Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre

ilustración, fotografías, diagramas

Autores:
Perez Ayala, Yineth Melissa
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85519
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85519
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
540 - Química y ciencias afines::541 - Química física
Nanohilos de cobre
Electrodo transparente
Síntesis hidrotérmica
Conductividad
Película delgada
Copper nanowires
Transparent electrodes
Hydrothermal synthesis
Conductivity
Thin films
nanowire
reducing agent
nanostructure
nanohilo
agente reductor
nanoestructura
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_be5e483499e0ce47e063d56407115ba8
oai_identifier_str oai:repositorio.unal.edu.co:unal/85519
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
dc.title.translated.eng.fl_str_mv Fabrication of copper nanowires based transparent and conductive thin films
title Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
spellingShingle Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
540 - Química y ciencias afines::541 - Química física
Nanohilos de cobre
Electrodo transparente
Síntesis hidrotérmica
Conductividad
Película delgada
Copper nanowires
Transparent electrodes
Hydrothermal synthesis
Conductivity
Thin films
nanowire
reducing agent
nanostructure
nanohilo
agente reductor
nanoestructura
title_short Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
title_full Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
title_fullStr Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
title_full_unstemmed Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
title_sort Fabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
dc.creator.fl_str_mv Perez Ayala, Yineth Melissa
dc.contributor.advisor.none.fl_str_mv Ardila Vargas, Angel Miguel
dc.contributor.author.none.fl_str_mv Perez Ayala, Yineth Melissa
dc.contributor.educationalvalidator.none.fl_str_mv Carriazo Baños, Jose Gregorio
dc.contributor.researchgroup.spa.fl_str_mv Grupo de física aplicada
dc.subject.ddc.spa.fl_str_mv 530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
540 - Química y ciencias afines::541 - Química física
topic 530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
540 - Química y ciencias afines::541 - Química física
Nanohilos de cobre
Electrodo transparente
Síntesis hidrotérmica
Conductividad
Película delgada
Copper nanowires
Transparent electrodes
Hydrothermal synthesis
Conductivity
Thin films
nanowire
reducing agent
nanostructure
nanohilo
agente reductor
nanoestructura
dc.subject.proposal.spa.fl_str_mv Nanohilos de cobre
Electrodo transparente
Síntesis hidrotérmica
Conductividad
Película delgada
dc.subject.proposal.eng.fl_str_mv Copper nanowires
Transparent electrodes
Hydrothermal synthesis
Conductivity
Thin films
dc.subject.wikidata.eng.fl_str_mv nanowire
reducing agent
nanostructure
dc.subject.wikidata.spa.fl_str_mv nanohilo
agente reductor
nanoestructura
description ilustración, fotografías, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-30T15:59:26Z
dc.date.available.none.fl_str_mv 2024-01-30T15:59:26Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85519
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85519
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv J.-Y. Lee, S. T. Connor, Y. Cui y P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano letters, vol. 8, n.o 2, págs. 689-692, 2008.
T. Pedersen, Facts about indium, ago. de 2018. dirección: https://www.livescience. com/37352-indium.html.
Copper nanowires for flexible displays and solar cells, jun. de 2016. dirección: https: //cordis.europa.eu/article/id/169520- copper- nanowires- for- flexibledisplays- and-solar-cells.
A. R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li y B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Advanced materials, vol. 22, n.o 32, págs. 3558-3563, 2010.
J. R. Rumble, “CRC Handbook of Chemistry and Physics,” CRC Press/Taylor Francis, n.o 103rd Edition, 2022.
L. Lian, X. Xi, D. Dong y G. He, “Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode,” Organic Electronics, vol. 60, págs. 9-15, 2018.
S.-H. Feng y G.-H. Li, “Chapter 4 - Hydrothermal and Solvothermal Syntheses,” en Modern Inorganic Synthetic Chemistry (Second Edition), R. Xu e Y. Xu, eds., Second Edition, Amsterdam: Elsevier, 2017, págs. 73-104, isbn: 978-0-444-63591-4. doi: https://doi.org/10.1016/B978- 0- 444- 63591- 4.00004- 5. dirección: https: //www.sciencedirect.com/science/article/pii/B9780444635914000045.
S. Zhao, F. Han, J. Li et al., “Advancements in copper nanowires: synthesis, purification, assemblies, surface modification, and applications,” Small, vol. 14, n.o 26, pág. 1 800 047, 2018.
L. Yang, Z. Zhou, J. Song y X. Chen, “Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications,” Chemical Society Reviews, vol. 48, n.o 19, págs. 5140-5176, 2019.
S. Ding e Y. Tian, “Recent progress of solution-processed Cu nanowires transparent electrodes and their applications,” RSC advances, vol. 9, n.o 46, págs. 26 961-26 980, 2019.
A. Hashidzume y A. Harada, Encyclopedia of Polymeric Nanomaterials. Berlin Heidelberg: Springer, 2015, págs. 1238-1241.
S. Ranjan, N. Dasgupta y E. Lichtfouse, Nanoscience in Food and Agriculture. Switzerland: Springer, 2017, vol. 4.
N. R. Tummala, “SDS surfactants on carbon nanotubes: aggregate morphology,” ACS nano, vol. 3, n.o 3, págs. 595-602, 2009.
N. L. Alpert, W. E. Keiser y H. A. Szymański, Ir, theory and practice of infrared spectroscopy, Second. Plenum Publ., 1973.
C. A. Rius, Espectroscopía de infrarrojo y espectroscopía de masas -PPT, sep. de 2007. dirección: https://slideplayer.es/slide/1453984/.
G. Gonzáles, “Principios de microscopía electrónica de barrido y microanálisis por Rayos X,” en E. Noguez, ed. México: Facultad de Química, UNAM, 2006, pág. 60.70, isbn: 970-32-4011-9. dirección: https://www.google.com/url?sa=i&url=http% 3A % 2F % 2Flibrosoa . unam . mx % 2Fbitstream % 2Fhandle % 2F123456789 % 2F3250 % 2Fprincipios.pdf%3Fsequence%3D1%26isAllowed%3Dy&psig=AOvVaw25p9qjWiyIKah4VrXxw5rw& ust=1700013195377000&source=images&cd=vfe&opi=89978449&ved=0CAUQjB1qFwoTCPiE9OawwoIDFQAAAAAdAAAAABB8
B. Inkson, “2 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization,” en Materials Characterization Using Nondestructive Evaluation (NDE) Methods, G. Hübschen, I. Altpeter, R. Tschuncky y H.-G. Herrmann, eds., Woodhead Publishing, 2016, págs. 17-43, isbn: 978-0-08- 100040-3. doi: https://doi.org/10.1016/B978-0-08-100040-3.00002-X. dirección: https://www.sciencedirect.com/science/article/pii/B978008100040300002X.
G. Artioli, “X-ray Diffraction (XRD),” en Encyclopedia of Geoarchaeology, A. S. Gilbert, ed. Dordrecht: Springer Netherlands, 2017, págs. 1019-1025, isbn: 978-1-4020- 4409-0. doi: 10.1007/978-1-4020-4409-0_29. dirección: https://doi.org/10. 1007/978-1-4020-4409-0_29.
Spectrophotometry, [Online; accessed 2023-08-12], feb. de 2023.
M. M. Ghorbani y R. Taherian, “12 - Methods of Measuring Electrical Properties of Material**Hereby from Keithley Co. and Dr. Michael B. Heaney is appreciated due to valuable content used in this chapter.,” en Electrical Conductivity in Polymer- Based Composites, ép. Plastics Design Library, R. Taherian y A. Kausar, eds., William Andrew Publishing, 2019, págs. 365-394, isbn: 978-0-12-812541-0. doi: https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 812541 - 0 . 00012 - 4. dirección: https : / / www . sciencedirect.com/science/article/pii/B9780128125410000124.
S. Ye, I. E. Stewart, Z. Chen, B. Li, A. R. Rathmell y B. J. Wiley, “How copper nanowires grow and how to control their properties,” Accounts of chemical research, vol. 49, n.o 3, págs. 442-451, 2016.
T. B. A. Senior, “Note on the extinction efficiency,” Appl. Opt., vol. 22, n.o 12, págs. 1796-1797, jun. de 1983. doi: 10.1364/AO.22.001796. dirección: https://opg.optica.org/ao/ abstract.cfm?URI=ao-22-12-1796.
G. Huang, C.-H. Lu y H.-H. Yang, “Magnetic nanomaterials for magnetic bioanalysis,” en Novel nanomaterials for biomedical, environmental and energy applications, Elsevier, 2019, págs. 89-109.
S. Nandy y K. H. Chae, “17 - Chemical synthesis of ferrite thin films,” en Ferrite Nanostructured Magnetic Materials, ép. Woodhead Publishing Series in Electronic and Optical Materials, J. Pal Singh, K. H. Chae, R. C. Srivastava y O. F. Caltun, eds., Woodhead Publishing, 2023, págs. 309-334, isbn: 978-0-12-823717-5. doi: https:// doi . org / 10 . 1016 / B978 - 0 - 12 - 823717 - 5 . 00021 - 8. dirección: https : / / www . sciencedirect.com/science/article/pii/B9780128237175000218.
W. Commons, File:Cu-pourbaix-diagram.svg, https : / / commons . wikimedia . org / wiki/File:Cu-pourbaix-diagram.svg, [Accessed: 14-08-2023], 2007.
S. HwanáKo et al., “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale, vol. 9, n.o 5, págs. 1978-1985, 2017.
D. Lee, H. Lee, Y. Ahn e Y. Lee, “High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure,” Carbon, vol. 81, págs. 439-446, 2015.
S. Sharma, S. Shriwastava, S. Kumar, K. Bhatt y C. C. Tripathi, “Alternative transparent conducting electrode materials for flexible optoelectronic devices,” Opto-Electronics Review, vol. 26, n.o 3, págs. 223-235, 2018.
S. H. Kim, W. I. Choi, K. H. Kim, D. J. Yang, S. Heo y D.-J. Yun, “Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes,” Scientific reports, vol. 6, n.o 1, págs. 1-12, 2016.
M. Zhang, S. Fang, A. A. Zakhidov et al., “Strong, transparent, multifunctional, carbon nanotube sheets,” science, vol. 309, n.o 5738, págs. 1215-1219, 2005.
R. V. Salvatierra, C. E. Cava, L. S. Roman y A. J. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Advanced Functional Materials, vol. 23, n.o 12, págs. 1490-1499, 2013.
S. Bae, H. Kim, Y. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, n.o 8, págs. 574-578, 2010.
P. Blake, P. D. Brimicombe, R. R. Nair et al., “Graphene-based liquid crystal device,” Nano letters, vol. 8, n.o 6, págs. 1704-1708, 2008.
R. Das y H. S. Das, “Merits and demerits of transparent conducting magnetron sputtered ZnO: Al, ITO and SnO2: F thin films for solar cell applications,” Journal of The Institution of Engineers (India): Series D, vol. 98, n.o 1, págs. 85-90, 2017.
S. Yu, W. Zhang, L. Li, D. Xu, H. Dong e Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films, vol. 552, págs. 150-154, 2014.
S. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao y K. Suganuma, “Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air,” Phys. Chem. Chem. Phys., vol. 17, págs. 31 110-31 116, 46 2015. doi: 10.1039/C5CP04582G. dirección: http://dx.doi.org/10.1039/C5CP04582G.
Y. Zhao, X. Zhou, W. Huang, J. Kang y G. He, “High-performance copper nanowire electrode for efficient flexible organic light-emitting diode,” Organic Electronics, vol. 113, pág. 106 690, 2023, issn: 1566-1199. doi: https : / / doi . org / 10 . 1016 / j.orgel.2022.106690. dirección: https://www.sciencedirect.com/science/ article/pii/S1566119922002622
Z. Wang, Y. Han, L. Yan et al., “High Power Conversion Efficiency of 13.61% for 1 cm2 Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure- Printed Silver Nanowire Electrodes,” Advanced Functional Materials, vol. 31, n.o 4, pág. 2 007 276, 2021. doi: https : / / doi . org / 10 . 1002 / adfm . 202007276. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202007276. dirección: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007276.
Y. Wang, P. Liu, B. Zeng, L. Liu y J. Yang, “Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes,” Nanoscale research letters, vol. 13, n.o 1, págs. 1-10, 2018.
H. Zhang, S. Wang, Y. Tian et al., “High-efficiency extraction synthesis for highpurity copper nanowires and their applications in flexible transparent electrodes,” Nano Materials Science, vol. 2, n.o 2, págs. 164-171, 2020.
H.-C. Chu, Y.-C. Chang, Y. Lin et al., “Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications,” ACS applied materials & interfaces, vol. 8, n.o 20, págs. 13 009-13 017, 2016.
C. Kang, S. Yang, M. Tan et al., “Purification of copper nanowires to prepare flexible transparent conductive films with high performance,” ACS Applied Nano Materials, vol. 1, n.o 7, págs. 3155-3163, 2018
A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski y A. A. Bol, “Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes,” ACS nano, vol. 4, n.o 7, págs. 3839-3844, 2010.
S. L. Hellstrom, M. Vosgueritchian, R. M. Stoltenberg et al., “Strong and stable doping of carbon nanotubes and graphene by MoO x for transparent electrodes,” Nano letters, vol. 12, n.o 7, págs. 3574-3580, 2012.
T. M. Higgins y J. N. Coleman, “Avoiding resistance limitations in high-performance transparent supercapacitor electrodes based on large-area, high-conductivity PEDOT: PSS films,” ACS applied materials & interfaces, vol. 7, n.o 30, págs. 16 495-16 506, 2015.
I.-K. Suh, H. Ohta e Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” Journal of Materials Science, vol. 23, págs. 757-760, 1988.
N. Calos, J. Forrester y G. Schaffer, “A crystallographic contribution to the mechanism of a mechanically induced solid state reaction,” Journal of Solid State Chemistry, vol. 122, n.o 2, págs. 273-280, 199
A. Kirfel y K. Eichhorn, “Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 46, n.o 4, págs. 271-284, 1990
S. Matsuyama, Y. Takizawa, S. Kinugasa, K. Tanabe y T. Tamura, Spectral Database for Organic Compounds SDBS, https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_ index.cgi, Accessed: 2023-07-3.
THE FINGERPRINT REGION OF AN INFRA-RED SPECTRUM, https://www. chemguide.co.uk/analysis/ir/fingerprint.html, Accessed: 2023-07-20.
Q.-m. LIU, D.-b. ZHOU, Y. YAMAMOTO, R. ICHINO y M. OKIDO, “Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method,” Transactions of Nonferrous Metals Society of China, vol. 22, n.o 1, págs. 117-123, 2012.
R. Betancourt-Galindo, P. Reyes-Rodriguez, B. Puente-Urbina et al., “Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties,” Journal of Nanomaterials, vol. 2014, págs. 10-10, 2014.
M. Salavati-Niasari, F. Davar y N. Mir, “Synthesis and characterization of metallic copper nanoparticles via thermal decomposition,” Polyhedron, vol. 27, n.o 17, págs. 3514-3518, 2008.
K. Mikami, Y. Kido, Y. Akaishi, A. Quitain y T. Kida, “Synthesis of Cu2O/CuO nanocrystals and their application to H2S sensing,” Sensors, vol. 19, n.o 1, pág. 211, 2019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 78 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85519/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85519/2/1014228438.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85519/3/1014228438.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a64c019bbac38b872c9967b689c1f2fc
c32194035ff4b8c11ad69f750e034558
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089984299237376
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ardila Vargas, Angel Miguel62d8f9feaac799d1feffd0d7485e263aPerez Ayala, Yineth Melissa9fa7bac5ff2aa68ccc4536935f72560dCarriazo Baños, Jose GregorioGrupo de física aplicada2024-01-30T15:59:26Z2024-01-30T15:59:26Z2023https://repositorio.unal.edu.co/handle/unal/85519Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustración, fotografías, diagramasThe main objective of this project was to fabricate copper nanowires (CuNWs) thin films with good optical and electrical properties, i.e., conductive, and transparent electrodes. For this purpose, different procedures were assessed to obtain Cu nanowires by a hydrothermal method, where tests of optimum reducing agents’ concentrations were done. The synthesis was carried out using copper (II) chloride dihydrate (CuCl2· 2H2O) as copper precursor and Octadecylamine (ODA) as surfactant. In this first phase of the project, the results obtained by using ascorbic acid as a reducing agent were compared with those obtained with glucose, where the latter produced the best nanowires. After the hydrothermal procedure CuNWs were obtained together with other unwanted nanostructures. Therefore, a suitable purification method was researched. The nanowires were kept in hexane and thin films were fabricated by the spin coating method. Thin films were characterized using the following techniques: scanning electron microscopy (SEM), UV-VIS spectrophotometry studies, IR, and sheet resistance measurement. The above with the intention of studying the optoelectrical and morphological properties of the Cu nanowire thin films as a function of the synthesis conditions. The results included transmittance spectrum between 28 and 80 % at λ = 550 nm. Also, Rs values were found to be 4.61, 8.76 and 1183 Ω/□. Moreover, reduction methods were investigated and PEDOT:PSS films were used to improve thin films properties. This work was conducted with the aim of fabricating conductive and transparent electrodes that can be used as substitutes of indium tin oxide (ITO) electrodes.El objetivo principal en este proyecto fue fabricar películas delgadas de nanohilos de cobre (Cu) que presentaran buenas propiedades ópticas y eléctricas, es decir, películas conductivas y transparentes. Para ello se probaron diferentes procedimientos para la obtención de los nanohilos de Cu mediante síntesis hidrotérmica, procurando establecer la óptima concentración de agentes de reducción usando ácido ascórbido y glucosa. Además, la síntesis se realizó usando cloruro de cobre (II) dihidratado (CuCl2・ 2H2O) como precursor del cobre y Octadecilamina (ODA) como surfactante. En primer lugar se determinó que el uso de glucosa permitía obtener mejores nanohilos. Así mismo, el método hidrotérmico fue usado en la síntesis y se obtuvieron tanto nanohilos como nanopartículas, por lo que un método de purificación se usó para la separación de los nanohilos. Las películas delgadas fabricadas por Spin Coating se caracterizaron usando las siguientes técnicas: microscopía electrónica de barrido (MEB), espectrofotometría UV-VIS, IR, medición de la resistencia y de la resistencia de hoja. Con esto se determinaron las propiedades optoeléctricas y morfológicas de las películas delgadas de nanohilos de Cu. Se encontraron espectros de transmitancia de entre 28 y 80% y resistencia de hoja de 4.61, 8.76 y 1183 Ω/□. Métodos de reducción fueron estudiados para mejorar la conductividad de las películas así como uso de PEDOT:PSS para mejorar sus propiedades. Todo lo anterior se hizo con el ánimo de fabricar electrodos conductivos y transparentes que puedan ser usados como sustituto de los electrodos de ITO (óxido de indio y estaño). (Texto tomado de la fuente)MaestríaMagíster en Ciencias - FísicaFísica aplicadaxvi, 78 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::535 - Luz y radiación relacionada530 - Física::539 - Física moderna540 - Química y ciencias afines::541 - Química físicaNanohilos de cobreElectrodo transparenteSíntesis hidrotérmicaConductividadPelícula delgadaCopper nanowiresTransparent electrodesHydrothermal synthesisConductivityThin filmsnanowirereducing agentnanostructurenanohiloagente reductornanoestructuraFabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobreFabrication of copper nanowires based transparent and conductive thin filmsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ.-Y. Lee, S. T. Connor, Y. Cui y P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano letters, vol. 8, n.o 2, págs. 689-692, 2008.T. Pedersen, Facts about indium, ago. de 2018. dirección: https://www.livescience. com/37352-indium.html.Copper nanowires for flexible displays and solar cells, jun. de 2016. dirección: https: //cordis.europa.eu/article/id/169520- copper- nanowires- for- flexibledisplays- and-solar-cells.A. R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li y B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Advanced materials, vol. 22, n.o 32, págs. 3558-3563, 2010.J. R. Rumble, “CRC Handbook of Chemistry and Physics,” CRC Press/Taylor Francis, n.o 103rd Edition, 2022.L. Lian, X. Xi, D. Dong y G. He, “Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode,” Organic Electronics, vol. 60, págs. 9-15, 2018.S.-H. Feng y G.-H. Li, “Chapter 4 - Hydrothermal and Solvothermal Syntheses,” en Modern Inorganic Synthetic Chemistry (Second Edition), R. Xu e Y. Xu, eds., Second Edition, Amsterdam: Elsevier, 2017, págs. 73-104, isbn: 978-0-444-63591-4. doi: https://doi.org/10.1016/B978- 0- 444- 63591- 4.00004- 5. dirección: https: //www.sciencedirect.com/science/article/pii/B9780444635914000045.S. Zhao, F. Han, J. Li et al., “Advancements in copper nanowires: synthesis, purification, assemblies, surface modification, and applications,” Small, vol. 14, n.o 26, pág. 1 800 047, 2018.L. Yang, Z. Zhou, J. Song y X. Chen, “Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications,” Chemical Society Reviews, vol. 48, n.o 19, págs. 5140-5176, 2019.S. Ding e Y. Tian, “Recent progress of solution-processed Cu nanowires transparent electrodes and their applications,” RSC advances, vol. 9, n.o 46, págs. 26 961-26 980, 2019.A. Hashidzume y A. Harada, Encyclopedia of Polymeric Nanomaterials. Berlin Heidelberg: Springer, 2015, págs. 1238-1241.S. Ranjan, N. Dasgupta y E. Lichtfouse, Nanoscience in Food and Agriculture. Switzerland: Springer, 2017, vol. 4.N. R. Tummala, “SDS surfactants on carbon nanotubes: aggregate morphology,” ACS nano, vol. 3, n.o 3, págs. 595-602, 2009.N. L. Alpert, W. E. Keiser y H. A. Szymański, Ir, theory and practice of infrared spectroscopy, Second. Plenum Publ., 1973.C. A. Rius, Espectroscopía de infrarrojo y espectroscopía de masas -PPT, sep. de 2007. dirección: https://slideplayer.es/slide/1453984/.G. Gonzáles, “Principios de microscopía electrónica de barrido y microanálisis por Rayos X,” en E. Noguez, ed. México: Facultad de Química, UNAM, 2006, pág. 60.70, isbn: 970-32-4011-9. dirección: https://www.google.com/url?sa=i&url=http% 3A % 2F % 2Flibrosoa . unam . mx % 2Fbitstream % 2Fhandle % 2F123456789 % 2F3250 % 2Fprincipios.pdf%3Fsequence%3D1%26isAllowed%3Dy&psig=AOvVaw25p9qjWiyIKah4VrXxw5rw& ust=1700013195377000&source=images&cd=vfe&opi=89978449&ved=0CAUQjB1qFwoTCPiE9OawwoIDFQAAAAAdAAAAABB8B. Inkson, “2 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization,” en Materials Characterization Using Nondestructive Evaluation (NDE) Methods, G. Hübschen, I. Altpeter, R. Tschuncky y H.-G. Herrmann, eds., Woodhead Publishing, 2016, págs. 17-43, isbn: 978-0-08- 100040-3. doi: https://doi.org/10.1016/B978-0-08-100040-3.00002-X. dirección: https://www.sciencedirect.com/science/article/pii/B978008100040300002X.G. Artioli, “X-ray Diffraction (XRD),” en Encyclopedia of Geoarchaeology, A. S. Gilbert, ed. Dordrecht: Springer Netherlands, 2017, págs. 1019-1025, isbn: 978-1-4020- 4409-0. doi: 10.1007/978-1-4020-4409-0_29. dirección: https://doi.org/10. 1007/978-1-4020-4409-0_29.Spectrophotometry, [Online; accessed 2023-08-12], feb. de 2023.M. M. Ghorbani y R. Taherian, “12 - Methods of Measuring Electrical Properties of Material**Hereby from Keithley Co. and Dr. Michael B. Heaney is appreciated due to valuable content used in this chapter.,” en Electrical Conductivity in Polymer- Based Composites, ép. Plastics Design Library, R. Taherian y A. Kausar, eds., William Andrew Publishing, 2019, págs. 365-394, isbn: 978-0-12-812541-0. doi: https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 812541 - 0 . 00012 - 4. dirección: https : / / www . sciencedirect.com/science/article/pii/B9780128125410000124.S. Ye, I. E. Stewart, Z. Chen, B. Li, A. R. Rathmell y B. J. Wiley, “How copper nanowires grow and how to control their properties,” Accounts of chemical research, vol. 49, n.o 3, págs. 442-451, 2016.T. B. A. Senior, “Note on the extinction efficiency,” Appl. Opt., vol. 22, n.o 12, págs. 1796-1797, jun. de 1983. doi: 10.1364/AO.22.001796. dirección: https://opg.optica.org/ao/ abstract.cfm?URI=ao-22-12-1796.G. Huang, C.-H. Lu y H.-H. Yang, “Magnetic nanomaterials for magnetic bioanalysis,” en Novel nanomaterials for biomedical, environmental and energy applications, Elsevier, 2019, págs. 89-109.S. Nandy y K. H. Chae, “17 - Chemical synthesis of ferrite thin films,” en Ferrite Nanostructured Magnetic Materials, ép. Woodhead Publishing Series in Electronic and Optical Materials, J. Pal Singh, K. H. Chae, R. C. Srivastava y O. F. Caltun, eds., Woodhead Publishing, 2023, págs. 309-334, isbn: 978-0-12-823717-5. doi: https:// doi . org / 10 . 1016 / B978 - 0 - 12 - 823717 - 5 . 00021 - 8. dirección: https : / / www . sciencedirect.com/science/article/pii/B9780128237175000218.W. Commons, File:Cu-pourbaix-diagram.svg, https : / / commons . wikimedia . org / wiki/File:Cu-pourbaix-diagram.svg, [Accessed: 14-08-2023], 2007.S. HwanáKo et al., “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale, vol. 9, n.o 5, págs. 1978-1985, 2017.D. Lee, H. Lee, Y. Ahn e Y. Lee, “High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure,” Carbon, vol. 81, págs. 439-446, 2015.S. Sharma, S. Shriwastava, S. Kumar, K. Bhatt y C. C. Tripathi, “Alternative transparent conducting electrode materials for flexible optoelectronic devices,” Opto-Electronics Review, vol. 26, n.o 3, págs. 223-235, 2018.S. H. Kim, W. I. Choi, K. H. Kim, D. J. Yang, S. Heo y D.-J. Yun, “Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes,” Scientific reports, vol. 6, n.o 1, págs. 1-12, 2016.M. Zhang, S. Fang, A. A. Zakhidov et al., “Strong, transparent, multifunctional, carbon nanotube sheets,” science, vol. 309, n.o 5738, págs. 1215-1219, 2005.R. V. Salvatierra, C. E. Cava, L. S. Roman y A. J. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Advanced Functional Materials, vol. 23, n.o 12, págs. 1490-1499, 2013.S. Bae, H. Kim, Y. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, n.o 8, págs. 574-578, 2010.P. Blake, P. D. Brimicombe, R. R. Nair et al., “Graphene-based liquid crystal device,” Nano letters, vol. 8, n.o 6, págs. 1704-1708, 2008.R. Das y H. S. Das, “Merits and demerits of transparent conducting magnetron sputtered ZnO: Al, ITO and SnO2: F thin films for solar cell applications,” Journal of The Institution of Engineers (India): Series D, vol. 98, n.o 1, págs. 85-90, 2017.S. Yu, W. Zhang, L. Li, D. Xu, H. Dong e Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films, vol. 552, págs. 150-154, 2014.S. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao y K. Suganuma, “Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air,” Phys. Chem. Chem. Phys., vol. 17, págs. 31 110-31 116, 46 2015. doi: 10.1039/C5CP04582G. dirección: http://dx.doi.org/10.1039/C5CP04582G.Y. Zhao, X. Zhou, W. Huang, J. Kang y G. He, “High-performance copper nanowire electrode for efficient flexible organic light-emitting diode,” Organic Electronics, vol. 113, pág. 106 690, 2023, issn: 1566-1199. doi: https : / / doi . org / 10 . 1016 / j.orgel.2022.106690. dirección: https://www.sciencedirect.com/science/ article/pii/S1566119922002622Z. Wang, Y. Han, L. Yan et al., “High Power Conversion Efficiency of 13.61% for 1 cm2 Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure- Printed Silver Nanowire Electrodes,” Advanced Functional Materials, vol. 31, n.o 4, pág. 2 007 276, 2021. doi: https : / / doi . org / 10 . 1002 / adfm . 202007276. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202007276. dirección: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007276.Y. Wang, P. Liu, B. Zeng, L. Liu y J. Yang, “Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes,” Nanoscale research letters, vol. 13, n.o 1, págs. 1-10, 2018.H. Zhang, S. Wang, Y. Tian et al., “High-efficiency extraction synthesis for highpurity copper nanowires and their applications in flexible transparent electrodes,” Nano Materials Science, vol. 2, n.o 2, págs. 164-171, 2020.H.-C. Chu, Y.-C. Chang, Y. Lin et al., “Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications,” ACS applied materials & interfaces, vol. 8, n.o 20, págs. 13 009-13 017, 2016.C. Kang, S. Yang, M. Tan et al., “Purification of copper nanowires to prepare flexible transparent conductive films with high performance,” ACS Applied Nano Materials, vol. 1, n.o 7, págs. 3155-3163, 2018A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski y A. A. Bol, “Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes,” ACS nano, vol. 4, n.o 7, págs. 3839-3844, 2010.S. L. Hellstrom, M. Vosgueritchian, R. M. Stoltenberg et al., “Strong and stable doping of carbon nanotubes and graphene by MoO x for transparent electrodes,” Nano letters, vol. 12, n.o 7, págs. 3574-3580, 2012.T. M. Higgins y J. N. Coleman, “Avoiding resistance limitations in high-performance transparent supercapacitor electrodes based on large-area, high-conductivity PEDOT: PSS films,” ACS applied materials & interfaces, vol. 7, n.o 30, págs. 16 495-16 506, 2015.I.-K. Suh, H. Ohta e Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” Journal of Materials Science, vol. 23, págs. 757-760, 1988.N. Calos, J. Forrester y G. Schaffer, “A crystallographic contribution to the mechanism of a mechanically induced solid state reaction,” Journal of Solid State Chemistry, vol. 122, n.o 2, págs. 273-280, 199A. Kirfel y K. Eichhorn, “Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 46, n.o 4, págs. 271-284, 1990S. Matsuyama, Y. Takizawa, S. Kinugasa, K. Tanabe y T. Tamura, Spectral Database for Organic Compounds SDBS, https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_ index.cgi, Accessed: 2023-07-3.THE FINGERPRINT REGION OF AN INFRA-RED SPECTRUM, https://www. chemguide.co.uk/analysis/ir/fingerprint.html, Accessed: 2023-07-20.Q.-m. LIU, D.-b. ZHOU, Y. YAMAMOTO, R. ICHINO y M. OKIDO, “Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method,” Transactions of Nonferrous Metals Society of China, vol. 22, n.o 1, págs. 117-123, 2012.R. Betancourt-Galindo, P. Reyes-Rodriguez, B. Puente-Urbina et al., “Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties,” Journal of Nanomaterials, vol. 2014, págs. 10-10, 2014.M. Salavati-Niasari, F. Davar y N. Mir, “Synthesis and characterization of metallic copper nanoparticles via thermal decomposition,” Polyhedron, vol. 27, n.o 17, págs. 3514-3518, 2008.K. Mikami, Y. Kido, Y. Akaishi, A. Quitain y T. Kida, “Synthesis of Cu2O/CuO nanocrystals and their application to H2S sensing,” Sensors, vol. 19, n.o 1, pág. 211, 2019.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85519/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1014228438.2023.pdf1014228438.2023.pdfTesis de Maestría en Ciencias - Física (Investigación)application/pdf23094809https://repositorio.unal.edu.co/bitstream/unal/85519/2/1014228438.2023.pdfa64c019bbac38b872c9967b689c1f2fcMD52THUMBNAIL1014228438.2023.pdf.jpg1014228438.2023.pdf.jpgGenerated Thumbnailimage/jpeg4208https://repositorio.unal.edu.co/bitstream/unal/85519/3/1014228438.2023.pdf.jpgc32194035ff4b8c11ad69f750e034558MD53unal/85519oai:repositorio.unal.edu.co:unal/855192024-08-21 23:14:00.046Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=