Estudio de la dinamica de sólidos de revolución inmersos en fluidos
ilustraciones
- Autores:
-
Luque González, Hugo Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85055
- Palabra clave:
- 530 - Física::532 - Mecánica de fluidos
510 - Matemáticas::515 - Análisis
Sólidos de revolución
Coordenadas curvilíneas
Ecuación de Laplace
Fluidos potenciales
Potential Flow
Solids of revolution
Curvilinear coordinates
Laplace equation
Física
Dinámica de fluidos
Ciencias físicas
Physics
Fluid dynamics
Physical sciences
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_beb670c0976ee9e4be5a5779369a038f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85055 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos |
dc.title.translated.eng.fl_str_mv |
Study about the dynamics of solids of revolution in fluids |
title |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos |
spellingShingle |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos 530 - Física::532 - Mecánica de fluidos 510 - Matemáticas::515 - Análisis Sólidos de revolución Coordenadas curvilíneas Ecuación de Laplace Fluidos potenciales Potential Flow Solids of revolution Curvilinear coordinates Laplace equation Física Dinámica de fluidos Ciencias físicas Physics Fluid dynamics Physical sciences |
title_short |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos |
title_full |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos |
title_fullStr |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos |
title_full_unstemmed |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos |
title_sort |
Estudio de la dinamica de sólidos de revolución inmersos en fluidos |
dc.creator.fl_str_mv |
Luque González, Hugo Fernando |
dc.contributor.advisor.spa.fl_str_mv |
Herrera, William Javier |
dc.contributor.author.spa.fl_str_mv |
Luque González, Hugo Fernando |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::532 - Mecánica de fluidos 510 - Matemáticas::515 - Análisis |
topic |
530 - Física::532 - Mecánica de fluidos 510 - Matemáticas::515 - Análisis Sólidos de revolución Coordenadas curvilíneas Ecuación de Laplace Fluidos potenciales Potential Flow Solids of revolution Curvilinear coordinates Laplace equation Física Dinámica de fluidos Ciencias físicas Physics Fluid dynamics Physical sciences |
dc.subject.proposal.spa.fl_str_mv |
Sólidos de revolución Coordenadas curvilíneas Ecuación de Laplace Fluidos potenciales |
dc.subject.proposal.eng.fl_str_mv |
Potential Flow Solids of revolution Curvilinear coordinates Laplace equation |
dc.subject.unesco.spa.fl_str_mv |
Física Dinámica de fluidos Ciencias físicas |
dc.subject.unesco.eng.fl_str_mv |
Physics Fluid dynamics Physical sciences |
description |
ilustraciones |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-07T20:03:27Z |
dc.date.available.none.fl_str_mv |
2023-12-07T20:03:27Z |
dc.date.issued.none.fl_str_mv |
2023-07 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85055 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85055 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Plakhov, A., & Aleksenko, A. (2008). The problem of the body of revolution of minimal resistance. ESAIM: Control, Optimisation and Calculus of Variations, 16(1), 206–220. https://doi.org/10.1051/cocv:2008070 Ershkov, S. V., Prosviryakov, E. Y., Burmasheva, N. V., & Christianto, V. (2021). Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 53(4), 044501. https://doi.org/10.1088/1873-7005/ac10f0 Hu, X., Mu, L., & Ye, X. (2019). A weak Galerkin finite element method for the Navier–Stokes equations. Journal of Computational and Applied Mathematics, 362, 614–625. https://doi.org/10.1016/j.cam.2018.08.022 Pinelli, A., Naqavi, I. Z., Piomelli, U., & Favier, J. (2010). Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers.JournalofComputationalPhysics,229(24),9073–9091. https://doi.org/10.1016/j.jcp.2010.08.021 Kundu, P. K., Cohen, I. M., & Dowling, D. R., PhD. (2012). Fluid Mechanics. Academic Press. Olivier Glass, Christophe Lacave, Franck Sueur. On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Bulletin de la société mathématique de France, 2014, 142 (3), pp.489-536. <10.24033/bsmf.2672>. <hal-00589499> Glass, O., Sueur, F., & Takahashi, T. (2012). Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Annales Scientifiques De L Ecole Normale Superieure, 45 (1), 1–51. https://doi.org/10.24033/asens.2159 Talischi, C., Pereira, A., Paulino, G. H., Menezes, I. F. M., & Carvalho, M. S. (2013). Polygonal finite elements for incompressible fluid flow. International Journal for Numerical Methods in Fluids, 74 (2), 134–151. https://doi.org/10.1002/fld.3843 Nasser, M. M. S., & Green, C. C. (2018). A fast numerical method for ideal fluid flow in domains with multiple stirrers. Nonlinearity, 31(3), 815–837. https://doi.org/10.1088/1361-6544/aa99a5 Munson, B. R., Young, D. F., & Okiishi, T. H. (1998). Fundamentals of Fluid Mechanics (3rd ed.). Wiley. Drew, D. A., & Lahey, R. (1987). The virtual mass and lift force on a sphere in rotating and straining inviscid flow. International Journal of Multiphase Flow, 13 (1), 113–121. https://doi.org/10.1016/0301-9322(87)90011-5 McIver,M.,&McIver,P.(2016).Theadded two-dimensionalfloatingstructures.WaveMotion, https://doi.org/10.1016/j.wavemoti.2016.02.007massfor 64,1–12. Sysoev, D. V., Sisoeva, A. A., Sazonova, S., Zvyagintseva, A. V., & Mozgovoj, N. V. (2021). Variational method for solving the boundary value problem of hydrodynamics. IOP Conference Series: Materials Science and Engineering, 1047(1), 012195. https://doi.org/10.1088/1757-899x/1047/1/012195 Cai, Z., Liu, Y., Chen, T., & Liu, T. (2020). Variational method for determining pressure from velocity in two dimensions. Experiments in Fluids, 61(5). https://doi.org/10.1007/s00348-020-02954-2 Rodrı́guez, D. E., Martı́nez, R., & Rendón, L. (2011). Solución de la Ecuación de Laplace Para Flujos Potenciales. Revista Colombiana De Fı́sica, 43 (2). Morales, M. J., Diaz, R. A., & Herrera, W. J. (2015). Solutions of Laplace’s equation with simple boundary conditions, and their applications for capacitors with multiple symmetries. Journal of Electrostatics, 78, 31–45. https://doi.org/10.1016/j.elstat.2015.09.006 Qiu, J., Peng, B., & Tian, Z. (2018). A compact streamfunction-velocity scheme for the 2-D unsteady incompressible Navier-Stokes equations in arbitrary curvilinear coordinates. Journal of Hydrodynamics, 31(4), 827–839. https://doi.org/10.1007/s42241-018-0171-x Thompson, J. F., Thames, F. C., & Mastin, C. W. (1974). Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 15(3), 299–319. https://doi.org/10.1016/0021-9991(74)90114-4 Nikitin,N.(2006).Finite-differencemethodforincompressible Navier–Stokesequationsinarbitraryorthogonalcurvilinear coordinates. Journal of Computational Physics, 217(2), 759–781. https://doi.org/10.1016/j.jcp.2006.01.036 Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Wiley. Haitjema, H. M., & Kelson, V. A. (1997). Using the stream function for flow governed by Poisson’s equation. Journal of Hydrology. https://doi.org/10.1016/s0022-1694(95)02992-3 Brown, J., & Churchill, R. (2009). Complex Variables and Applications. McGraw-Hill Science/Engineering/Math. Orloff, J., MIT OpenCourseWare, & Libretexts. (2021, September 5). 7: Two dimensional hydrodynamics and complex potentials. MathematicsLibreTexts.RetrievedJuly23,2023,from https://math.libretexts.org/Bookshelves/Analysis/Complex Variables with Application Ponce,J.C.(2019).Complexanalysis.Applicationsof ConformalMappings.RetrievedJuly23,2023,from https://complex-analysis.com/content/applications conformal.html Zemlyanova, A. Y., Manly, I., & Handley, D. (2017). Vortex generated fluid flows in multiply connected domains. Complex Variables and Elliptic Equations, 63 (2), 151–170. https://doi.org/10.1080/17476933.2017.1289516 Eldredge, J. D. (2009). A reconciliation of viscous and inviscid approaches to computing locomotion of deforming bodies. Experimental Mechanics, 50(9), 1349–1353. https://doi.org/10.1007/s11340-009-9275-0 Howe, M. S. (1995). ON THE FORCE AND MOMENT ON A BODY IN AN INCOMPRESSIBLE FLUID, WITH APPLICATION TO RIGID BODIES AND BUBBLES AT HIGH AND LOW REYNOLDS NUMBERS. Quarterly Journal of Mechanics and Applied Mathematics, 48(3), 401–426. https://doi.org/10.1093/qjmam/48.3.401 Graham, W. (2019). Decomposition of the forces on a body moving in an incompressible fluid. Journal of Fluid Mechanics, 881, 1097-1122. doi:10.1017/jfm.2019.788 Grimberg, G., Pauls, W., & Frisch, U. (2008). Genesis of d’Alembert’sparadoxandanalyticalelaborationofthedrag problem. Physica D: Nonlinear Phenomena, 237 (14–17), 1878–1886. https://doi.org/10.1016/j.physd.2008.01.015 Landau, L. D., & Lifshitz, E. M. (1985). Mecánica de fluidos (2nd ed., Vol. 6). Reverte. Eyink, G. L. (2021). Josephson-Anderson relation and the classical D’Alembert paradox. Physical Review X, 11 (3). https://doi.org/10.1103/physrevx.11.031054 Hao, Q., & Eyink, G. L. (2022). Onsager Theory of turbulence, the Josephson-Anderson Relation, and the D’Alembert Paradox. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2206.05326 Gratton, J., & Perazzo, C. A. (2009). EFECTO DE LA MASA INDUCIDA SOBRE LA ACELERACIÓN DE CUERPOS DE BAJA DENSIDAD. Anales AFA, 21(1). https://anales.fisica.org.ar/index.php/analesafa/article/view/49 Byron, F. W., & Fuller, R. W. (1992). Mathematics of Classical and Quantum Physics. Courier Corporation. Sparenberg, J. A. (1989). Note on the stream function in curvilinearcoordinates.FluidDynamicsResearch,5(1),61–67. https://doi.org/10.1016/0169-5983(89)90011-7 Yamasaki, K., Yajima, T., & Iwayama, T. (2011). Differential geometricstructuresofstreamfunctions:incompressible two-dimensionalflowandcurvatures.JournalofPhysicsA. https://doi.org/10.1088/1751-8113/44/15/155501 Houot, J., Martı́n, J. S., & Tucsnak, M. (2010). Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid. Journal of Functional Analysis, 259 (11), 2856–2885. https://doi.org/10.1016/j.jfa.2010.07.006 Hernández, J. A. (2012). Familias de Campos Ondulatorios Fundamentales de la Ecuación de Helmholtz en Sistemas de Coordenadas Curvilı́neas Ortogonales [PhD]. Instituto Nacional de Astrofı́sica, Óptica y Electrónica. https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/289/1/Hernandez YAVUZ, T. (1986). Theretical Evaluations of Apparent Masses for Certain Classes of Bodies in Frictionless Fluid. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2(1986), 335-350. Diaz, R. A., Herrera, W. J., & Martinez, R. (2006). Moments of inertia for solids of revolution and variational methods. European Journal of Physics, 27(2), 183–192. https://doi.org/10.1088/0143-0807/27/2/001 Mohammadi, B., & Pironneau, O. (2004). SHAPE OPTIMIZATION IN FLUID MECHANICS. Annual Review of Fluid Mechanics, 36 (1), 255–279. https://doi.org/10.1146/annurev.fluid.36.050802.121926 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
99 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85055/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85055/2/1032361559.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85055/3/1032361559.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e78186a14772ee9311cbe61a27ff187b 09d81e42be5b5cf16654b4520e48df9d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089764727422976 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Herrera, William Javier3894fab11f7998b037c817d7d69c2c0eLuque González, Hugo Fernandoa65a10c03caa76dc0f93ff2f6087d5ca2023-12-07T20:03:27Z2023-12-07T20:03:27Z2023-07https://repositorio.unal.edu.co/handle/unal/85055Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesHacemos una revisión de fluidos potenciales con el propósito de analizar el flujo alrededor de sólidos que presentan una simetrı́a determinada, en particular, para objetos que presentan una simetrı́a axisimétrica. Mostramos como se puede llegar a la ecuación de Laplace para fluidos potenciales y encontramos un funcional que corresponde a la misma con su generalización en coordenadas curvilı́neas. Solucionamos en casos particulares como la esfera y el cilindro haciendo el cálculo de la masa aparente. Posteriormente, a partir de la función de flujo en simetrı́as conocidas, proponemos una ecuación diferencial para la función de flujo en coordenadas curvilı́neas cuya solución pueda obtenerse a partir de aplicar condiciones de Dirichlet. Deducimos el funcional que, al minimizarse, corresponde a esta ecuación diferencial y mostramos métodos de solución de esta ecuación diferencial cuando se presenta una simetrı́a en una de las coordenadas curvilı́neas. Planteamos una estrategia para solucionar objetos con simetrı́as dadas inmersos en fluidos potenciales usando condiciones asintóticas para poder resolver problemas de objetos con simetrı́as parabólicas y elipsoidales tanto cilı́ndricas como esféricas. (Texto tomado de la fuente).We outline a review of potential fluids with the aim to analyze the flow around solids that have a given simmetry, i. e. axysimmetric bodies. We show how to reach the Laplace equation for potential fluids and find a Functional that is generalized in curvilinear coordinates. We solve the sphere and the cylinder and computing the apparent mass. Subsequently, starting from the stream function in given simmetries, we propose a differential equation for the stream function in curvilinear coordinates whose solution can be found by using Dirichlet conditions. We found the functional that corresponds to the differential equation and show methods of solution when there is a simmetry in one of the coordinates. We outline a strategy to solve objects with given symmetries in potential fluids using asymptotic behaviors in order to solve problems parabolic and elliptic shaped-objects with cilindrical and spherical simmetries.MaestríaMagíster en Ciencias - Física99 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::532 - Mecánica de fluidos510 - Matemáticas::515 - AnálisisSólidos de revoluciónCoordenadas curvilíneasEcuación de LaplaceFluidos potencialesPotential FlowSolids of revolutionCurvilinear coordinatesLaplace equationFísicaDinámica de fluidosCiencias físicasPhysicsFluid dynamicsPhysical sciencesEstudio de la dinamica de sólidos de revolución inmersos en fluidosStudy about the dynamics of solids of revolution in fluidsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMPlakhov, A., & Aleksenko, A. (2008). The problem of the body of revolution of minimal resistance. ESAIM: Control, Optimisation and Calculus of Variations, 16(1), 206–220. https://doi.org/10.1051/cocv:2008070Ershkov, S. V., Prosviryakov, E. Y., Burmasheva, N. V., & Christianto, V. (2021). Towards understanding the algorithms for solving the Navier–Stokes equations. Fluid Dynamics Research, 53(4), 044501. https://doi.org/10.1088/1873-7005/ac10f0Hu, X., Mu, L., & Ye, X. (2019). A weak Galerkin finite element method for the Navier–Stokes equations. Journal of Computational and Applied Mathematics, 362, 614–625. https://doi.org/10.1016/j.cam.2018.08.022Pinelli, A., Naqavi, I. Z., Piomelli, U., & Favier, J. (2010). Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers.JournalofComputationalPhysics,229(24),9073–9091. https://doi.org/10.1016/j.jcp.2010.08.021Kundu, P. K., Cohen, I. M., & Dowling, D. R., PhD. (2012). Fluid Mechanics. Academic Press.Olivier Glass, Christophe Lacave, Franck Sueur. On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Bulletin de la société mathématique de France, 2014, 142 (3), pp.489-536. <10.24033/bsmf.2672>. <hal-00589499>Glass, O., Sueur, F., & Takahashi, T. (2012). Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Annales Scientifiques De L Ecole Normale Superieure, 45 (1), 1–51. https://doi.org/10.24033/asens.2159Talischi, C., Pereira, A., Paulino, G. H., Menezes, I. F. M., & Carvalho, M. S. (2013). Polygonal finite elements for incompressible fluid flow. International Journal for Numerical Methods in Fluids, 74 (2), 134–151. https://doi.org/10.1002/fld.3843Nasser, M. M. S., & Green, C. C. (2018). A fast numerical method for ideal fluid flow in domains with multiple stirrers. Nonlinearity, 31(3), 815–837. https://doi.org/10.1088/1361-6544/aa99a5Munson, B. R., Young, D. F., & Okiishi, T. H. (1998). Fundamentals of Fluid Mechanics (3rd ed.). Wiley.Drew, D. A., & Lahey, R. (1987). The virtual mass and lift force on a sphere in rotating and straining inviscid flow. International Journal of Multiphase Flow, 13 (1), 113–121. https://doi.org/10.1016/0301-9322(87)90011-5McIver,M.,&McIver,P.(2016).Theadded two-dimensionalfloatingstructures.WaveMotion, https://doi.org/10.1016/j.wavemoti.2016.02.007massfor 64,1–12.Sysoev, D. V., Sisoeva, A. A., Sazonova, S., Zvyagintseva, A. V., & Mozgovoj, N. V. (2021). Variational method for solving the boundary value problem of hydrodynamics. IOP Conference Series: Materials Science and Engineering, 1047(1), 012195. https://doi.org/10.1088/1757-899x/1047/1/012195Cai, Z., Liu, Y., Chen, T., & Liu, T. (2020). Variational method for determining pressure from velocity in two dimensions. Experiments in Fluids, 61(5). https://doi.org/10.1007/s00348-020-02954-2Rodrı́guez, D. E., Martı́nez, R., & Rendón, L. (2011). Solución de la Ecuación de Laplace Para Flujos Potenciales. Revista Colombiana De Fı́sica, 43 (2).Morales, M. J., Diaz, R. A., & Herrera, W. J. (2015). Solutions of Laplace’s equation with simple boundary conditions, and their applications for capacitors with multiple symmetries. Journal of Electrostatics, 78, 31–45. https://doi.org/10.1016/j.elstat.2015.09.006Qiu, J., Peng, B., & Tian, Z. (2018). A compact streamfunction-velocity scheme for the 2-D unsteady incompressible Navier-Stokes equations in arbitrary curvilinear coordinates. Journal of Hydrodynamics, 31(4), 827–839. https://doi.org/10.1007/s42241-018-0171-xThompson, J. F., Thames, F. C., & Mastin, C. W. (1974). Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 15(3), 299–319. https://doi.org/10.1016/0021-9991(74)90114-4Nikitin,N.(2006).Finite-differencemethodforincompressible Navier–Stokesequationsinarbitraryorthogonalcurvilinear coordinates. Journal of Computational Physics, 217(2), 759–781. https://doi.org/10.1016/j.jcp.2006.01.036Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Wiley.Haitjema, H. M., & Kelson, V. A. (1997). Using the stream function for flow governed by Poisson’s equation. Journal of Hydrology. https://doi.org/10.1016/s0022-1694(95)02992-3Brown, J., & Churchill, R. (2009). Complex Variables and Applications. McGraw-Hill Science/Engineering/Math.Orloff, J., MIT OpenCourseWare, & Libretexts. (2021, September 5). 7: Two dimensional hydrodynamics and complex potentials. MathematicsLibreTexts.RetrievedJuly23,2023,from https://math.libretexts.org/Bookshelves/Analysis/Complex Variables with ApplicationPonce,J.C.(2019).Complexanalysis.Applicationsof ConformalMappings.RetrievedJuly23,2023,from https://complex-analysis.com/content/applications conformal.htmlZemlyanova, A. Y., Manly, I., & Handley, D. (2017). Vortex generated fluid flows in multiply connected domains. Complex Variables and Elliptic Equations, 63 (2), 151–170. https://doi.org/10.1080/17476933.2017.1289516Eldredge, J. D. (2009). A reconciliation of viscous and inviscid approaches to computing locomotion of deforming bodies. Experimental Mechanics, 50(9), 1349–1353. https://doi.org/10.1007/s11340-009-9275-0Howe, M. S. (1995). ON THE FORCE AND MOMENT ON A BODY IN AN INCOMPRESSIBLE FLUID, WITH APPLICATION TO RIGID BODIES AND BUBBLES AT HIGH AND LOW REYNOLDS NUMBERS. Quarterly Journal of Mechanics and Applied Mathematics, 48(3), 401–426. https://doi.org/10.1093/qjmam/48.3.401Graham, W. (2019). Decomposition of the forces on a body moving in an incompressible fluid. Journal of Fluid Mechanics, 881, 1097-1122. doi:10.1017/jfm.2019.788Grimberg, G., Pauls, W., & Frisch, U. (2008). Genesis of d’Alembert’sparadoxandanalyticalelaborationofthedrag problem. Physica D: Nonlinear Phenomena, 237 (14–17), 1878–1886. https://doi.org/10.1016/j.physd.2008.01.015Landau, L. D., & Lifshitz, E. M. (1985). Mecánica de fluidos (2nd ed., Vol. 6). Reverte.Eyink, G. L. (2021). Josephson-Anderson relation and the classical D’Alembert paradox. Physical Review X, 11 (3). https://doi.org/10.1103/physrevx.11.031054Hao, Q., & Eyink, G. L. (2022). Onsager Theory of turbulence, the Josephson-Anderson Relation, and the D’Alembert Paradox. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2206.05326Gratton, J., & Perazzo, C. A. (2009). EFECTO DE LA MASA INDUCIDA SOBRE LA ACELERACIÓN DE CUERPOS DE BAJA DENSIDAD. Anales AFA, 21(1). https://anales.fisica.org.ar/index.php/analesafa/article/view/49Byron, F. W., & Fuller, R. W. (1992). Mathematics of Classical and Quantum Physics. Courier Corporation.Sparenberg, J. A. (1989). Note on the stream function in curvilinearcoordinates.FluidDynamicsResearch,5(1),61–67. https://doi.org/10.1016/0169-5983(89)90011-7Yamasaki, K., Yajima, T., & Iwayama, T. (2011). Differential geometricstructuresofstreamfunctions:incompressible two-dimensionalflowandcurvatures.JournalofPhysicsA. https://doi.org/10.1088/1751-8113/44/15/155501Houot, J., Martı́n, J. S., & Tucsnak, M. (2010). Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid. Journal of Functional Analysis, 259 (11), 2856–2885. https://doi.org/10.1016/j.jfa.2010.07.006Hernández, J. A. (2012). Familias de Campos Ondulatorios Fundamentales de la Ecuación de Helmholtz en Sistemas de Coordenadas Curvilı́neas Ortogonales [PhD]. Instituto Nacional de Astrofı́sica, Óptica y Electrónica. https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/289/1/HernandezYAVUZ, T. (1986). Theretical Evaluations of Apparent Masses for Certain Classes of Bodies in Frictionless Fluid. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2(1986), 335-350.Diaz, R. A., Herrera, W. J., & Martinez, R. (2006). Moments of inertia for solids of revolution and variational methods. European Journal of Physics, 27(2), 183–192. https://doi.org/10.1088/0143-0807/27/2/001Mohammadi, B., & Pironneau, O. (2004). SHAPE OPTIMIZATION IN FLUID MECHANICS. Annual Review of Fluid Mechanics, 36 (1), 255–279. https://doi.org/10.1146/annurev.fluid.36.050802.121926EstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85055/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032361559.2023.pdf1032361559.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf3461707https://repositorio.unal.edu.co/bitstream/unal/85055/2/1032361559.2023.pdfe78186a14772ee9311cbe61a27ff187bMD52THUMBNAIL1032361559.2023.pdf.jpg1032361559.2023.pdf.jpgGenerated Thumbnailimage/jpeg4431https://repositorio.unal.edu.co/bitstream/unal/85055/3/1032361559.2023.pdf.jpg09d81e42be5b5cf16654b4520e48df9dMD53unal/85055oai:repositorio.unal.edu.co:unal/850552023-12-07 23:03:59.947Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |