Monte Carlo simulation of bit patterned media applied to data storage devices

En este trabajo presentamos un marco completo de para la simulación atomística de materiales magnéticos patronados. Tiene características que permiten la observación de efectos causados por impurezas magnéticas en la matriz (idealmente no magnética) de dichos materiales; también, el efecto super-par...

Full description

Autores:
Arbeláez Echeverri, Oscar David
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/57560
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/57560
http://bdigital.unal.edu.co/53863/
Palabra clave:
53 Física / Physics
6 Tecnología (ciencias aplicadas) / Technology
Materiales magnéticos patronados
Método de Montecarlo
Ecuación LLG
Dispositivos de almacenamiento de datos
Bit patterned media
Monte Carlo method
LLG Equation
Data storage devices
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:En este trabajo presentamos un marco completo de para la simulación atomística de materiales magnéticos patronados. Tiene características que permiten la observación de efectos causados por impurezas magnéticas en la matriz (idealmente no magnética) de dichos materiales; también, el efecto super-para-magnético en estos materiales a temperaturas suficientemente altas. El modelo atomístico de este marco es compatible con el método de integración Monte Carlo y el método de integración de la ecuación estocástica de Landau-Lifshitz-Gilbert con dinámica de Langevin; estas técnicas permiten el estudio tanto de las propiedades magnéticas estáticas así como de las dinámicas en los materiales antes mencionados. Como una aplicación de este marco, fue desarrollado un nuevo diseño de material magnético patronado basado en cobalto con una anisotropía uni-axial efectiva fuera del plano, nuestro modelo se caracteriza por la inclusión de impurezas magnéticas en la matriz no magnética de este material. Luego de que el modelo del material fuera refinado durante tres iteraciones usando simulaciones Monte Carlo, fueron realizadas otras simulaciones usando un integrador atomístico para la ecuación de Landau-Lifshitz-Gilbert con dinámica de Langevin para estudiar el comportamiento del sistema, prestando atención especial al límite super-para-magnético. Nuestro sistema modelo exhibe tres transiciones de fase magnéticas, una de ellas se debe a la matriz dopada magnéticamente y a la interacción débil entre las nano-estructuras que componen el material. Las otras transiciones de fase en el sistema así como las características del diagrama de fase son explicadas a lo largo del trabajo. Nuestra conclusión principal incluye la simplicidad y la robustez probada del modelo que desarrollamos y la aplicabilidad de los materiales magnéticos patronados incluso cuando hay una cantidad significativa de impurezas magnéticas en la matriz del material (Texto tomado de la fuente)