, G.C., 2017. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science advances 3, e1700772.
Hubach, E., 1957. Contribución a las unidades estratigráficas de Colombia, (enumeración regional, de más reciente a más antiguas). Servicio Geológico Nacional, p. 165. Informe no. 1212.
Idárraga-García, J., Kendall, J.-M., & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9), 3655–3673. https://doi.org/10.1002/2016GC006323.
Ishii, M., Shearer, P., Houston, H., Vidale, J., 2007. Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. JGR 112.
Jadamec, M.A., Billen, M.I., 2010. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature465 (7296), 338–341. http://dx.doi.org/10.1038/nature09053.
Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293(5534), 1460–1463.
Jung, H., Green, H. W. & Dobrzhinetskaya, L. F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428, 545–549, doi:10.1038/nature02412 (2004).
Kagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison, J. geophys. Res., 102, 2835–2852, doi:10.1029/96JB03386.
Kagan, Y.Y., 1999. Universality of the seismic moment-frequency relation, Pure appl. Geophys., 15, 537–573.
Kanamori, H., 1977. The energy release in great earthquakes, J. geophys. Res., 82 (20), 2981–2987.
Kang, J.Q., Zhu, J.B., Zhao, J., 2019. A review of mechanisms of induced earthquakes: from a view of rock mechanics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 5, 171–196.
Kao, H., Shan, S.-J., 2004. The source-scanning algorithm: mapping the distribution of seismic sources in time and space. GJI 157, 589e594.
Karato, S., 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett.20 (15), 1623–1626. http://dx.doi.org/10.1029/93GL01767.
Kawakatsu, H. & Watada, S. Seismic Evidence for Deep-Water. Science 316, 1468–1471, doi:10.1126/science.1140855 (2007).
Keleman, P.B., Hirth, G., 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature446, 787–790.
Kellogg, J., Vega, V., 1995. Tectonic development of Panama, Costa Rica, and Colombian Andes: constraints from global positioning system geodetic studies and gravity. Spec. Pap. Geol. Soc. Am. 295, 75e90.
Keranen KM, Savage HM, Abers GA, Cochran ES. 2013. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology 41:699–702
Keranen, K.M., Weingarten, M., 2018. Induced seismicity. Annual Review of Earth and Planetary Sciences 46, 149–174.
Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A. & Ge, S., 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345(6195), 448–451.
Khosravikia, F., Clayton, P., Nagy, Z., 2019. Artificial neural network-based framework for developing ground-motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas. Seismological Research Letters 90, 604–613.
Kikuchi, M., Kanamori, H., 1991. Inversion of complex body waves III. Bull. Seismol. Soc. Am. 81, 2335e2350.
Kim, K.H., Ree, J.H., Kim, Y.H., Kim, S., Kang, S.Y. & Seo, W., 2018. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, 360(6392), 1007–1009.
Kim, W.Y., 2013. Induced seismicity associated with fluid injection into deep well in Youngstown, Ohio, J. geophys. Res., 18, 3506–3518.
King VM, Block LV, Yeck WL, Wood CK, Derouin SA. 2014. Geological structure of the Paradox Valley Region, Colorado, and relationship to seismicity induced by deep well injection. J. Geophys. Res. 119:4955– 78
Kirby, S.H., Stein, S., Okal, E., Rubie, D.C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys.34, 261–306.
Kneller, E.A., van Keken, P.E., Karato, S.-I., Park, J., 2005. B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett.429, 781–797. http://dx.doi.org/10.1016/j.epsl.2005.06.049.
Kohlstedt, D. L., B. Evans y S. J. Mackwell (1995), Strength of the lithosphere: Constraints imposed by laboratory experiments, Journal of Geophysical Research, 100, 17587-17602.
Korhonen, J.V. & Fairhead, J. & Hamoudi, M. & Hemant, K. & Lesur, V. & Mandea, Mioara & Maus, Steffany & Purucker, M. & Ravat, Dhananjay & Sazonova, T. & Erwan, Thebault & Ccgm, Cgmw. (2007). Magnetic Anomaly Map of the World 1:50M (Release: July 2007).
Koulakov I. (2009), LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bulletin of the Seismological Society of America, 99(1), 194-214, doi: 10.1785/0120080013.
Koulakov, I., A. Jakovlev, and B. G. Luehr (2009b), Anisotropic structure beneath central Java from local earthquake tomography, Geochem. Geophys. Geosyst., 10 Q02011, doi:10.1029/2008GC002109.
Koulakov, I., and S. Sobolev (2006). Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data, Geophys. J. Int. 164, no. 1 218–235.
Krüger, F., Ohrnberger, M., 2005. Tracking the rupture of the Mw ¼ 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature 435, 937e941.
Lambert C. 2017. Structural controls on fluid migration and seismic variability in northern Oklahoma. Master’s Thesis, Dep. Earth Atmos. Sci., Cornell Univ., Ithaca, NY
Langenbruch, C., Shapiro, S.A., 2015. Quantitative analysis of rock stress heterogeneity: Implications for the seismogenesis of fluid-injection-induced seismicity. Geophysics 80, WC73–WC88.
Langenbruch, C., Weingarten, M., Zoback, M.D., 2018. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nature communications 9, 3946.
Langenbruch, C., Zoback, M.D., 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science advances 2, e1601542.
Lara, M., Cardona, A., Monsalve, G., Yarce, J., Montes, C., Valencia, V López-Martínez, M. (2013). Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America Journal of South American Earth Sciences, 45, 24–41. https://doi.org/10.1016/j.jsames.2012.12.006
Lengliné, O., Boubacar, M. & Schmittbuhl, J., 2017. Seismicity related to the hydraulic stimulation of GRT1, Rittershoffen, France, Geophys. J. Int., 208(3), 1704–1715.
Liener, B.R., Havskov, J., 1995. A computer program for locating earthquakes locally, regionally and globally. Seismol. Res. Lett. 66, 26e36. http://dx.doi.org/10.1785/gssrl.66.5.26.
Liu E, Crampin S, Queen JH. 1991. Fracture detection using crosshole surveys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, Oklahoma. Geophys. J. Int. 107:449–63
Llenos AL, Michael AJ. 2013. Modeling earthquake rate changes in Oklahoma and Arkansas: possible signatures of induced seismicity. Bull. Seismol. Soc. Am. 103:285
Lui, S.K., Huang, Y., 2019. Do injection-induced earthquakes rupture away from injection wells due to fluid pressure change? Bulletin of the Seismological Society of America 109, 358–371.
Lund, B., Slunga, R., 1999. Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J. Geophys. Res. 104, 14 947e14 964.
Majer EL, Baria R, Stark M, Oates S, Bommer J, et al. 2007. Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–222
Malin, P.E., et al. (1988). Bull. Seismol. Soc. Am. 78, 401-420.
Manga M, Wang CY, Shirzaei M. 2016. Increased stream discharge after the 3 September 2016 Mw 5.8 Pawnee, Oklahoma earthquake. Geophys. Res. Lett. 43:11588–94
Maxwell, S., Zhang, F., Damjanac, B., 2015. Geomechanical modeling of induced seismicity resulting from hydraulic fracturing. The Leading Edge 34, 678–683.
Maxwell, S.C., Rutledge, J., Jones, R., & Fehler, M., 2010, Petroleum reservoir characterization using downhole microseismic monitoring, Geophysics, 75, 75A129-75A137.
McCourt, W.J., Aspden, J.A., Brook, M., 1984. New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J. Geol. Soc. Lond. 141, 831e845.
McGarr, A. & Barbour, A.J., 2018. Injection-induced moment released can also be aseismic, Geophys. Res. Lett., 45(11)5344–5311.
McGarr, A. (1992). Pure Appl. Geophys. 139, 781-800.
McGarr, A. and D. Simpson (1997). In: "Rock bursts and Seismicity in Mines," pp. 385-396, Balkema.
McGarr, A., 1976. Seismic moments and volume changes, J. geophys. Res., 81(1):1487–1494.
McGarr, A., 2014. Maximum magnitude earthquakes induced by fluid injection, J. geophys. Res., 119, 1008–1019.
McGarr, A., Simpson, D., Seeber, L., 2002. Case histories of induced and triggered seismicity. In: Lee, W., Kanamori, H., Jennings, P., Kisslinger, C. (Eds.), International Handbook of Earthquake and Engineering Seismology Academic Press, London, pp. 647e664. Chapter 40.
McNamara, D. et al., 2015. Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma, Lead. Edge, 34(6), 628–639.
Megard, F., 1987. Cordillera Andes and Marginal Andes: A Review of Andean Geology North of the Arica Elbow (18 Deg. S), in J. W. H.
Michael, A.J., 1984. Determination of stress from slip data: faults and folds. J. Geophys. Res. 89, 11 517e11 526.
Michael, A.J., 1987. Use of focal mechanisms to determine stress: a control study. J. Geophys. Res. 92 (B1), 357e368.
Mignan, A., 2016. Static behaviour of induced seismicity. Nonlinear Processes in Geophysics 23, 107–113.
Mignan, A., Broccardo, M., Wiemer, S., Giardini, D., 2017. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific reports 7, 1–10.
Mishra, O. P. & Zhao, D. P. Seismic evidence for dehydration embrittlement of the subducting Pacific slab. Geophys. Res. Lett. 31, L09610, doi: 10.1029/2004GL019489 (2004).
Miyazawa, M., Venkataraman, A., Snieder, R., & Payne, M.A., 2008. Analysis of microearthquake data at Cold Lake and its applications to reservoir monitoring, Geophysics, 73, 015-021.
Mogi, K., 1967. Regional variation in magnitude - frequency relation of earthquake, Bull. Earthq. Res. Inst., 45, 313–325.
Molina, Indira & Velasquez, Juan & Rubinstein, Justin & Garcia, Alexander & DIONICIO, VIVIANA. (2020). Seismicity induced by massive wastewater injection near Puerto Gaitán, Colombia. Geophysical Journal International. 223. 777-791. 10.1093/gji/ggaa326.
Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V., & Jaramillo, C. (2010). Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería Basins. Journal of South American Earth Sciences, 29(4), 832–848. https://doi.org/10.1016/j.jsames.2009.07.010
Montgomery, S., 1992. Petroleum potential of upper and middle Magdalena basins, Colombia, part 2: plate tectonics, reservoirs, source rocks, and field histories. Pet. Front. 9, 67.
Mora, A., et al., 2010. The eastern foothills of the eastern cordillera of Colombia: an example of multiple factors controlling structural styles and active tectonics, Bull. Geol. Soc. Am., 122 (11–12), 1846–1864.
Mora-Bohórquez, J. A., Ibánez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., & Serna, L. (2017). Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central Andes against the Caribbean basin. Journal of South American Earth Sciences, 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001
Mousavi, S.M., Beroza, G.C., Hoover, S.M., 2018. Variabilities in probabilistic seismic hazard maps for natural and induced seismicity in the central and eastern United States. The Leading Edge 37, 141a1–141a9.
Mukuhira, Y., Asanuma, H., Niitsuma, H. & Haring, M.O., 2013. Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel, Switzerland, Geothermics, 45, 1–17.
Nicholson, C., Roeloffs, E., Wesson, R.L., 1992. Triggered earthquakes and deep well activities. Pure Appl. Geophys. 139, 561e578.
Novakovic, M., Atkinson, G.M., Assatourians, K., 2018. Empirically calibrated ground-motion prediction equation for Oklahoma. Bulletin of the Seismological Society of America 108, 2444– 2461.
Ojeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4), 575–593. https://doi.org/10.1023/A:1012053206408
Pardo, A., Barrero, D., Vargas, C.A., Martínez, J., 2007. Sedimentary Basins of Colombia: Geological Framework. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.
Pardo-Casas, F., Molnar, P., 1987. Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6, 233e248.
Pennington, W. D. (1981), Subduction of the eastern Panama basin and seismotectonics of northwestern South America, J. Geophys. Res., 86(B11), 10753-10770, doi: 10.1029/JB086iB11p10753.
Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Llenos, A.L., Ellsworth, W.L., Michael, A.J., Rubinstein, J.L., McGarr, A.F., Rukstales, K.S., 2016. Seismic-hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States. Seismological Research Letters 87, 1327–1341.
Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Rubinstein, J.L., Llenos, A.L., Michael, A.J., Ellsworth, W.L., McGarr, A.F., Holland, A.A., et al., 2015. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: Results of 2014 workshop and sensitivity studies.
Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Shumway, A.M., McNamara, D.E., Rennolet, S.B., Moschetti, M.P., Thompson, E.M., Yeck, W.L., 2018. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas. Earthquake Spectra 34, 1–20.
Pilger Jr., R.H., 1984. Cenozoic plate kinematics subduction and magmatism: south American Andes. J. Geol. Soc. Lond. 141, 793e802.
Porritt, R. W., T. W. Becker, and G. Monsalve (2014), Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia, Geophys. Res. Lett., 41, 8775-8783, doi: 10.1002/2014GL061958.
Poveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction related magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth, 123, 1459–1485. https://doi.org/10.1002/2017JB014688
Poveda, E., Monsalve, G., & Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120, 2408–2425. https://doi.org/10.1002/2014JB011304
Prieto, G.A., Beroza, G.C., Barrett, S.A., López, G.A., Florez, M., 2012. Earthquake nests as natural laboratories for the study of intermediate-depth earth-quake mechanics. Tectonophysics 570–571, 42–56. http://dx.doi.org/10.1016/j.tecto.2012.07.019.
Raleigh CB, Healy JH, Bredehoeft JD. 1976. An experiment in earthquake control at Rangely, Colorado. Science 191:1230–37
Rubinstein JL, Ellsworth WL, McGarr A, Benz HM. 2014. The 2001–present induced earthquake sequence in the Raton basin of northern New Mexico and southern Colorado. Bull. Seismol. Soc. Am. 104:2162–81
Rubinstein, J.L. & Babaie Mahani, A., 2015. Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhaced Oil Recovery, and Induced Seismicity, Seismol. Res. Lett., 86, 1060–1067, 10.1785/0220150067.
Rubinstein, J.L., Ellsworth, W.L., Dougherty, S.L., 2018. The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America 108, 674–689.
Rubinstein, J.L., Ellsworth, W.L., McGarr, A., Benz, H.M., 2014. The 2001–present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado. Bulletin of the Seismological Society of America 104, 2162–2181.
Rutledge, J.T. & Phillips, W.S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas, Geophysics, 68, 441-452.
Saffer DM, Tobin HJ. 2011. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39:157–86
Salazar, J. M., and C. A. Vargas (2015). Fractal dimension and seismotectonic deformation rates along an inter-plate setting: Seismic regime along the Caribbean plate boundary zone, in Petroleum Geology and Potential of the Colombian Caribbean Margin, C. Bartolini and P. Mann (Editors), AAPG Memoir 108, Chapt. 11, 271–294, ISBN13: 978-0-89181-388-0.
Sanchez, J., & Mann, P. (2015). Integrated structural and basinal analysis of the Cesar-Rancheria Basin, Colombia: Implications for its tectonic history and petroleum systems. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 431–470). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531945M1083648
Sarkar, S., 2008. Reservoir monitoring using induced seismicity at a petroleum field in Oman: PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, US.
Savage HM, Keranen KM, Schaff D, Dieck C. 2017a. Possible precursory signals in damage zone foreshocks. Geophys. Res. Lett. 44:5411–17
Savvaidis, A., Lomax, A., Breton, C., 2020. Induced Seismicity in the Delaware Basin, West Texas, is Caused by Hydraulic Fracturing and Wastewater Disposal. Bulletin of the Seismological Society of America 110, 2225–2241.
Scanlon, B.R., Weingarten, M.B., Murray, K.E., Reedy, R.C., 2019. Managing basin-scale fluid budgets to reduce injection-induced seismicity from the recent US shale oil revolution. Seismological Research Letters 90, 171–182.
Schoenball, M., Ellsworth, W.L., 2017. A systematic assessment of the spatiotemporal evolution of fault activation through induced seismicity in Oklahoma and southern Kansas. Journal of Geophysical Research: Solid Earth 122, 10–189.
Schultz, R., Atkinson, G., Eaton, D.W., Gu, Y.J. & Kao, H., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play, Science, 359(6373), 304–308.
Schultz, R., Beroza, G., Ellsworth, W., Baker, J., 2020. Risk-Informed Recommendations for Managing Hydraulic Fracturing–Induced Seismicity via Traffic Light Protocols. Bulletin of the Seismological Society of America 110, 2411–2422.
Schultz, R., Quitoriano, V., Wald, D.J., Beroza, G.C., 2021. Quantifying nuisance ground motion thresholds for induced earthquakes. Earthquake Spectra, 8755293020988025.
Sella, G., Dixon, T.H., Mao, A., 2002. REVEL: a model of recent plate velocities from space geodesy. J. Geophys. Res.107 (B4). http://dx.doi.org/10.1029/2000JB000033. 2081.
Shapiro, S.A., Dinske, C., Langenbruch, C. & Wenzel, F., 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations, Leading Edge, 29(3), 304–309.
Shapiro, S.A., Huenges, E. & Borm, G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site, Geophys. J. Int., 131(2), F15–F18.
Shapiro, S.A., Rothert, E., Rath, V. & Rindschwentner, J., 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity, Geophysics, 67, 212–220.
Shelly DR, Moran SC, Thelen WA. 2013. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophys. Res. Lett. 40:1506–12
Sibson RH. 2000. Fluid involvement in normal faulting. J. Geodyn. 29:469–99
Skoumal RJ, Brudzinski MR, Currie BS. 2015a. Distinguishing induced seismicity from natural seismicity in Ohio: demonstrating the utility of waveform template matching. J. Geophys. Res. 120:6284–96
Skoumal RJ, Brudzinski MR, Currie BS. 2015b. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bull. Seismol. Soc. Am. 105:189–97
Skoumal RJ, Brudzinski MR, Currie BS. 2016. An efficient repeating signal detector to investigate earthquake swarms. J. Geophys. Res. 121:5880–97
Skoumal, R.J., Barbour, A.J., Brudzinski, M.R., Langenkamp, T., Kaven, J.O., 2020. Induced seismicity in the Delaware Basin, Texas. Journal of Geophysical Research: Solid Earth 125, e2019JB018558.
Smalley PC, Muggeridge AH. 2010. Reservoir compartmentalization: Get it before it gets you. Geol. Soc. Lond. Spec. Publ. 347:25–41
Snee, J.E.L., Zoback, M.D., 2018. State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity. The Leading Edge 37, 127–134.
Sokos, E.N., Zahradnik, J., August 2008. ISOLA a Fortran code and a MATLAB GUI to perform multiple-point source inversion of seismic data. Comp. Geosci 34 (8), 967e977. http://dx.doi.org/10.1016/j.cageo.2007.07.005. ISSN 0098-3004.
Spottiswoode, S.M. and A. McGarr (1975). Bull. Seismol. Soc. Am. 65, 93-112.
Suckale, J., 2010. Induced seismicity in hydrocarbon fields, Chapter 2 in advances in Geophysics, 51.
Sumy DF, Cochran ES, Keranen KM, Wei M, Abers GA. 2014. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J. Geophys. Res. 119:1904–23
Sumy DF, Neighbors CJ, Cochran ES, Keranen KM. 2017. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake. J. Geophys. Res. 122:3813–34
Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., & Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050
Taboada, A., L.A. Rivera, A. Fuenzalida, A. Cisternas, H. Philip, H. Bijwaard, J. Olaya, and C. Rivera, 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics. v.19, no. 5, p. 787-813.
Takei, Y., 2002. Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J. Geophys. Res.107 (B2), 2043. http://dx.doi.org/10.1029/2001JB000522.
Townend J, Zoback MD. 2000. How faulting keeps the crust strong. Geology 28:399–402
Trenkamp, R., J. Kellogg, J. Freymueller and H. Mora, (2002). Wide plate margin, southern Central America and northwestern South America, CASA GPS observations, Journal of South American Earth Sciences 15, 157-171, Elsevier.
Trugman, D.T., Savvaidis, A., 2021. Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research Letters
Tsapanos, T., 1990. b-Value of two tectonic parts in the circum-Pacific belt, Pure appl. Geophys, 143, 229–242, doi: 10.1007/BF00876999.
van der Elst NJ, Savage HM, Keranen KM, Abers GA. 2013. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States. Science 341:164–67
van der Elst, N.J., Page, M.T., Weiser, D.A., Goebel, T.H.W. & Hosseini, S.M., 2016. Induced earthquake magnitudes are as large as (statistically) expected, J. geophys. Res., 121, 4575–4590.
van der Hilst, R., Mann, P., 1994. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology22, 451–454.
van der Sluis, A., and H. A. van der Vorst (1987). Numerical solution of large, sparse linear algebraic systems arising from tomographic problems, in Seismic Tomography, G. Nolet (Editor), Reidel, Dordrecht, 49–83.
van Elk, J., Doornhof, D., Bommer, J.J., Bourne, S.J., Oates, S.J., Pinho, R., Crowley, H., 2017. Hazard and risk assessments for induced seismicity in Groningen. Netherlands Journal of Geosciences 96, s259–s269
van Thienen-Visser, K., Breunese, J., 2015. Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge 34, 664–671.
Vargas, C.A. & Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama arc-indenter with northwestern South America Bull, Seismol. Soc. Am., 103(3) 2025–2046.
Vavrycuk, V., 2014. Seismology iterative joint inversion for stress and fault orientations from focal mechanisms. GJI Geophys. J. Int. 199, 69e77 (Praha, Czech Republic).
Verdon, J.P., Bommer, J.J., 2020. Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. Journal of Seismology, 1–26.
Walker, K., Shearer, P., 2009. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili Mw 7.8 and Denali fault Mw 7.9 strike-slip earthquakes with global P wave back projection imaging. J. Geophys. Res. 114.
Walsh, F.R., Zoback, M.D., 2015. Oklahoma’s recent earthquakes and saltwater disposal. Science advances 1, e1500195.
Walters, R.J., Zoback, M.D., Baker, J.W., Beroza, G.C., 2015. Characterizing and responding to seismic risk associated with earthquakes potentially triggered by fluid disposal and hydraulic fracturing. Seismological Research Letters 86, 1110–1118.
Wang, R., Gu, Y.J., Schultz, R., Chen, Y., 2018. Faults and non-double-couple components for induced earthquakes. Geophysical Research Letters 45, 8966–8975.
Wang, Z., Carpenter, N.S., Zhang, L., Woolery, E.W., 2017. Assessing potential ground-motion hazards from induced earthquakes. Natural Hazards Review 18, 04017018
Weatherley DK, Henley RW. 2013. Flash vaporization during earthquakes evidenced by gold deposits. Nat. Geosci. 6:294
Wech, A., Kenneth, W., Creager, C., Houston, H. & Vidale, J., 2010. An earthquake like magnitude–frequency distribution of slow slip in Northern Cascadia, Geophys. Res. Lett., 37, L22310, doi:10.1029/2010GL044881.
Weingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL. 2015. High-rate injection is associated with the increase in US mid-continent seismicity. Science 348:1336–40
Wesnousky, S.G., 1999. Crustal deformation processes and the stability of the Gutenberg-Richter relationship. Bull. seism. Soc. Am., 89 (4),1131–1137.
White, J.A. & Foxall, W., 2016. Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges, Int. J. Greenhouse Gas Control, 49, 413–424.
Wibberley CA, Gonzalez-Dunia J, Billon O. 2017. Faults as barriers or channels to production-related flow: insights from case studies. Pet. Geosci. 23:134–47
Wiemer, S. & Wyss, M., 2000. Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. Seism. Soc. Am., 90, 859–869.
Wu, Q., Chapman, M., Chen, X., 2018. Stress-Drop Variations of Induced Earthquakes in Oklahoma Stress-Drop Variations of Induced Earthquakes in Oklahoma. Bulletin of the Seismological Society of America 108, 1107–1123.
Yeck WL, Weingarten M, Benz HM, McNamara DE, Bergman EA, et al. 2016. Far-field pressurization likely caused one of the largest injections induced earthquakes by reactivating a large preexisting basement fault structure. Geophys. Res. Lett. 43:10198–207
Yoris, F., Lugo, J., 2009. Características de la trampa estratigráfica de Carbonera basal en el Sureste de Llanos Orientales. In: X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia, Julio, 2009.
Zakharova NV, Goldberg DS. 2014. In situ stress analysis in the northern Newark Basin: implications for induced seismicity from CO2 injection. J. Geophys. Res. 119:2362–74
Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., Majer, E. & Bruhn, D., 2014. Analysis of induced seismicity in geothermal reservoirs—an overview, Geothermics, 52, 6–21.
Zang, A., Yoon, J.S., Stephansson, O. & Heidbach, O., 2013. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity, Geophys. J. Int., 195(2), 1282–1287.
Zarifi, Z., J. Havskov, and A. Hanyga (2007), An insight into the Bucaramanga nest, Tectonophysics, 443, 93–105.
Zhang Y, Person M, Rupp J, Ellett K, Celia MA, et al. 2013. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. Groundwater 51:525–38
Zhang, Z., Schwartz, S., 1994. Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas fault system. Journal of Geophysical Research 99, 9651–9661.
Zoback, M.D. and J.H. Healy (1984). Ann. Geophys. 2, 689-698.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vii, 160 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Geociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84799/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84799/2/1020719973.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84799/3/1020719973.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a04543599022cd98e1bf1ea8509c06c0
14b11d50ddd9deb5649cf96c0738ff5e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089394739478528
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Jiménez, Carlos Alberto5555241492e147a4b8190b7788f625f4Gómez Alba, Sebastián Alejandro2288505b6421da73b9b9d8e55bb7e0c2Gómez Alba, Sebastián [0000000206162663]Gómez Alba, Sebastián [GÓMEZ ALBA, SEBASTIÁN]Gómez Alba, Sebastián [56862335600]Gómez Alba, Sebastián [Sebastian Gomez Alba]2023-10-12T15:33:19Z2023-10-12T15:33:19Z2022https://repositorio.unal.edu.co/handle/unal/84799Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, mapas, planosLa información producto del monitoreo sismológico de campos de hidrocarburos se ha convertido en una herramienta y fuente de información importante para determinar bajo qué circunstancias las operaciones de explotación de campos de hidrocarburos inciden en la alteración del estado natural de los parámetros elásticos de las rocas y el flujo de fluidos al interior de los yacimientos. En Colombia no ha existido una política que demande el monitoreo sismológico de campos de hidrocarburos, y el poco que ha podido ser realizado aún no ha sido ni procesado ni analizado en su totalidad. En este contexto hay un rezago respecto a la adquisición de data, análisis y apropiación de conocimiento sobre el subsuelo del país, y por ende un bajo entendimiento de los fenómenos físicos resultado de operaciones industriales. Esta tesis se convierte en un primer paso para llenar este vacío, al hacer uso de la información disponible de los terremotos registrados desde 1993 hasta 2018 por el Servicio Geológico Colombiano (SGC), para proponer un modelo geodinámico de la esquina NW de Sur América, el primer modelo a tomografía de anisotropía sísmica para la corteza de Colombia, la primera valoración de los posibles mecanismos de activación de sismicidad antropogénica producto de la inyección de agua en yacimientos disposal en el campo de mayor producción de crudo pesado del país, y finalmente la caracterización de estructuras disipadoras de energía sísmica en yacimientos de hidrocarburos. En el Capítulo 1 se describe en detalle el problema, su planteamiento, la justificación y la motivación de esta disertación. Igualmente se exponen los principios y antecedentes fundamentales bajo los cuales se ha venido construyendo el fundamento teórico asociado a la sismicidad antropogénica. En el Capítulo 2 se hace un estudio de sismicidad regional de la esquina NW de Sur América para estimar tomografías de velocidad de Vp y Vs de la corteza y el manto superior, distribución de anomalías Vp/Vs en al manto superior y el mapeo de vectores de anisotropía azimutal de onda P de la corteza. Este Capítulo ha sido sometido en la revista Seismological Research Letters (SRL). En el Capítulo 3 se analiza la causalidad entre la producción de crudo pesado y sismicidad registrada en inmediaciones de un campo de la Cuenca de los Llanos Orientales de Colombia. Se utilizó la información reportada de los eventos para calcular mecanismos focales y determinar el tipo de fallamiento. Se estimó la energía radiada de los eventos de mayor magnitud para caracterizar los procesos de ruptura y determinar las propiedades de las fracturas generadas, incluidas la orientación, trayectoria y velocidad. Este Capítulo fue publicado en la revista Journal of South American Earth Sciences. En el Capítulo 4 se determinó que la secuencia de eventos en el Campo de estudio (Capitulo 3) era el resultado de la liberación de la energía elástica almacenada en el yacimiento debido a la acción continua del trabajo ejercido por la inyección de agua en yacimientos disposal. Un análisis hidromecánico permitió determinar que la eficiencia energética del ciclo de inyección es baja en comparación con otras operaciones de inyección documentadas, permitiendo que la inyección a largo plazo de grandes volúmenes no haya dado lugar a eventos más importantes. Este Capítulo fue publicado en la revista Geophysical Journal International. En el capítulo 5, se hace una recopilación de los resultados más importantes de este trabajo en forma de conclusiones y se plantean algunas futuras recomendaciones de trabajo e investigación.The information achieved by the seismological monitoring of hydrocarbon fields has become an important tool and source of information to determine under what circumstances the operations of exploitation of hydrocarbon fields affect the alteration of the natural state of the elastic parameters of the rocks and the fluid flow into the reservoirs. In Colombia there has not been a policy that requires seismological monitoring of hydrocarbon fields, and the little that has been done has not yet been processed or fully analyzed. In this context, there is a gap regarding the acquisition of data, analysis and appropriation of knowledge about the subsoil of the country, and therefore a low understanding of the physical phenomena resulting from industrial operations. This thesis is a first step to fill this gap, by making use of the information available from the earthquakes recorded from 1993 to 2018 by the Colombian Geological Service (SGC). To propose a geodynamic model of the NW corner of South America, the first seismic anisotropy tomography model for the crust of Colombia, the first assessment of the possible activation mechanisms of anthropogenic seismicity as a result of the injection of water into disposal reservoirs in the field with the highest production of heavy crude oil in the country, and finally the characterization of seismic energy dissipative structures in hydrocarbon reservoirs. Chapter 1 describes the problem in detail, its approach, the justification, and the motivation for this dissertation. Likewise, the fundamental principles and theorical background under which anthropogenic seismicity has been built are exposed. In Chapter 2 a regional seismicity study of the NW corner of South America is made to estimate velocity tomography of Vp and Vs of the crust and upper mantle, distribution of Vp / Vs anomalies in the upper mantle, and mapping of P wave azimuthal anisotropy vectors of the crust. This Chapter has been submitted in the Seismological Research Letters (SRL) journal. In Chapter 3 the causality between heavy crude production and seismicity recorded in the vicinity of a field in the Llanos Orientales Basin of Colombia is analyzed. The information reported from the events was used to calculate focal mechanisms and determine the type of failure. The radiated energy of the highest magnitude events was estimated to characterize the rupture processes and determine the properties of the generated fractures, including orientation, trajectory, and velocity. This Chapter was published in the South American Earth Sciences Journal. In Chapter 4, there is a description of the sequence of events in the oil field under study (Chapter 3) as the result of the release of the elastic energy stored in the reservoir due to the continuous action of the work exerted by the injection of water in disposal reservoirs. A hydromechanical analysis determined that the energy efficiency of the injection cycle is low compared to other documented injection operations, allowing the long-term injection of large volumes not to have led to more larger events. This Chapter was published in the Geophysical Journal International. In Chapter 5, a compilation of the most important results of this work is made in the form of conclusions and some future work and research recommendations are proposed.DoctoradoDoctor en Geocienciasvii, 160 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en GeocienciasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del SurHidrocarburosHydrocarbonsSismologíaSeismologyIngeniería sísmicaEarthquake engineeringSismicidad InducidaInyección de aguaTomografiaAnisotropia SisimicaCampo de esfuerzosInduced SeismicityWater injectionTomography>Seismic AnisotropyStress FieldEstimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en ColombiaImaging of velocity and attenuation anomalies, local stresses fields, based on the analysis of anthropogenic seismicity generated in hydrocarbon reservoirs in ColombiaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaAbercrombie, R.E. (1995). J. Geophys. Res. 100, 24015-24036.Adamek, S., Frohlich, C., and Pennington, W.D. (1988). Seismicity of the Caribbean-Nazca boundary: Constraints on microplate tectonics of the Panama region. Journal of Geophysical Research 93: doi: 10.1029/88JB01269. ISSN: 0148-0227.Ake J, Mahrer K, O’Connell D, Block L. 2005. Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado. Bull. Seismol. Soc. Am. 95:664–83Aki, K., 1965. Maximum likelihood estimate of b in the formula log N = a - b M and its confidence limits, Bull. seism. Soc. Am., 43, 237–239.Alessandro, A., Danet, A., Grecu, B., 2012. Location performance and detection magnitude threshold of the Romanian national seismic network. Pure Appl. Geophys. 169 (2012), 2149e2164. http://dx.doi.org/10.1007/s00024-012-0475-7Alghannam, M., Juanes, R., 2020. Understanding rate effects in injection-induced earthquakes. Nature communications 11, 1–6Alt RC, Zoback MD. 2016. In situ stress and active faulting in Oklahoma. Bull. Seismol. Soc. Am. 107:216–28Aspden, J.A., McCourt, W.J., 1986. Mesozoic oceanic terrane in the central Andes of Colombia. Geology 14, 415e418.Aspectos hidrodinámicos, estructurales y estratigráficos del Campo Rubiales. Cuenca de los Llanos Orientales, Colombia. In: VI Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 9, pp. 4e10Atkinson GM, Eaton DW, Ghofrani H, Walker D, Cheadle B, et al. 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol. Res. Lett. 87:631–47Atkinson, G.M., 2015. Ground-motion prediction equation for small-to-moderate events at short hypocentral distances, with application to induced-seismicity hazards. Bulletin of the Seismological Society of America 105, 981–992.Atkinson, G.M., 2020. The intensity of ground motions from induced earthquakes with implications for damage potential. Bulletin of the Seismological Society of America 110, 2366–2379.Atkinson, G.M., Eaton, D.W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R. & Liu, Y., 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin, Seismol. Res. Lett., 87, 631–647.Atkinson, G.M., Wald, D., Worden, C.B., Quitoriano, V., 2018. The intensity signature of induced seismicity. Bulletin of the Seismological Society of America 108, 1080–1086.Baisch, S., Koch, C., Muntendam-Bos, A., 2019. Traffic light systems: To what extent can induced seismicity be controlled? Seismological Research Letters 90, 1145–1154.Bao, X. & Eaton, D.W., 2016. Fault activation by hydraulic fracturing in western Canada, Science, 354(6318), 1046–1409Barnhart WD, Benz HM, Hayes GP, Rubinstein JL, Bergman E. 2014. Seismological and geodetic constraints on the 2011 Mw5.3 Trinidad, Colorado earthquake and induced deformation in the Raton Basin. J. Geophys. Res. 119:7923–33Barrera, D., Pardo, A., Vargas, C.A., Martínez, J., 2007. Petroleum geology of Colombian basins. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.Barros, L, Cappa, F., Guglielmi, Y., Duboeuf, L. & Grasso, J.R., 2019. Energy of injection-induced seismicity predicted from in-situ experiments, Scientific Reports, 9, 10.1038/s41598-019-41306-x.Bayer, B., Kind, R., Hoffmann, M., Yuan, X., Meier, T., 2012. Tracking unilateral earthquake rupture by P-wave polarization analysis. Geophys. J. Int. 188, 1141e1153.Ben-Avraham, Z., Nur, A., 1987. Effects of collisions at trenches on oceanic ridges and passive margins. In: Monger, J.W.H., Francheteau, J. (Eds.), Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin: American Geophysical Union, Geodynamics Series, vol. 18, pp. 9e18.Bender, B., 1983. Maximum likelihood estimation of b values for magnitude grouped data, Bull. seism. Soc. Am., 73, 831–851.Bernal-Olaya, R., Mann, P., & Escalona, A. (2015). Cenozoic tectonostratigraphic evolution of the Lower Magdalena Basin, Colombia: An example of an under- to overfilled forearc basin. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 345–398). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531943M1083645Bernal-Olaya, R., Mann, P., & Vargas, C. A. (2015). Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 247–270). Tulsa, OK: Association of Petroleum Geologists. https://doi.org/10.1306/13531939M1083642Bird, P & Kagan, Y, 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings, Bull. seism. Soc. Am., 94 (6), 2380–2399.Block, L.V., Wood, C.K., Yeck, W.L. & King, V.M., 2014. The 24 January 2013 ML earthquake near Paradox, Colorado, and its relation to deep well injection, Seismol. Res. Lett., 85(3), 609–624.Bokelmann, G., 1995. P-wave array polarization analysis and effective anisotropy of the brittle crust. Geophysical Journal International 120, 145–162.Bommer, J.J., Crowley, H., Pinho, R., 2015. A risk-mitigation approach to the management of induced seismicity. Journal of Seismology 19, 623–646.Bommer, J.J., Dost, B., Edwards, B., Staord, P.J., van Elk, J., Doornhof, D., Ntinalexis, M., 2016. Developing an application-specific ground-motion model for induced seismicity. Bulletin of the Seismological Society of America 106, 158–173.Bommer, J.J., Stafford, P.J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A., Kruiver, P., van Elk, J., Doornhof, D., Ntinalexis, M., 2017. Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen gas field, the Netherlands. Earthquake Spectra 33, 481–498.Boroumand, N. & Eaton, D.W., 2012 Comparing energy calculation: hydraulic fracture and Microseismic monitoring, in Proceedings of the Geo-Convention: Vision, Calgary, Canada, 14–18 May 2012.Bossu, R., et al. (1996). Bull. Seismol. Soc. Am. 86, 959-971.Bouchon, M., 1981. A Simple Method to calculate Green's functions in Elastic Layered Media, Bull. Seismol. Soc. Am. 71, 959e971.Bourne, S., Oates, S., Van Elk, J., 2018. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk. Geophysical Journal International 213, 1693–1700.Bourne, S.J., Oates, S.J., 2017. Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field. Netherlands Journal of Geosciences 96, s175–s182.Brace, W. F. y D. L. Kohlstedt (1980), Limits on lithospheric stress impossed by laboratory experiments, Journal of Geophysical Research, 85, 6248-6252.Brantut, N., Passelègue, F. X., Deldicque, D., Rouzaud, J. N. & Schubnel, A. Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology 44, 607–610, doi:10.1130/G37932.1 (2016).Broccardo, M., Mignan, A., Wiemer, S., Stojadinovic, B., Giardini, D., 2017. Hierarchical Bayesian modeling of fluid-induced seismicity. Geophysical Research Letters 44, 11–357.Brooks, E.M., Stein, S., Spencer, B.D., Salditch, L., Petersen, M.D., McNamara, D.E., 2018. Assessing earthquake hazard map performance for natural and induced seismicity in the central and eastern United States. Seismological Research Letters 89, 118–126.Brudy, M., et al. (1997). J. Geophys. Res. 102, 18453-18475.Bürgl, H., 1961. Sedimentación cíclica en el geosinclinal Cretáceo de la Cordillera Oriental de Colombia. Servicio Geológico Nacional, p. 60. Informe No. 1347.Burke, K., 1988. Tectonic evolution of the Caribbean. Annu. Rev. Earth Planet. Sci. 16, 201e230.Butler, K., Schamel, S., 1988. Structure along the eastern margin of the Central cordillera, upper Magdalena Valley, Colombia. J. S. Am. Earth Sci. 1, 109e120.Bydlon, S.A., Gupta, A., Dunham, E.M., 2017. Using simulated ground motions to constrain near source ground-motion prediction equations in areas experiencing induced seismicity. Bulletin of the Seismological Society of America 107, 2078–2093.Bydlon, S.A., Withers, K.B., Dunham, E.M., 2019. Combining Dynamic Rupture Simulations with Ground-Motion Data to Characterize Seismic Hazard from Mw 3 to 5.8 Earthquakes in Oklahoma and Kansas. Bulletin of the Seismological Society of America 109, 652–671.Byerlee, J. D. (1978), Friction of rocks, Pure and Applied Geophysics, 116, 615-626.Casero, P., Salel, J.F., Rosato, A., 1997. Multidisciplinary correlative evidences for pholyphase geological evolution of the foot-hills of the Cordillera oriental. In: VI Simposio Bolivariano- Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 1, pp. 100e118.Cediel, F., Shaw, R.P. & Cáceres, C., 2003. Tectonic assembly of the northern Andean block, in the circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, AAPG Mem., 79, 1–34.Cesca, S. et al., 2014. The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophys. J. Int., 182(2), 941–953.Chan, A.W. & Zoback, M.D., 2007. The role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana coastal zone, Journal of Coastal Research, 23, 771-786.Chang, K.W., Yoon, H., Martinez, M.J., 2018. Seismicity rate surge on faults after shut-in: Poroelastic response to fluid injection. Bulletin of the Seismological Society of America 108, 1889–1904.Chang, Ying & Warren, Linda & Prieto, German. (2017). Precise Locations for Intermediate‐Depth Earthquakes in the Cauca Cluster, Colombia. Bulletin of the Seismological Society of America. 107. 1-15. 10.1785/0120170127.Chen, R., Xue, X., Park, J., Datta-Gupta, A., King, M.J., 2020. New insights into the mechanisms of seismicity in the Azle area, North Texas. Geophysics 85, EN1–EN15.Chen, X. et al., 2017. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks, Sci. Rep., 7. doi:10.1038/s41598-017-04992-z.Chiarabba, C., De Gori, P., Faccena, C., Speranza, F., Deccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochem. Geophys. Geosyst.17, 16–27. http://dx.doi.org/10.1002/2015GC006048.Connolly JAD. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J. Geophys. Res. 102:18149–73Cooper, M.A., Addison, F.T., Álvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Peñas, R., Pulham, A., Taborda, A., 1995a. Basin development and tectonic history of the Llanos basin, Eastern Cordillera and middle Magdalena Valley, Colombia. AAPG Bull. 79 (10), 1421e1443.Cooper, M.A., Addison, F.T., Alvarez, R., Hayward, A.B., Howe, S., Pulham, A.J., Taborda, A., 1995b. Basin development and tectonic history of the Llanos basin, Colombia. In: Tankard, A.J., Suárez, R., Welsink, H.J. (Eds.), Petroleum Basins of South America: AAPG Memoir 62, pp. 659e665.Cornet, F.H., 2016. Seismic and aseismic motions generated by fluid injections, Geomech. Ener. Environ., 5, 42–54.Cortés, M., Angelier, J., 2005. Current state of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics403, 29–58. http://dx.doi.org/10.1016/j.tecto.2005.03.020.Coutant, O., 1989. Numerical Study of the diffraction of elastic waves by fluid-filled cracks. J. Geophys. Res. 94, 17805e17818.Cremen, G., Gupta, A., Baker, J., 2017. Evaluation of ground motion intensities from induced earthquakes using “Did You Feel It?” data, in: 16th World Conf. on Earthquake Engineering.Cremen, G., Werner, M.J., Baptie, B., 2020. A new procedure for evaluating ground-motion models, with application to hydraulic-fracture-induced seismicity in the United Kingdom. Bulletin of the Seismological Society of America 110, 2380–2397.Dasilva, A., Gómez, Y., Villa, M.A., Yoris, F., Morales, D., 2014. Oil distribution in the carbonera formation, Arenas Basales unit. A case study in the Quifa and Rubiales Fields, Eastern Llanos basin, Colombia. In: Adapted from Extended Abstract Prepared for a Poster Presentation at AAPG International Conference & Exhibition, Cartagena, Colombia, September 8-11, 2013.Davies, R., Foulger, G., Bindley, A. & Styles, P., 2013. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons, Mar. Petrol. Geol., 45, 171–185Davis SD, Frohlich C. 1993. Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment. Seismol. Res. Lett. 64:207–24Davis SD, Pennington WD. 1989. Induced seismic deformation in the Cogdell oil field of west Texas. Bull. Seismol. Soc. Am. 79:1477–95De Barros, L., Guglielmi, Y.D., Cappa, F. & Duboeuf, L., 2018. Seismicity and fault aseismic deformation caused by fluid injection in decametric in-situ experiments, Comptes Rendus Geoscience, 350 (8), 464–475.Dempsey, D., Suckale, J., 2017. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophysical Research Letters 44, 7773–7782.Dengo, C., and M. Covey (1993), Structure of the eastern cordillera of Colombia: Implications for trap styles and regional tectonics, AAPG Bull., 77, 1315–1315.Dieterich, J.H., Richards-Dinger, K.B. & Kroll, K.A., 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQ Sim, Seismol. Res. Lett., 86(4), 1102–1109.Dodge DA, Beroza GC, Ellsworth WL. 1996. Detailed observations of California foreshock sequences: implications for the earthquake initiation process. J. Geophys. Res. 101:22371–92Dost, B., Ruigrok, E., Spetzler, J., 2017. Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Netherlands Journal of Geosciences 96, s235–s245.Duque-Caro, H., 1991. Contributions to the geology of the Pacific and Caribbean coastal areas of northwestern Colombia and South America: Princeton University, PhD. thesis, 132 p.Eaton, D.W. & Igonin, N., 2018. What controls the maximum magnitude of injection-induced earthquakes? Leading Edge, 37(2), 135–140.Eberhart-Phillips, D. (1986). Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times, Bull. Seismol. Soc. Am. 76, 1025–1052.Ellsworth, W., 2013. Injection-induced earthquakes, Science, 341, 1225942.Ellsworth, W.L., Llenos, A.L., McGarr, A.F., Michael, A.J., Rubinstein, J.L., Mueller, C.S., Petersen, M.D., Calais, E., 2015. Increasing seismicity in the US midcontinent: Implications for earthquake hazard. The Leading Edge 34, 618–626.Espurt, N., F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset (2008), Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling, Tectonics, 27, TC3011, doi:10.1029/2007TC002175.Etayo-Serna, F., 1979. Zonation of the Cretaceous of Central Colombia by ammonites, vol. 2. Publicación Especial INGEOMINAS, pp. 1e186Fabre, A., 1983. La subsidencia de la Cuenca del Cocuy (Cordillera Oriental de Colombia) durante el Cretáceo y el Terciario, Segunda parte: Esquema de Evolución Tectónica. Geol. NorAndina 8, 49e61.Farhadi, A., Pezeshk, S., Khoshnevis, N., 2018. Assessing the Applicability of Ground-Motion Models for Induced Seismicity Application in Central and Eastern North America. Bulletin of the Seismological Society of America 108, 2265–2277.Farris, D. W., Jaramillo, C., Bayona, G., Restrepo-moreno, S. A., Montes, C., Cardona, A., Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007–1010.Faul, U.H., Jackson, I., 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett.234 (1–2), 119–134. http://dx.doi.org/10.1016/j.epsl.2005.02.008.Flinch, J. F. (2003). Structural evolution of the Sinu-Lower Magdalena area (northern Colombia). AAPG Memoir, 79(1), 776–796.Folesky, J.T., 2013. Rupture Propagation Imaging at Microseismic Scale. Berlin Freie University, Berlin.Fouch, M., Rondenay, S., 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors 158, 292–320.Freymuller, J., Kellogg, J., Vega, V., 1993. Plate motions in the North Andean region. J. Geophys. Res. 98 (21), 21853e21863.Frohlich C, Walter JI, Gale JF. 2015. Analysis of transportable array (USArray) data shows earthquakes are scarce near injection wells in the Williston Basin, 2008–2011. Seismol. Res. Lett. 86:492–99Frohlich, C. & Davis, S., 1993. Teleseismic b-values: or, much ado about 1.0, J. geophys. Res., 98, 631–644.Frohlich, C., 2012. Two-year survey comparing earthquake activity and injection-well locations in Barnett Shale, Texas, Proc. Natl Acad. Sci. USA, 109, 13934–13938Gailler, A., P. Charvis, and E. R. Flueh (2007), Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide angle seismic profiles, Earth Planet. Sci. Lett., 260, 444–464.Galis, M., Ampuero, J.P., Mai, P.M. & Cappa, F., 2017. Induced seismicity provides insight into why earthquake ruptures stop, Sci. Adv., 3(12)Ghofrani, H., Atkinson, G.M., Schultz, R., Assatourians, K., 2019. Short-term hindcasts of seismic hazard in the western Canada sedimentary basin caused by induced and natural earthquakes. Seismological Research Letters 90, 1420–1435.Gobel T. 2015. A comparison of seismicity rates and fluid-injection operations in Oklahoma and California: ¨ implications for crustal stresses. Lead. Edge 34:640–48Godano, C. & Pingue, F., 2002. Is the seismic moment-frequency relation universal? Geophys. J. Int., 142, 193–198, 10.1046/j.1365-246x.2000.00149.Goebel THW, Hosseini SM, Cappa F, Hauksson E, Ampuero JP, et al. 2016. Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California. Geophys. Res. Lett. 43:1092–99Goebels, T.H.W, Weingartenb, M., Chenc, X., Haffenerc, J. & Brodskya, E.E., 2017. The 2016 Fair view Oklahoma earthquakes: Evidence for long range poroelastic stress triggering at >40 km from fluid disposal wells, Earth planet. Sci. Lett., 472, 50–61.Goertz-Allmann, B.P., Gibbons, S.J., Oye, V., Bauer, R. & Will, R., 2017. Characterization of induced seismicity patterns derived from internal structure in event clusters, J. geophys. Res., 122, 3875–3894.Gómez, E.T., Jordan, R.W., Allmendinger, Cardozo, N., 2005. Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of northern Andes. Geol. Soc. Am. Bull. 117, 1272e1292.Gómez, Y., Yoris, F., Rodríguez, J., Portillo, F., Araujo, Y., Pacific Rubiales Energy, 2010.Gómez-Alba, S., Fajardo-Zarate, C.E. & Vargas, C.A., 2015. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia), J. S. Am. Earth Sci., 71, 320–332Gono, V., Olson, J.E., Gale, J.F., et al., 2015. Understanding the correlation between induced seismicity and wastewater injection in the Fort Worth basin, in: 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.Grasso, J.R., 1992. Mechanics of seismic instabilities induced by the recovery of hydrocarbons, Pure and Applied Geophysics, 139, 507-534.Graterol, V. & Rey, C.A., 2009. Mediciones Aero gravimétricas y magnetométricas en los Llanos Orientales de Colombia, X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia.Grigoli, F. et al., 2018. The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea, Science, 360(6392), 1003–1006.Grigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020a. Earthquakes induced by wastewater injection, part I: Model development and hindcasting. Bulletin of the Seismological Society of America 110, 2466–2482.Grigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020b. Earthquakes induced by wastewater injection, part II: Statistical evaluation of causal factors and seismicity rate forecasting. Bulletin of the Seismological Society of America 110, 2483–2497.Gupta, A., Baker, J.W., 2017. Estimating spatially varying event rates with a change point using Bayesian statistics: Application to induced seismicity. Structural safety 65, 1–11.Gupta, A., Baker, J.W., 2019. A framework for time-varying induced seismicity risk assessment, with application in Oklahoma. Bulletin of Earthquake Engineering 17, 4475–4493.Gutscher, M. A., W. Spakman, H. Bijward, and E. R. Engdahl (2000), Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin, Tectonics, 19, 814–833.Gutscher, M., J. Malavieille, S. Lallemand, and J. Collot (1999), Tectonic segmentation of the North Andean margin: Impact of the Carnegie ridge collision, Earth Planet. Sci. Lett., 168, 255–270.Hacker BR. 1997. Diagenesis and fault valve seismicity of crustal faults. J. Geophys. Res. 102:24459–67Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 108, B12030, doi:10.1029/2001JB001129 (2003).Haddad, M., Eichhubl, P., et al., 2020. Poroelastic Modeling of Basement Fault Reactivation Caused by Saltwater Disposal Near Venus, Johnson County, Texas, in: 54th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.Hammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J. Geophys. Res.105 (B5), 10,975–10,986. http://dx.doi.org/10.1029/2000JB900041.Havskov, J., Ottemoller, L., 2000. SEISAN. The earthquake analysis software. Institute of solid Earth Physics. University of Bergen, Bergen, Norway, p. 250.Healy, J., Rubey, W., Griggs, D. & Raleigh, C., 1968. The Denver earthquakes, Science, 161, 1301–1310.Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Muller B. 2010. Global crustal stress pattern based ¨ on the World Stress Map database release 2008. Tectonophysics 482:3–15Heidbach, O., M. Rajabi, X. Cui, K. Fuchs, B. Müller, J. Reinecker, K. Reiter, M. Tingay, F. Wenzel, F. Xie, M. O. Ziegler, M.-L. Zoback, and M. D. Zoback. 2018, The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744,484-498. http://doi.org/10.1016/j.tecto.2018.07.007Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B., 2009. The World Stress Map Based on the Database Release 2008, Equatorial Scale 1:46,000,000, Commission for the Geological Map of the World, Paris. http://dx.doi.org/10.1594/GFZ.WSM.Map2009.Hennings, P.H., Lund Snee, J.E., Osmond, J.L., DeShon, H.R., Dommisse, R., Horne, E., Lemons, C., Zoback, M.D., 2019. Injection-induced seismicity and fault-slip potential in the Fort Worth Basin, Texas. Bulletin of the Seismological Society of America 109, 1615–1634.Herrmann, R.B., Park, S.-K., Wang, C.-Y., 1981. The Denver earthquakes of 1967e1968. Bull. Seismol. Soc. Am. 71, 731e745.Hettner, A., 1892. Die kordillere von Bogota: Ergzh zu Petermanns Mitteilungen Bd. 22. Erganzungsheft 104, 1e131.Hickman SH, Healy JH, ZobackMD. 1985. In situ stress, natural fracture distribution, and borehole elongation in the Auburn geothermal well, Auburn, New York. J. Geophys. Res. 90:5497–512Hitzman, M.W. et al., 2012. Induced Seismicity Potential in Energy Technologies, The National Academies Press, Washington D.C.Holland AA. 2013a. Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bull. Seismol. Soc. Am. 103:1784–92Holland AA. 2013b. Optimal fault orientations within Oklahoma. Seismol. Res. Lett. 84:876–90Hornbach MJ, Jones M, Scales M, DeShon HR, Magnani MB, et al. 2016. Ellenburger wastewater injection and seismicity in North Texas. Phys. Earth Planet. Inter. 261:54–68Horton, S., 2012. Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Seismological Research Letters 83, 250–260.Houston, H. 4.13 - Deep Earthquakes. In: Schubert, G. (ed). Treatise on Geophysics (Second Edition). Elsevier, Oxford, pp 329–354 (2015).Hsieh PA, Bredehoeft JD. 1981. A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J. Geophys. Res. 86:903–20Huang Y, Beroza GC, Ellsworth WL. 2016. Stress drop estimates of potentially induced earthquakes in the Guy-Greenbrier sequence. J. Geophys. Res. 121:6597–607Huang, Y., Ellsworth, W.L., Beroza, G.C., 2017. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science advances 3, e1700772.Hubach, E., 1957. Contribución a las unidades estratigráficas de Colombia, (enumeración regional, de más reciente a más antiguas). Servicio Geológico Nacional, p. 165. Informe no. 1212.Idárraga-García, J., Kendall, J.-M., & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9), 3655–3673. https://doi.org/10.1002/2016GC006323.Ishii, M., Shearer, P., Houston, H., Vidale, J., 2007. Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. JGR 112.Jadamec, M.A., Billen, M.I., 2010. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature465 (7296), 338–341. http://dx.doi.org/10.1038/nature09053.Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293(5534), 1460–1463.Jung, H., Green, H. W. & Dobrzhinetskaya, L. F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428, 545–549, doi:10.1038/nature02412 (2004).Kagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison, J. geophys. Res., 102, 2835–2852, doi:10.1029/96JB03386.Kagan, Y.Y., 1999. Universality of the seismic moment-frequency relation, Pure appl. Geophys., 15, 537–573.Kanamori, H., 1977. The energy release in great earthquakes, J. geophys. Res., 82 (20), 2981–2987.Kang, J.Q., Zhu, J.B., Zhao, J., 2019. A review of mechanisms of induced earthquakes: from a view of rock mechanics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 5, 171–196.Kao, H., Shan, S.-J., 2004. The source-scanning algorithm: mapping the distribution of seismic sources in time and space. GJI 157, 589e594.Karato, S., 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett.20 (15), 1623–1626. http://dx.doi.org/10.1029/93GL01767.Kawakatsu, H. & Watada, S. Seismic Evidence for Deep-Water. Science 316, 1468–1471, doi:10.1126/science.1140855 (2007).Keleman, P.B., Hirth, G., 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature446, 787–790.Kellogg, J., Vega, V., 1995. Tectonic development of Panama, Costa Rica, and Colombian Andes: constraints from global positioning system geodetic studies and gravity. Spec. Pap. Geol. Soc. Am. 295, 75e90.Keranen KM, Savage HM, Abers GA, Cochran ES. 2013. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology 41:699–702Keranen, K.M., Weingarten, M., 2018. Induced seismicity. Annual Review of Earth and Planetary Sciences 46, 149–174.Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A. & Ge, S., 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345(6195), 448–451.Khosravikia, F., Clayton, P., Nagy, Z., 2019. Artificial neural network-based framework for developing ground-motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas. Seismological Research Letters 90, 604–613.Kikuchi, M., Kanamori, H., 1991. Inversion of complex body waves III. Bull. Seismol. Soc. Am. 81, 2335e2350.Kim, K.H., Ree, J.H., Kim, Y.H., Kim, S., Kang, S.Y. & Seo, W., 2018. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, 360(6392), 1007–1009.Kim, W.Y., 2013. Induced seismicity associated with fluid injection into deep well in Youngstown, Ohio, J. geophys. Res., 18, 3506–3518.King VM, Block LV, Yeck WL, Wood CK, Derouin SA. 2014. Geological structure of the Paradox Valley Region, Colorado, and relationship to seismicity induced by deep well injection. J. Geophys. Res. 119:4955– 78Kirby, S.H., Stein, S., Okal, E., Rubie, D.C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys.34, 261–306.Kneller, E.A., van Keken, P.E., Karato, S.-I., Park, J., 2005. B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett.429, 781–797. http://dx.doi.org/10.1016/j.epsl.2005.06.049.Kohlstedt, D. L., B. Evans y S. J. Mackwell (1995), Strength of the lithosphere: Constraints imposed by laboratory experiments, Journal of Geophysical Research, 100, 17587-17602.Korhonen, J.V. & Fairhead, J. & Hamoudi, M. & Hemant, K. & Lesur, V. & Mandea, Mioara & Maus, Steffany & Purucker, M. & Ravat, Dhananjay & Sazonova, T. & Erwan, Thebault & Ccgm, Cgmw. (2007). Magnetic Anomaly Map of the World 1:50M (Release: July 2007).Koulakov I. (2009), LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bulletin of the Seismological Society of America, 99(1), 194-214, doi: 10.1785/0120080013.Koulakov, I., A. Jakovlev, and B. G. Luehr (2009b), Anisotropic structure beneath central Java from local earthquake tomography, Geochem. Geophys. Geosyst., 10 Q02011, doi:10.1029/2008GC002109.Koulakov, I., and S. Sobolev (2006). Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data, Geophys. J. Int. 164, no. 1 218–235.Krüger, F., Ohrnberger, M., 2005. Tracking the rupture of the Mw ¼ 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature 435, 937e941.Lambert C. 2017. Structural controls on fluid migration and seismic variability in northern Oklahoma. Master’s Thesis, Dep. Earth Atmos. Sci., Cornell Univ., Ithaca, NYLangenbruch, C., Shapiro, S.A., 2015. Quantitative analysis of rock stress heterogeneity: Implications for the seismogenesis of fluid-injection-induced seismicity. Geophysics 80, WC73–WC88.Langenbruch, C., Weingarten, M., Zoback, M.D., 2018. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nature communications 9, 3946.Langenbruch, C., Zoback, M.D., 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science advances 2, e1601542.Lara, M., Cardona, A., Monsalve, G., Yarce, J., Montes, C., Valencia, V López-Martínez, M. (2013). Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America Journal of South American Earth Sciences, 45, 24–41. https://doi.org/10.1016/j.jsames.2012.12.006Lengliné, O., Boubacar, M. & Schmittbuhl, J., 2017. Seismicity related to the hydraulic stimulation of GRT1, Rittershoffen, France, Geophys. J. Int., 208(3), 1704–1715.Liener, B.R., Havskov, J., 1995. A computer program for locating earthquakes locally, regionally and globally. Seismol. Res. Lett. 66, 26e36. http://dx.doi.org/10.1785/gssrl.66.5.26.Liu E, Crampin S, Queen JH. 1991. Fracture detection using crosshole surveys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, Oklahoma. Geophys. J. Int. 107:449–63Llenos AL, Michael AJ. 2013. Modeling earthquake rate changes in Oklahoma and Arkansas: possible signatures of induced seismicity. Bull. Seismol. Soc. Am. 103:285Lui, S.K., Huang, Y., 2019. Do injection-induced earthquakes rupture away from injection wells due to fluid pressure change? Bulletin of the Seismological Society of America 109, 358–371.Lund, B., Slunga, R., 1999. Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J. Geophys. Res. 104, 14 947e14 964.Majer EL, Baria R, Stark M, Oates S, Bommer J, et al. 2007. Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–222Malin, P.E., et al. (1988). Bull. Seismol. Soc. Am. 78, 401-420.Manga M, Wang CY, Shirzaei M. 2016. Increased stream discharge after the 3 September 2016 Mw 5.8 Pawnee, Oklahoma earthquake. Geophys. Res. Lett. 43:11588–94Maxwell, S., Zhang, F., Damjanac, B., 2015. Geomechanical modeling of induced seismicity resulting from hydraulic fracturing. The Leading Edge 34, 678–683.Maxwell, S.C., Rutledge, J., Jones, R., & Fehler, M., 2010, Petroleum reservoir characterization using downhole microseismic monitoring, Geophysics, 75, 75A129-75A137.McCourt, W.J., Aspden, J.A., Brook, M., 1984. New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J. Geol. Soc. Lond. 141, 831e845.McGarr, A. & Barbour, A.J., 2018. Injection-induced moment released can also be aseismic, Geophys. Res. Lett., 45(11)5344–5311.McGarr, A. (1992). Pure Appl. Geophys. 139, 781-800.McGarr, A. and D. Simpson (1997). In: "Rock bursts and Seismicity in Mines," pp. 385-396, Balkema.McGarr, A., 1976. Seismic moments and volume changes, J. geophys. Res., 81(1):1487–1494.McGarr, A., 2014. Maximum magnitude earthquakes induced by fluid injection, J. geophys. Res., 119, 1008–1019.McGarr, A., Simpson, D., Seeber, L., 2002. Case histories of induced and triggered seismicity. In: Lee, W., Kanamori, H., Jennings, P., Kisslinger, C. (Eds.), International Handbook of Earthquake and Engineering Seismology Academic Press, London, pp. 647e664. Chapter 40.McNamara, D. et al., 2015. Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma, Lead. Edge, 34(6), 628–639.Megard, F., 1987. Cordillera Andes and Marginal Andes: A Review of Andean Geology North of the Arica Elbow (18 Deg. S), in J. W. H.Michael, A.J., 1984. Determination of stress from slip data: faults and folds. J. Geophys. Res. 89, 11 517e11 526.Michael, A.J., 1987. Use of focal mechanisms to determine stress: a control study. J. Geophys. Res. 92 (B1), 357e368.Mignan, A., 2016. Static behaviour of induced seismicity. Nonlinear Processes in Geophysics 23, 107–113.Mignan, A., Broccardo, M., Wiemer, S., Giardini, D., 2017. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific reports 7, 1–10.Mishra, O. P. & Zhao, D. P. Seismic evidence for dehydration embrittlement of the subducting Pacific slab. Geophys. Res. Lett. 31, L09610, doi: 10.1029/2004GL019489 (2004).Miyazawa, M., Venkataraman, A., Snieder, R., & Payne, M.A., 2008. Analysis of microearthquake data at Cold Lake and its applications to reservoir monitoring, Geophysics, 73, 015-021.Mogi, K., 1967. Regional variation in magnitude - frequency relation of earthquake, Bull. Earthq. Res. Inst., 45, 313–325.Molina, Indira & Velasquez, Juan & Rubinstein, Justin & Garcia, Alexander & DIONICIO, VIVIANA. (2020). Seismicity induced by massive wastewater injection near Puerto Gaitán, Colombia. Geophysical Journal International. 223. 777-791. 10.1093/gji/ggaa326.Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V., & Jaramillo, C. (2010). Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería Basins. Journal of South American Earth Sciences, 29(4), 832–848. https://doi.org/10.1016/j.jsames.2009.07.010Montgomery, S., 1992. Petroleum potential of upper and middle Magdalena basins, Colombia, part 2: plate tectonics, reservoirs, source rocks, and field histories. Pet. Front. 9, 67.Mora, A., et al., 2010. The eastern foothills of the eastern cordillera of Colombia: an example of multiple factors controlling structural styles and active tectonics, Bull. Geol. Soc. Am., 122 (11–12), 1846–1864.Mora-Bohórquez, J. A., Ibánez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., & Serna, L. (2017). Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central Andes against the Caribbean basin. Journal of South American Earth Sciences, 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001Mousavi, S.M., Beroza, G.C., Hoover, S.M., 2018. Variabilities in probabilistic seismic hazard maps for natural and induced seismicity in the central and eastern United States. The Leading Edge 37, 141a1–141a9.Mukuhira, Y., Asanuma, H., Niitsuma, H. & Haring, M.O., 2013. Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel, Switzerland, Geothermics, 45, 1–17.Nicholson, C., Roeloffs, E., Wesson, R.L., 1992. Triggered earthquakes and deep well activities. Pure Appl. Geophys. 139, 561e578.Novakovic, M., Atkinson, G.M., Assatourians, K., 2018. Empirically calibrated ground-motion prediction equation for Oklahoma. Bulletin of the Seismological Society of America 108, 2444– 2461.Ojeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4), 575–593. https://doi.org/10.1023/A:1012053206408Pardo, A., Barrero, D., Vargas, C.A., Martínez, J., 2007. Sedimentary Basins of Colombia: Geological Framework. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.Pardo-Casas, F., Molnar, P., 1987. Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6, 233e248.Pennington, W. D. (1981), Subduction of the eastern Panama basin and seismotectonics of northwestern South America, J. Geophys. Res., 86(B11), 10753-10770, doi: 10.1029/JB086iB11p10753.Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Llenos, A.L., Ellsworth, W.L., Michael, A.J., Rubinstein, J.L., McGarr, A.F., Rukstales, K.S., 2016. Seismic-hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States. Seismological Research Letters 87, 1327–1341.Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Rubinstein, J.L., Llenos, A.L., Michael, A.J., Ellsworth, W.L., McGarr, A.F., Holland, A.A., et al., 2015. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: Results of 2014 workshop and sensitivity studies.Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Shumway, A.M., McNamara, D.E., Rennolet, S.B., Moschetti, M.P., Thompson, E.M., Yeck, W.L., 2018. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas. Earthquake Spectra 34, 1–20.Pilger Jr., R.H., 1984. Cenozoic plate kinematics subduction and magmatism: south American Andes. J. Geol. Soc. Lond. 141, 793e802.Porritt, R. W., T. W. Becker, and G. Monsalve (2014), Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia, Geophys. Res. Lett., 41, 8775-8783, doi: 10.1002/2014GL061958.Poveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction related magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth, 123, 1459–1485. https://doi.org/10.1002/2017JB014688Poveda, E., Monsalve, G., & Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120, 2408–2425. https://doi.org/10.1002/2014JB011304Prieto, G.A., Beroza, G.C., Barrett, S.A., López, G.A., Florez, M., 2012. Earthquake nests as natural laboratories for the study of intermediate-depth earth-quake mechanics. Tectonophysics 570–571, 42–56. http://dx.doi.org/10.1016/j.tecto.2012.07.019.Raleigh CB, Healy JH, Bredehoeft JD. 1976. An experiment in earthquake control at Rangely, Colorado. Science 191:1230–37Rubinstein JL, Ellsworth WL, McGarr A, Benz HM. 2014. The 2001–present induced earthquake sequence in the Raton basin of northern New Mexico and southern Colorado. Bull. Seismol. Soc. Am. 104:2162–81Rubinstein, J.L. & Babaie Mahani, A., 2015. Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhaced Oil Recovery, and Induced Seismicity, Seismol. Res. Lett., 86, 1060–1067, 10.1785/0220150067.Rubinstein, J.L., Ellsworth, W.L., Dougherty, S.L., 2018. The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America 108, 674–689.Rubinstein, J.L., Ellsworth, W.L., McGarr, A., Benz, H.M., 2014. The 2001–present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado. Bulletin of the Seismological Society of America 104, 2162–2181.Rutledge, J.T. & Phillips, W.S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas, Geophysics, 68, 441-452.Saffer DM, Tobin HJ. 2011. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39:157–86Salazar, J. M., and C. A. Vargas (2015). Fractal dimension and seismotectonic deformation rates along an inter-plate setting: Seismic regime along the Caribbean plate boundary zone, in Petroleum Geology and Potential of the Colombian Caribbean Margin, C. Bartolini and P. Mann (Editors), AAPG Memoir 108, Chapt. 11, 271–294, ISBN13: 978-0-89181-388-0.Sanchez, J., & Mann, P. (2015). Integrated structural and basinal analysis of the Cesar-Rancheria Basin, Colombia: Implications for its tectonic history and petroleum systems. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 431–470). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531945M1083648Sarkar, S., 2008. Reservoir monitoring using induced seismicity at a petroleum field in Oman: PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, US.Savage HM, Keranen KM, Schaff D, Dieck C. 2017a. Possible precursory signals in damage zone foreshocks. Geophys. Res. Lett. 44:5411–17Savvaidis, A., Lomax, A., Breton, C., 2020. Induced Seismicity in the Delaware Basin, West Texas, is Caused by Hydraulic Fracturing and Wastewater Disposal. Bulletin of the Seismological Society of America 110, 2225–2241.Scanlon, B.R., Weingarten, M.B., Murray, K.E., Reedy, R.C., 2019. Managing basin-scale fluid budgets to reduce injection-induced seismicity from the recent US shale oil revolution. Seismological Research Letters 90, 171–182.Schoenball, M., Ellsworth, W.L., 2017. A systematic assessment of the spatiotemporal evolution of fault activation through induced seismicity in Oklahoma and southern Kansas. Journal of Geophysical Research: Solid Earth 122, 10–189.Schultz, R., Atkinson, G., Eaton, D.W., Gu, Y.J. & Kao, H., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play, Science, 359(6373), 304–308.Schultz, R., Beroza, G., Ellsworth, W., Baker, J., 2020. Risk-Informed Recommendations for Managing Hydraulic Fracturing–Induced Seismicity via Traffic Light Protocols. Bulletin of the Seismological Society of America 110, 2411–2422.Schultz, R., Quitoriano, V., Wald, D.J., Beroza, G.C., 2021. Quantifying nuisance ground motion thresholds for induced earthquakes. Earthquake Spectra, 8755293020988025.Sella, G., Dixon, T.H., Mao, A., 2002. REVEL: a model of recent plate velocities from space geodesy. J. Geophys. Res.107 (B4). http://dx.doi.org/10.1029/2000JB000033. 2081.Shapiro, S.A., Dinske, C., Langenbruch, C. & Wenzel, F., 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations, Leading Edge, 29(3), 304–309.Shapiro, S.A., Huenges, E. & Borm, G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site, Geophys. J. Int., 131(2), F15–F18.Shapiro, S.A., Rothert, E., Rath, V. & Rindschwentner, J., 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity, Geophysics, 67, 212–220.Shelly DR, Moran SC, Thelen WA. 2013. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophys. Res. Lett. 40:1506–12Sibson RH. 2000. Fluid involvement in normal faulting. J. Geodyn. 29:469–99Skoumal RJ, Brudzinski MR, Currie BS. 2015a. Distinguishing induced seismicity from natural seismicity in Ohio: demonstrating the utility of waveform template matching. J. Geophys. Res. 120:6284–96Skoumal RJ, Brudzinski MR, Currie BS. 2015b. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bull. Seismol. Soc. Am. 105:189–97Skoumal RJ, Brudzinski MR, Currie BS. 2016. An efficient repeating signal detector to investigate earthquake swarms. J. Geophys. Res. 121:5880–97Skoumal, R.J., Barbour, A.J., Brudzinski, M.R., Langenkamp, T., Kaven, J.O., 2020. Induced seismicity in the Delaware Basin, Texas. Journal of Geophysical Research: Solid Earth 125, e2019JB018558.Smalley PC, Muggeridge AH. 2010. Reservoir compartmentalization: Get it before it gets you. Geol. Soc. Lond. Spec. Publ. 347:25–41Snee, J.E.L., Zoback, M.D., 2018. State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity. The Leading Edge 37, 127–134.Sokos, E.N., Zahradnik, J., August 2008. ISOLA a Fortran code and a MATLAB GUI to perform multiple-point source inversion of seismic data. Comp. Geosci 34 (8), 967e977. http://dx.doi.org/10.1016/j.cageo.2007.07.005. ISSN 0098-3004.Spottiswoode, S.M. and A. McGarr (1975). Bull. Seismol. Soc. Am. 65, 93-112.Suckale, J., 2010. Induced seismicity in hydrocarbon fields, Chapter 2 in advances in Geophysics, 51.Sumy DF, Cochran ES, Keranen KM, Wei M, Abers GA. 2014. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J. Geophys. Res. 119:1904–23Sumy DF, Neighbors CJ, Cochran ES, Keranen KM. 2017. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake. J. Geophys. Res. 122:3813–34Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., & Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050Taboada, A., L.A. Rivera, A. Fuenzalida, A. Cisternas, H. Philip, H. Bijwaard, J. Olaya, and C. Rivera, 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics. v.19, no. 5, p. 787-813.Takei, Y., 2002. Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J. Geophys. Res.107 (B2), 2043. http://dx.doi.org/10.1029/2001JB000522.Townend J, Zoback MD. 2000. How faulting keeps the crust strong. Geology 28:399–402Trenkamp, R., J. Kellogg, J. Freymueller and H. Mora, (2002). Wide plate margin, southern Central America and northwestern South America, CASA GPS observations, Journal of South American Earth Sciences 15, 157-171, Elsevier.Trugman, D.T., Savvaidis, A., 2021. Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research LettersTsapanos, T., 1990. b-Value of two tectonic parts in the circum-Pacific belt, Pure appl. Geophys, 143, 229–242, doi: 10.1007/BF00876999.van der Elst NJ, Savage HM, Keranen KM, Abers GA. 2013. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States. Science 341:164–67van der Elst, N.J., Page, M.T., Weiser, D.A., Goebel, T.H.W. & Hosseini, S.M., 2016. Induced earthquake magnitudes are as large as (statistically) expected, J. geophys. Res., 121, 4575–4590.van der Hilst, R., Mann, P., 1994. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology22, 451–454.van der Sluis, A., and H. A. van der Vorst (1987). Numerical solution of large, sparse linear algebraic systems arising from tomographic problems, in Seismic Tomography, G. Nolet (Editor), Reidel, Dordrecht, 49–83.van Elk, J., Doornhof, D., Bommer, J.J., Bourne, S.J., Oates, S.J., Pinho, R., Crowley, H., 2017. Hazard and risk assessments for induced seismicity in Groningen. Netherlands Journal of Geosciences 96, s259–s269van Thienen-Visser, K., Breunese, J., 2015. Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge 34, 664–671.Vargas, C.A. & Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama arc-indenter with northwestern South America Bull, Seismol. Soc. Am., 103(3) 2025–2046.Vavrycuk, V., 2014. Seismology iterative joint inversion for stress and fault orientations from focal mechanisms. GJI Geophys. J. Int. 199, 69e77 (Praha, Czech Republic).Verdon, J.P., Bommer, J.J., 2020. Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. Journal of Seismology, 1–26.Walker, K., Shearer, P., 2009. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili Mw 7.8 and Denali fault Mw 7.9 strike-slip earthquakes with global P wave back projection imaging. J. Geophys. Res. 114.Walsh, F.R., Zoback, M.D., 2015. Oklahoma’s recent earthquakes and saltwater disposal. Science advances 1, e1500195.Walters, R.J., Zoback, M.D., Baker, J.W., Beroza, G.C., 2015. Characterizing and responding to seismic risk associated with earthquakes potentially triggered by fluid disposal and hydraulic fracturing. Seismological Research Letters 86, 1110–1118.Wang, R., Gu, Y.J., Schultz, R., Chen, Y., 2018. Faults and non-double-couple components for induced earthquakes. Geophysical Research Letters 45, 8966–8975.Wang, Z., Carpenter, N.S., Zhang, L., Woolery, E.W., 2017. Assessing potential ground-motion hazards from induced earthquakes. Natural Hazards Review 18, 04017018Weatherley DK, Henley RW. 2013. Flash vaporization during earthquakes evidenced by gold deposits. Nat. Geosci. 6:294Wech, A., Kenneth, W., Creager, C., Houston, H. & Vidale, J., 2010. An earthquake like magnitude–frequency distribution of slow slip in Northern Cascadia, Geophys. Res. Lett., 37, L22310, doi:10.1029/2010GL044881.Weingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL. 2015. High-rate injection is associated with the increase in US mid-continent seismicity. Science 348:1336–40Wesnousky, S.G., 1999. Crustal deformation processes and the stability of the Gutenberg-Richter relationship. Bull. seism. Soc. Am., 89 (4),1131–1137.White, J.A. & Foxall, W., 2016. Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges, Int. J. Greenhouse Gas Control, 49, 413–424.Wibberley CA, Gonzalez-Dunia J, Billon O. 2017. Faults as barriers or channels to production-related flow: insights from case studies. Pet. Geosci. 23:134–47Wiemer, S. & Wyss, M., 2000. Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. Seism. Soc. Am., 90, 859–869.Wu, Q., Chapman, M., Chen, X., 2018. Stress-Drop Variations of Induced Earthquakes in Oklahoma Stress-Drop Variations of Induced Earthquakes in Oklahoma. Bulletin of the Seismological Society of America 108, 1107–1123.Yeck WL, Weingarten M, Benz HM, McNamara DE, Bergman EA, et al. 2016. Far-field pressurization likely caused one of the largest injections induced earthquakes by reactivating a large preexisting basement fault structure. Geophys. Res. Lett. 43:10198–207Yoris, F., Lugo, J., 2009. Características de la trampa estratigráfica de Carbonera basal en el Sureste de Llanos Orientales. In: X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia, Julio, 2009.Zakharova NV, Goldberg DS. 2014. In situ stress analysis in the northern Newark Basin: implications for induced seismicity from CO2 injection. J. Geophys. Res. 119:2362–74Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., Majer, E. & Bruhn, D., 2014. Analysis of induced seismicity in geothermal reservoirs—an overview, Geothermics, 52, 6–21.Zang, A., Yoon, J.S., Stephansson, O. & Heidbach, O., 2013. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity, Geophys. J. Int., 195(2), 1282–1287.Zarifi, Z., J. Havskov, and A. Hanyga (2007), An insight into the Bucaramanga nest, Tectonophysics, 443, 93–105.Zhang Y, Person M, Rupp J, Ellett K, Celia MA, et al. 2013. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. Groundwater 51:525–38Zhang, Z., Schwartz, S., 1994. Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas fault system. Journal of Geophysical Research 99, 9651–9661.Zoback, M.D. and J.H. Healy (1984). Ann. Geophys. 2, 689-698.LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84799/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020719973.2022.pdf1020719973.2022.pdfTesis Doctorado en Geocienciasapplication/pdf11353524https://repositorio.unal.edu.co/bitstream/unal/84799/2/1020719973.2022.pdfa04543599022cd98e1bf1ea8509c06c0MD52THUMBNAIL1020719973.2022.pdf.jpg1020719973.2022.pdf.jpgGenerated Thumbnailimage/jpeg8339https://repositorio.unal.edu.co/bitstream/unal/84799/3/1020719973.2022.pdf.jpg14b11d50ddd9deb5649cf96c0738ff5eMD53unal/84799oai:repositorio.unal.edu.co:unal/847992024-08-19 23:10:25.272Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=