Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6

ilustraciones, diagramas

Autores:
Díaz Sana, Erika Vanessa
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/87057
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/87057
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
Péptidos
Neoplasias del Cuello Uterino
Neoplasias de la Mama
Integrinas
Peptides
Uterine Cervical Neoplasms
Breast Neoplasms
Integrins
Factor Nuclear κβ
Integrina αvβ6
Péptidos quiméricos
Muerte celular
Nuclear factor κβ
Integrin αvβ6
Chimeric peptides
Cell death
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_bdf6fab88489da3599f0d5311eeb0e44
oai_identifier_str oai:repositorio.unal.edu.co:unal/87057
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
dc.title.translated.eng.fl_str_mv Effect of chimeric peptides on the proliferation and apoptosis of cancer cell lines and its correlation with the expression levels of the αVβ6 integrin
title Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
spellingShingle Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
Péptidos
Neoplasias del Cuello Uterino
Neoplasias de la Mama
Integrinas
Peptides
Uterine Cervical Neoplasms
Breast Neoplasms
Integrins
Factor Nuclear κβ
Integrina αvβ6
Péptidos quiméricos
Muerte celular
Nuclear factor κβ
Integrin αvβ6
Chimeric peptides
Cell death
title_short Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
title_full Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
title_fullStr Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
title_full_unstemmed Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
title_sort Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
dc.creator.fl_str_mv Díaz Sana, Erika Vanessa
dc.contributor.advisor.spa.fl_str_mv Urquiza Martínez, Mauricio
dc.contributor.author.spa.fl_str_mv Díaz Sana, Erika Vanessa
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Hormonas
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000019953
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
topic 570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
Péptidos
Neoplasias del Cuello Uterino
Neoplasias de la Mama
Integrinas
Peptides
Uterine Cervical Neoplasms
Breast Neoplasms
Integrins
Factor Nuclear κβ
Integrina αvβ6
Péptidos quiméricos
Muerte celular
Nuclear factor κβ
Integrin αvβ6
Chimeric peptides
Cell death
dc.subject.decs.spa.fl_str_mv Péptidos
Neoplasias del Cuello Uterino
Neoplasias de la Mama
Integrinas
dc.subject.decs.eng.fl_str_mv Peptides
Uterine Cervical Neoplasms
Breast Neoplasms
Integrins
dc.subject.proposal.spa.fl_str_mv Factor Nuclear κβ
Integrina αvβ6
Péptidos quiméricos
Muerte celular
dc.subject.proposal.eng.fl_str_mv Nuclear factor κβ
Integrin αvβ6
Chimeric peptides
Cell death
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-10-25T01:20:02Z
dc.date.available.none.fl_str_mv 2024-10-25T01:20:02Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/87057
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/87057
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Albert, J. M., Kim, K. W., Cao, C., & Lu, B. (2006). Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Molecular Cancer Therapeutics, 5(5), 1183–1189. https://doi.org/10.1158/1535-7163.MCT-05-0400
Arias-Mejias, S. M., Warda, K. Y., Quattrocchi, E., Alonso-Quinones, H., Sominidi-Damodaran, S., & Meves, A. (2020). The role of integrins in melanoma: a review. In International Journal of Dermatology (Vol. 59, Issue 5, pp. 525–534). Blackwell Publishing Ltd. https://doi.org/10.1111/ijd.14850
Bandyopadhyay, A., & Raghavan, S. (2009). Defining the role of integrin alphavbeta6 in cancer. Current Drug Targets, 10(7), 645–652.
Beg, A., & Jr, A. S. B. (1993). The IKB proteins : multifunctional egulators of Rel / NF-KB transcription actors. 2064–2070.
Capozzi, A., Mantuano, E., Matarrese, P., Saccomanni, G., Manera, C., Mattei, V., Gambardella, L., Malorni, W., Sorice, M., & Misasi, R. (2012). A New 4-phenyl-1,8-naphthyridine Derivative Affects Carcinoma Cell Proliferation by Impairing Cell Cycle Progression and Inducing Apoptosis. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 653–662. https://doi.org/10.2174/187152012800617731
Caswell, P., & Norman, J. (2008). Endocytic transport of integrins during cell migration and invasion. Current Drug Targets, May, 257–263. https://doi.org/10.1016/j.tcb.2008.03.004
Cell line - ITGB6 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000115221-ITGB6/cell+line
Cell line - ITGB8 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000105855-ITGB8/cell+line#brain_cancer
Chen, J., Rowe, C. L., Jardetzky, T. S., & Longnecker, R. (2012). The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio, 3(1), 1–9. https://doi.org/10.1128/mBio.00290-11
Chesnokova, L. S., Nishimura, S. L., & Hutt-Fletcher, L. M. (2009). Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins v 6 or v 8. Proceedings of the National Academy of Sciences, 106(48), 20464–20469. https://doi.org/10.1073/pnas.0907508106
Chetoui, N., Gendron, S., Chamoux, E., & Aoudjit, F. (2006). Collagen type I-mediated activation of ERK/MAP Kinase is dependent on Ras, Raf-1 and protein phosphatase 2A in Jurkat T cells. Molecular Immunology, 43(10), 1687–1693. https://doi.org/10.1016/J.MOLIMM.2005.09.010
Collins, P., Grassia, G., Colleran, A., … P. K.-J. of B., & 2015. (n.d.). Mapping the interaction of B cell leukemia 3 (BCL-3) and nuclear factor κB (NF-κB) p50 identifies a BCL-3-mimetic anti-inflammatory peptide. ASBMB. Retrieved January 9, 2023, from https://www.jbc.org/article/S0021-9258(20)35065-1/abstract
Collins, P., Kiely, P., Chemistry, R. C.-J. of B., & 2014, undefined. (n.d.). Inhibition of transcription by B cell Leukemia 3 (Bcl-3) protein requires interaction with nuclear factor κB (NF-κB) p50. ASBMB. Retrieved January 10, 2023, from https://www.jbc.org/article/S0021-9258(20)44522-3/abstract
Dodagatta-Marri, E., Ma, H. Y., Liang, B., Li, J., Meyer, D. S., Chen, S. Y., Sun, K. H., Ren, X., Zivak, B., Rosenblum, M. D., Headley, M. B., Pinzas, L., Reed, N. I., del Cid, J. S., Hann, B. C., Yang, S., Giddabasappa, A., Noorbehesht, K., Yang, B., … Sheppard, D. (2021). Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Reports, 36(1). https://doi.org/10.1016/J.CELREP.2021.109309
Emonard, H., Dedieu, S., Dontenwill, M., Blandin, A.-F., Renner, G., Lehmann, M., Lelong-Rebel, I., & Martin, S. (2015). β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Frontiers in Pharmacology | Www.Frontiersin.Org, 6, 279. https://doi.org/10.3389/fphar.2015.00279
Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. v., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. Journal of Biological Chemistry, 290(8), 4545–4551. https://doi.org/10.1074/JBC.C114.617662
Galletti, P., Soldati, R., Pori, M., Durso, M., Tolomelli, A., Gentilucci, L., Dattoli, S. D., Baiula, M., Spampinato, S., & Giacomini, D. (2014). Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. European Journal of Medicinal Chemistry, 83, 284–293. https://doi.org/10.1016/j.ejmech.2014.06.041
Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., & Kroemer, G. (2007). Cell death modalities: Classification and pathophysiological implications. In Cell Death and Differentiation (Vol. 14, Issue 7, pp. 1237–1243). https://doi.org/10.1038/sj.cdd.4402148
Gendron, S., Couture, J., & Aoudjit, F. (2003). Integrin α2β1 inhibits Fas-mediated apoptosis in T lymphocytes by protein phosphatase 2A-dependent activation of the MAPK/ERK pathway. Journal of Biological Chemistry, 278(49), 48633–48643. https://doi.org/10.1074/JBC.M305169200
Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., Cheng, H., Jin, K., Ni, Q., Yu, X., & Liu, C. (2019). The role of necroptosis in cancer biology and therapy. In Molecular Cancer (Vol. 18, Issue 1, pp. 1–17). BioMed Central Ltd. https://doi.org/10.1186/s12943-019-1029-8
Goswami, S. (2013). Importance of integrin receptors in the field of pharmaceutical & medical science. Advances in Biological Chemistry, 03(02), 224–252. https://doi.org/10.4236/abc.2013.32028
Gupta, S. C., Prasad, S., Reuter, S., Kannappan, R., Yadav, V. R., Ravindran, J., Hema, P. S., Chaturvedi, M. M., Nair, M., & Aggarwal, B. B. (2010). Modification of cysteine 179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. Journal of Biological Chemistry, 285(46), 35406–35417. https://doi.org/10.1074/jbc.M110.161984
Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010a). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1799(10–12), 775–787. https://doi.org/10.1016/j.bbagrm.2010.05.004
Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010b). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. In Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (Vol. 1799, Issues 10–12, pp. 775–787). Elsevier. https://doi.org/10.1016/j.bbagrm.2010.05.004
Hernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., Luria-Pérez, R., Hernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., & Luria-Pérez, R. (2016). Bactofection of sequences encoding a Bax protein peptide chemosensitizes prostate cancer tumor cells. Boletín Médico Del Hospital Infantil de México, 73(6), 388–396. https://doi.org/10.1016/J.BMHIMX.2016.10.002
Karin, M., & Greten, F. R. (2005a). NF-κB: Linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5(10), 749–759. https://doi.org/10.1038/nri1703
Karin, M., & Greten, F. R. (2005b). NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749.
Kopatz, V., & Selzer, E. (2020). Quantitative and qualitative analysis of integrin subtype expression in melanocytes and melanoma cells. Journal of Receptors and Signal Transduction, 40(3), 237–245. https://doi.org/10.1080/10799893.2020.1727923
Kuroda, H., Tachikawa, M., Yagi, Y., Umetsu, M., Nurdin, A., Miyauchi, E., Watanabe, M., Uchida, Y., & Terasaki, T. (2019). Cluster of Differentiation 46 Is the Major Receptor in Human Blood-Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Molecular Pharmaceutics, 16(1), 292–304. https://doi.org/10.1021/acs.molpharmaceut.8b00985
Lanzetti, L., & di Fiore, P. P. (2008). Endocytosis and cancer: An “Insider” network with dangerous liaisons. Traffic, 9(12), 2011–2021. https://doi.org/10.1111/j.1600-0854.2008.00816.x
Legge, D. N., Chambers, A. C., Parker, C. T., Timms, P., Collard, T. J., & Williams, A. C. (2020). The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis, 41(3), 249–256. https://doi.org/10.1093/carcin/bgaa003
Matsuura, H., Kirschner, A. N., Longnecker, R., & Jardetzky, T. S. (2010). Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proceedings of the National Academy of Sciences, 107(52), 22641–22646. https://doi.org/10.1073/pnas.1011806108
May, M. J., D'Acquisto, F., Madge, L. A., Glöckner, J., Pober, J. S., & Ghosh, S. (2000). Selective Inhibition of NF-κB Activation by a Peptide That Blocks the Interaction of NEMO with the IκB Kinase Complex. Science, 289(5484), 1550 LP – 1554. http://science.sciencemag.org/content/289/5484/1550.abstract
Meyer, T., Marshall, J. F., & Hart, I. R. (1998). Expression of xv integrins and vitronectin receptor identity in breast cancer cells. In British Joumal of Cancer (Vol. 77, Issue 4).
Mohazab, L., Koivisto, L., Jiang, G., Kytomaki, L., Haapasalo, M., Owen, G. R., Wiebe, C., Xie, Y., Heikinheimo, K., Yoshida, T., Smith, C. E., Heino, J., Hakkinen, L., McKee, M. D., & Larjava, H. (2013). Critical role for v 6 integrin in enamel biomineralization. Journal of Cell Science, 126(3), 732–744. https://doi.org/10.1242/jcs.112599
Naci, D., el Azreq, M. A., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., Al-Daccak, R., & Aoudjit, F. (2012). α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). The Journal of Biological Chemistry, 287(21), 17065–17076. https://doi.org/10.1074/JBC.M112.349365
Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H. J., Schwaiger, M., Weinmüller, M., Räder, A., Steiger, K., & Kessler, H. (2017). Exploring the role of RGD-recognizing integrins in cancer. Cancers, 9(9), 1–33. https://doi.org/10.3390/cancers9090116
Oeckinghaus, A., & Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), 1–15. https://doi.org/10.1101/cshperspect.a000034
Pahl, H. L. (1999). Activators and target genes of Rel / NF- k B transcription factors. Oncogene, 18(49), 6853, 18.
Pallis, M., Grundy, M., Turzanski, J., Kofler, R., & Russell, N. (2001). Mitochondrial membrane sensitivity to depolarization in acute myeloblastic leukemia is associated with spontaneous in vitro apoptosis, wild-type TP53, and vicinal thiol/disulfide status. Blood, 98(2), 405–413. https://doi.org/10.1182/blood.V98.2.405
Paolillo, M., & Schinelli, S. (n.d.). cancers Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. https://doi.org/10.3390/cancers9080095
Park, S. H., Riley, P., & Frisch, S. M. (2013). Regulation of anoikis by deleted in breast cancer-1 (DBC1) through NF-κB. Apoptosis, 18(8), 949–962. https://doi.org/10.1007/s10495-013-0847-1
Phanie Charrin, S., Phanie Jouannet, S., Boucheix, C., & Rubinstein, E. (n.d.). Tetraspanins at a glance. Journal of Cell Science CELL SCIENCE AT A GLANCE. https://doi.org/10.1242/jcs.154906
Placzek, W. J., Wei, J., Kitada, S., Zhai, D., Reed, J. C., & Pellecchia, M. (2010). A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death & Disease, 1(5), e40. https://doi.org/10.1038/CDDIS.2010.18
Raghavan, A. B. and S. (2010). Defining the Role of Integrin αvβ6 in Cancer. 10(7), 645–652. Saviola, A. J., Burns, P. D., Mukherjee, A. K., & Mackessy, S. P. (2016). The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. International Journal of Biological Macromolecules, 88, 457–464. https://doi.org/10.1016/j.ijbiomac.2016.04.008
Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419. https://doi.org/10.3892/IJO.2018.4661/HTML
Seguin, L., Desgrosellier, J., Weis, S., biology, D. C.-T. in cell, & 2015, undefined. (n.d.). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Elsevier. Retrieved December 28, 2022, from https://www.sciencedirect.com/science/article/pii/S0962892414002165
Shih, V. F., Tsui, R., Caldwell, A., & Hoffmann, A. (2011). A single NF κ B system for both canonical and non-canonical signaling. Nature Publishing Group, 21(1), 86–102. https://doi.org/10.1038/cr.2010.161
Taherian, A., Li, X., Liu, Y., & Haas, T. A. (2011). Differences in integrin expression and signaling within human breast cancer cells.
Tao, Y., Liu, Z., Hou, Y., Wang, S., Liu, S., Jiang, Y., Tan, D., Ge, Q., Li, C., Hu, Y., Liu, Z., Chen, X., Wang, Q., Wang, M., & Zhang, X. (2018). Alternative NF- κ B signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene, 3. https://doi.org/10.1038/s41388-018-0363-4
Ugarte-Alvarez, O., Muñoz-López, P., Moreno-Vargas, L. M., Prada-Gracia, D., Mateos-Chávez, A. A., Becerra-Báez, E. I., & Luria-Pérez, R. (2020). Cell-permeable BAK BH3 peptide induces chemosensitization of hematologic malignant cells. Journal of Oncology, 2020. https://doi.org/10.1155/2020/2679046
Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Tissue-based map of the human proteome. Science, 347(6220). https://doi.org/10.1126/SCIENCE.1260419
Urquiza, M., Suarez, J., Lopez, R., Vega, E., Patino, H., Garcia, J., Patarroyo, M. A., Guzman, F., & Patarroyo, M. E. (2004). Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Biochemical and Biophysical Research Communications, 319(1), 221–229. https://doi.org/10.1016/j.bbrc.2004.04.177
Wen, S., Zhu, D., & Huang, P. (2013). Targeting cancer cell mitochondria as a therapeutic approach. In Future Medicinal Chemistry (Vol. 5, Issue 1, pp. 53–67). Future Science Ltd London, UK . https://doi.org/10.4155/fmc.12.190
Werner, J., Decarlo, C. A., Escott, N., Zehbe, I., & Ulanova, M. (2012). Expression of integrins and Toll-like receptors in cervical cancer: Effect of infectious agents. Innate Immunity, 18(1), 55–69. https://doi.org/10.1177/1753425910392934
Xie, Y., McElwee, K., Owen, G., … L. H.-J. of I., & 2012, U. (2012). Integrin β6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation. Journal of Investigative Dermatology, 132(3), 547–555.
Ying, S., & Häcker, G. (2007). Apoptosis induced by direct triggering of mitochondrial apoptosis proceeds in the near-absence of some apoptotic markers. Apoptosis, 12(11), 2003–2011. https://doi.org/10.1007/s10495-007-0117-1
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 52 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/87057/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/87057/2/1018448541.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/87057/3/1018448541.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2e4f7ae5b5da2fffe60b0fcec0042fe2
9507a82687e9f48cf261303bbb076f11
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089734115295232
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Urquiza Martínez, Mauricio6b6d659b9ea782b1d1486a0ca6f71fb8600Díaz Sana, Erika Vanessac4aca115f22a886d0d2742cbb0a54d37600Grupo de Investigación en Hormonashttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000199532024-10-25T01:20:02Z2024-10-25T01:20:02Z2023https://repositorio.unal.edu.co/handle/unal/87057Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa invasión celular, migración y metástasis en algunos tipos de tumores es promovida por la desregulación en la señalización del factor nuclear κβ y la sobre expresión de la integrina αvβ6. La presencia de esta integrina se correlaciona con malignidad de las lesiones, por lo que se considera un biomarcador y blanco terapéutico en células tumorales. El factor nuclear κβ (NF- κβ) regula la transcripción de genes involucrados en la respuesta inmune y respuestas celulares como adhesión, diferenciación y apoptosis. La activación inapropiada o exacerbada del NF- κβ está involucrada en diversos tipos de patologías como enfermedades inflamatorias crónicas, autoinmunes, y el desarrollo y progresión del cáncer, específicamente en carcinomas de seno, pulmón, boca, estómago, endometrio, páncreas, y ovario. En esta tesis reportamos que los péptidos quiméricos P63 y P68, sintetizados con motivos de unión la integrina αvβ6 y un motivo que bloquea la señalización del NF- κβ mediada por la proteína BCL-3. (1) Son capaces de unirse en mayor proporción a células de cáncer de cérvix, seno, leucemia linfoide aguda, melanoma y pulmón (HeLa, MCF-7, CCRF-CEM, Skmel 23 y A549 respectivamente) en comparación con líneas celulares no tumorales como HEK 293, fibroblastos y células mononucleares de sangre periférica (PBMCs) de un individuo sano. (2) También, modifican el potencial de membrana mitocondrial de manera dosis y tiempo dependiente y (3) promueven la expresión de marcadores de apoptosis en las células tumorales HeLa y MCF-7 pero no en células normales. Estos resultados, permiten conocer el funcionamiento de los péptidos a nivel biológico y molecular y arrojan información sobre su potencial para controlar procesos tumorales de una manera específica y bajo efecto citotóxico en células sanas. (Texto tomado de la fuente).Cell invasion, migration, and metastasis in some types of tumors is promoted by deregulation of nuclear factor κβ signaling and overexpression of integrin αvβ6. The presence of this integrin correlates with the malignancy of the lesions, which is why it is considered a biomarker and therapeutic target in tumor cells. Nuclear factor κβ (NF- κβ) regulates the transcription of genes involved in the immune response and cellular responses such as adhesion, differentiation, and apoptosis. Inappropriate or exacerbated activation of NF-κβ is involved in various types of pathologies such as chronic inflammatory and autoimmune diseases, and the development and progression of cancer, specifically in carcinomas of the breast, lung, mouth, stomach, endometrium, pancreas, and ovary. In this article we report that chimeric peptides P63 and P68, synthesized with integrin αvβ6 binding motifs and a motif that blocks NF-κβ signaling mediated by the BCL-3 protein. (1) They are able to bind to a higher proportion of cervical, breast, acute lymphoid leukemia, melanoma and lung cancer cells (HeLa, MCF-7, CCRF-CEM, Skmel 23 and A549 respectively) compared to non-tumor cell lines as HEK 293, fibroblasts and peripheral blood mononuclear cells (PBMCs) from a healthy individual. (2) Also, they modify the mitochondrial membrane potential in a dose- and time-dependent manner and (3) they promote the expression of apoptosis markers in HeLa and MCF-7 tumor cells but not in normal cells. These results allow us to know the functioning of the peptides at a biological and molecular level and shed information on their potential to control tumor processes in a specific way and with a low cytotoxic effect on healthy cells.MaestríaMagíster en Ciencias - Bioquímicaxii, 52 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica610 - Medicina y salud::616 - EnfermedadesPéptidosNeoplasias del Cuello UterinoNeoplasias de la MamaIntegrinasPeptidesUterine Cervical NeoplasmsBreast NeoplasmsIntegrinsFactor Nuclear κβIntegrina αvβ6Péptidos quiméricosMuerte celularNuclear factor κβIntegrin αvβ6Chimeric peptidesCell deathEfecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6Effect of chimeric peptides on the proliferation and apoptosis of cancer cell lines and its correlation with the expression levels of the αVβ6 integrinTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAlbert, J. M., Kim, K. W., Cao, C., & Lu, B. (2006). Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Molecular Cancer Therapeutics, 5(5), 1183–1189. https://doi.org/10.1158/1535-7163.MCT-05-0400Arias-Mejias, S. M., Warda, K. Y., Quattrocchi, E., Alonso-Quinones, H., Sominidi-Damodaran, S., & Meves, A. (2020). The role of integrins in melanoma: a review. In International Journal of Dermatology (Vol. 59, Issue 5, pp. 525–534). Blackwell Publishing Ltd. https://doi.org/10.1111/ijd.14850Bandyopadhyay, A., & Raghavan, S. (2009). Defining the role of integrin alphavbeta6 in cancer. Current Drug Targets, 10(7), 645–652.Beg, A., & Jr, A. S. B. (1993). The IKB proteins : multifunctional egulators of Rel / NF-KB transcription actors. 2064–2070.Capozzi, A., Mantuano, E., Matarrese, P., Saccomanni, G., Manera, C., Mattei, V., Gambardella, L., Malorni, W., Sorice, M., & Misasi, R. (2012). A New 4-phenyl-1,8-naphthyridine Derivative Affects Carcinoma Cell Proliferation by Impairing Cell Cycle Progression and Inducing Apoptosis. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 653–662. https://doi.org/10.2174/187152012800617731Caswell, P., & Norman, J. (2008). Endocytic transport of integrins during cell migration and invasion. Current Drug Targets, May, 257–263. https://doi.org/10.1016/j.tcb.2008.03.004Cell line - ITGB6 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000115221-ITGB6/cell+lineCell line - ITGB8 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000105855-ITGB8/cell+line#brain_cancerChen, J., Rowe, C. L., Jardetzky, T. S., & Longnecker, R. (2012). The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio, 3(1), 1–9. https://doi.org/10.1128/mBio.00290-11Chesnokova, L. S., Nishimura, S. L., & Hutt-Fletcher, L. M. (2009). Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins v 6 or v 8. Proceedings of the National Academy of Sciences, 106(48), 20464–20469. https://doi.org/10.1073/pnas.0907508106Chetoui, N., Gendron, S., Chamoux, E., & Aoudjit, F. (2006). Collagen type I-mediated activation of ERK/MAP Kinase is dependent on Ras, Raf-1 and protein phosphatase 2A in Jurkat T cells. Molecular Immunology, 43(10), 1687–1693. https://doi.org/10.1016/J.MOLIMM.2005.09.010Collins, P., Grassia, G., Colleran, A., … P. K.-J. of B., & 2015. (n.d.). Mapping the interaction of B cell leukemia 3 (BCL-3) and nuclear factor κB (NF-κB) p50 identifies a BCL-3-mimetic anti-inflammatory peptide. ASBMB. Retrieved January 9, 2023, from https://www.jbc.org/article/S0021-9258(20)35065-1/abstractCollins, P., Kiely, P., Chemistry, R. C.-J. of B., & 2014, undefined. (n.d.). Inhibition of transcription by B cell Leukemia 3 (Bcl-3) protein requires interaction with nuclear factor κB (NF-κB) p50. ASBMB. Retrieved January 10, 2023, from https://www.jbc.org/article/S0021-9258(20)44522-3/abstractDodagatta-Marri, E., Ma, H. Y., Liang, B., Li, J., Meyer, D. S., Chen, S. Y., Sun, K. H., Ren, X., Zivak, B., Rosenblum, M. D., Headley, M. B., Pinzas, L., Reed, N. I., del Cid, J. S., Hann, B. C., Yang, S., Giddabasappa, A., Noorbehesht, K., Yang, B., … Sheppard, D. (2021). Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Reports, 36(1). https://doi.org/10.1016/J.CELREP.2021.109309Emonard, H., Dedieu, S., Dontenwill, M., Blandin, A.-F., Renner, G., Lehmann, M., Lelong-Rebel, I., & Martin, S. (2015). β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Frontiers in Pharmacology | Www.Frontiersin.Org, 6, 279. https://doi.org/10.3389/fphar.2015.00279Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. v., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. Journal of Biological Chemistry, 290(8), 4545–4551. https://doi.org/10.1074/JBC.C114.617662Galletti, P., Soldati, R., Pori, M., Durso, M., Tolomelli, A., Gentilucci, L., Dattoli, S. D., Baiula, M., Spampinato, S., & Giacomini, D. (2014). Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. European Journal of Medicinal Chemistry, 83, 284–293. https://doi.org/10.1016/j.ejmech.2014.06.041Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., & Kroemer, G. (2007). Cell death modalities: Classification and pathophysiological implications. In Cell Death and Differentiation (Vol. 14, Issue 7, pp. 1237–1243). https://doi.org/10.1038/sj.cdd.4402148Gendron, S., Couture, J., & Aoudjit, F. (2003). Integrin α2β1 inhibits Fas-mediated apoptosis in T lymphocytes by protein phosphatase 2A-dependent activation of the MAPK/ERK pathway. Journal of Biological Chemistry, 278(49), 48633–48643. https://doi.org/10.1074/JBC.M305169200Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., Cheng, H., Jin, K., Ni, Q., Yu, X., & Liu, C. (2019). The role of necroptosis in cancer biology and therapy. In Molecular Cancer (Vol. 18, Issue 1, pp. 1–17). BioMed Central Ltd. https://doi.org/10.1186/s12943-019-1029-8Goswami, S. (2013). Importance of integrin receptors in the field of pharmaceutical & medical science. Advances in Biological Chemistry, 03(02), 224–252. https://doi.org/10.4236/abc.2013.32028Gupta, S. C., Prasad, S., Reuter, S., Kannappan, R., Yadav, V. R., Ravindran, J., Hema, P. S., Chaturvedi, M. M., Nair, M., & Aggarwal, B. B. (2010). Modification of cysteine 179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. Journal of Biological Chemistry, 285(46), 35406–35417. https://doi.org/10.1074/jbc.M110.161984Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010a). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1799(10–12), 775–787. https://doi.org/10.1016/j.bbagrm.2010.05.004Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010b). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. In Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (Vol. 1799, Issues 10–12, pp. 775–787). Elsevier. https://doi.org/10.1016/j.bbagrm.2010.05.004Hernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., Luria-Pérez, R., Hernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., & Luria-Pérez, R. (2016). Bactofection of sequences encoding a Bax protein peptide chemosensitizes prostate cancer tumor cells. Boletín Médico Del Hospital Infantil de México, 73(6), 388–396. https://doi.org/10.1016/J.BMHIMX.2016.10.002Karin, M., & Greten, F. R. (2005a). NF-κB: Linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5(10), 749–759. https://doi.org/10.1038/nri1703Karin, M., & Greten, F. R. (2005b). NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749.Kopatz, V., & Selzer, E. (2020). Quantitative and qualitative analysis of integrin subtype expression in melanocytes and melanoma cells. Journal of Receptors and Signal Transduction, 40(3), 237–245. https://doi.org/10.1080/10799893.2020.1727923Kuroda, H., Tachikawa, M., Yagi, Y., Umetsu, M., Nurdin, A., Miyauchi, E., Watanabe, M., Uchida, Y., & Terasaki, T. (2019). Cluster of Differentiation 46 Is the Major Receptor in Human Blood-Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Molecular Pharmaceutics, 16(1), 292–304. https://doi.org/10.1021/acs.molpharmaceut.8b00985Lanzetti, L., & di Fiore, P. P. (2008). Endocytosis and cancer: An “Insider” network with dangerous liaisons. Traffic, 9(12), 2011–2021. https://doi.org/10.1111/j.1600-0854.2008.00816.xLegge, D. N., Chambers, A. C., Parker, C. T., Timms, P., Collard, T. J., & Williams, A. C. (2020). The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis, 41(3), 249–256. https://doi.org/10.1093/carcin/bgaa003Matsuura, H., Kirschner, A. N., Longnecker, R., & Jardetzky, T. S. (2010). Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proceedings of the National Academy of Sciences, 107(52), 22641–22646. https://doi.org/10.1073/pnas.1011806108May, M. J., D'Acquisto, F., Madge, L. A., Glöckner, J., Pober, J. S., & Ghosh, S. (2000). Selective Inhibition of NF-κB Activation by a Peptide That Blocks the Interaction of NEMO with the IκB Kinase Complex. Science, 289(5484), 1550 LP – 1554. http://science.sciencemag.org/content/289/5484/1550.abstractMeyer, T., Marshall, J. F., & Hart, I. R. (1998). Expression of xv integrins and vitronectin receptor identity in breast cancer cells. In British Joumal of Cancer (Vol. 77, Issue 4).Mohazab, L., Koivisto, L., Jiang, G., Kytomaki, L., Haapasalo, M., Owen, G. R., Wiebe, C., Xie, Y., Heikinheimo, K., Yoshida, T., Smith, C. E., Heino, J., Hakkinen, L., McKee, M. D., & Larjava, H. (2013). Critical role for v 6 integrin in enamel biomineralization. Journal of Cell Science, 126(3), 732–744. https://doi.org/10.1242/jcs.112599Naci, D., el Azreq, M. A., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., Al-Daccak, R., & Aoudjit, F. (2012). α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). The Journal of Biological Chemistry, 287(21), 17065–17076. https://doi.org/10.1074/JBC.M112.349365Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H. J., Schwaiger, M., Weinmüller, M., Räder, A., Steiger, K., & Kessler, H. (2017). Exploring the role of RGD-recognizing integrins in cancer. Cancers, 9(9), 1–33. https://doi.org/10.3390/cancers9090116Oeckinghaus, A., & Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), 1–15. https://doi.org/10.1101/cshperspect.a000034Pahl, H. L. (1999). Activators and target genes of Rel / NF- k B transcription factors. Oncogene, 18(49), 6853, 18.Pallis, M., Grundy, M., Turzanski, J., Kofler, R., & Russell, N. (2001). Mitochondrial membrane sensitivity to depolarization in acute myeloblastic leukemia is associated with spontaneous in vitro apoptosis, wild-type TP53, and vicinal thiol/disulfide status. Blood, 98(2), 405–413. https://doi.org/10.1182/blood.V98.2.405Paolillo, M., & Schinelli, S. (n.d.). cancers Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. https://doi.org/10.3390/cancers9080095Park, S. H., Riley, P., & Frisch, S. M. (2013). Regulation of anoikis by deleted in breast cancer-1 (DBC1) through NF-κB. Apoptosis, 18(8), 949–962. https://doi.org/10.1007/s10495-013-0847-1Phanie Charrin, S., Phanie Jouannet, S., Boucheix, C., & Rubinstein, E. (n.d.). Tetraspanins at a glance. Journal of Cell Science CELL SCIENCE AT A GLANCE. https://doi.org/10.1242/jcs.154906Placzek, W. J., Wei, J., Kitada, S., Zhai, D., Reed, J. C., & Pellecchia, M. (2010). A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death & Disease, 1(5), e40. https://doi.org/10.1038/CDDIS.2010.18Raghavan, A. B. and S. (2010). Defining the Role of Integrin αvβ6 in Cancer. 10(7), 645–652. Saviola, A. J., Burns, P. D., Mukherjee, A. K., & Mackessy, S. P. (2016). The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. International Journal of Biological Macromolecules, 88, 457–464. https://doi.org/10.1016/j.ijbiomac.2016.04.008Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419. https://doi.org/10.3892/IJO.2018.4661/HTMLSeguin, L., Desgrosellier, J., Weis, S., biology, D. C.-T. in cell, & 2015, undefined. (n.d.). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Elsevier. Retrieved December 28, 2022, from https://www.sciencedirect.com/science/article/pii/S0962892414002165Shih, V. F., Tsui, R., Caldwell, A., & Hoffmann, A. (2011). A single NF κ B system for both canonical and non-canonical signaling. Nature Publishing Group, 21(1), 86–102. https://doi.org/10.1038/cr.2010.161Taherian, A., Li, X., Liu, Y., & Haas, T. A. (2011). Differences in integrin expression and signaling within human breast cancer cells.Tao, Y., Liu, Z., Hou, Y., Wang, S., Liu, S., Jiang, Y., Tan, D., Ge, Q., Li, C., Hu, Y., Liu, Z., Chen, X., Wang, Q., Wang, M., & Zhang, X. (2018). Alternative NF- κ B signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene, 3. https://doi.org/10.1038/s41388-018-0363-4Ugarte-Alvarez, O., Muñoz-López, P., Moreno-Vargas, L. M., Prada-Gracia, D., Mateos-Chávez, A. A., Becerra-Báez, E. I., & Luria-Pérez, R. (2020). Cell-permeable BAK BH3 peptide induces chemosensitization of hematologic malignant cells. Journal of Oncology, 2020. https://doi.org/10.1155/2020/2679046Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Tissue-based map of the human proteome. Science, 347(6220). https://doi.org/10.1126/SCIENCE.1260419Urquiza, M., Suarez, J., Lopez, R., Vega, E., Patino, H., Garcia, J., Patarroyo, M. A., Guzman, F., & Patarroyo, M. E. (2004). Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Biochemical and Biophysical Research Communications, 319(1), 221–229. https://doi.org/10.1016/j.bbrc.2004.04.177Wen, S., Zhu, D., & Huang, P. (2013). Targeting cancer cell mitochondria as a therapeutic approach. In Future Medicinal Chemistry (Vol. 5, Issue 1, pp. 53–67). Future Science Ltd London, UK . https://doi.org/10.4155/fmc.12.190Werner, J., Decarlo, C. A., Escott, N., Zehbe, I., & Ulanova, M. (2012). Expression of integrins and Toll-like receptors in cervical cancer: Effect of infectious agents. Innate Immunity, 18(1), 55–69. https://doi.org/10.1177/1753425910392934Xie, Y., McElwee, K., Owen, G., … L. H.-J. of I., & 2012, U. (2012). Integrin β6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation. Journal of Investigative Dermatology, 132(3), 547–555.Ying, S., & Häcker, G. (2007). Apoptosis induced by direct triggering of mitochondrial apoptosis proceeds in the near-absence of some apoptotic markers. Apoptosis, 12(11), 2003–2011. https://doi.org/10.1007/s10495-007-0117-1InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/87057/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1018448541.2022.pdf1018448541.2022.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf1455658https://repositorio.unal.edu.co/bitstream/unal/87057/2/1018448541.2022.pdf2e4f7ae5b5da2fffe60b0fcec0042fe2MD52THUMBNAIL1018448541.2022.pdf.jpg1018448541.2022.pdf.jpgGenerated Thumbnailimage/jpeg5690https://repositorio.unal.edu.co/bitstream/unal/87057/3/1018448541.2022.pdf.jpg9507a82687e9f48cf261303bbb076f11MD53unal/87057oai:repositorio.unal.edu.co:unal/870572024-10-25 00:06:29.574Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=