Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l

Through the sputtering technique, cerium oxynitride and / or cerium oxide films were synthesized on AISI 316L surgical steel. In total 8 deposit conditions were planned under which the temperature (180, 200, 250 and 300 ° C) and the nitrogen flow (15.0 and 20.0 sccm) were changed. Additionally, the...

Full description

Autores:
Garcia Rodriguez, Alejandro
Tipo de recurso:
Work document
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75637
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75637
Palabra clave:
Química y ciencias afines
Películas Delgadas
Corrosión
Sputtering
Thin film
Sputtering
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_bd7f3360318b78a877e8ba69a9c3e460
oai_identifier_str oai:repositorio.unal.edu.co:unal/75637
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
dc.title.alternative.spa.fl_str_mv Characterization and evaluation of resistance to corrosion of thin films of oxinitride and / or oxide films of cerio on AISI 316l
title Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
spellingShingle Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
Química y ciencias afines
Películas Delgadas
Corrosión
Sputtering
Thin film
Sputtering
title_short Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
title_full Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
title_fullStr Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
title_full_unstemmed Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
title_sort Caracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316l
dc.creator.fl_str_mv Garcia Rodriguez, Alejandro
dc.contributor.advisor.spa.fl_str_mv Cubillos González, Gloria Ivonne
Umaña Perez, Yadi Adriana
dc.contributor.author.spa.fl_str_mv Garcia Rodriguez, Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Materiales y Procesos Quimicos
dc.subject.ddc.spa.fl_str_mv Química y ciencias afines
topic Química y ciencias afines
Películas Delgadas
Corrosión
Sputtering
Thin film
Sputtering
dc.subject.proposal.spa.fl_str_mv Películas Delgadas
Corrosión
Sputtering
dc.subject.proposal.eng.fl_str_mv Thin film
Sputtering
description Through the sputtering technique, cerium oxynitride and / or cerium oxide films were synthesized on AISI 316L surgical steel. In total 8 deposit conditions were planned under which the temperature (180, 200, 250 and 300 ° C) and the nitrogen flow (15.0 and 20.0 sccm) were changed. Additionally, the results of morphology and corrosion resistance were compared with those of zirconia oxynitride films and nickel copper oxynitrides which are known to improve the corrosion resistance of surgical grade stainless steel and favor osteoblast cell growth. The latter were deposited under previously standardized conditions within the research group. CeO2 and / or CeOxNy, ZrOxNy and NiCuON films were morphologically, chemically and structurally characterized by SEM, EDX and DRX. Zirconium and nickel copper oxynitride have a homogeneous morphology with good adhesion, without micropores and microcracks; while those of CeO2 and / or CeOxNy, are characterized by having a large number of surface defects and low adhesion to the substrate in some of the selected deposit conditions. Those deposited at a temperature of 200 ° C and nitrogen flow N2 = 20.0 sccm, presented the best morphology, with little delamination, micropores and microcracks. As for the crystalline structure of the CeO2 and / or CeOxNy films, it was cubic with preferential growth on the planes (111) and (220) of CeO2. The corrosion resistance results evaluated from EIS electrochemical impedance spectroscopy and potentiodynamic polarization curves show that despite the surface defects of the CeO2 and / or CeOxNy films, all the test pieces presented impedance values, Corrosion current density, polarization resistance, corrosion potential and pitting nucleation, better than bare 316L stainless steel, suggesting that the cerium ceramic coating would induce galvanic protection of the steel. The films deposited at 200 ° C and flow of N2 = 20.0 sccm presented the greatest protection against corrosion in Hank's solution. The results obtained in this work are a contribution to the development of surgical steel surface coatings for biomedical applications.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-02-18T16:08:49Z
dc.date.available.spa.fl_str_mv 2020-02-18T16:08:49Z
dc.date.issued.spa.fl_str_mv 2020-02-17
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75637
url https://repositorio.unal.edu.co/handle/unal/75637
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] J. B. Holmes, “La prótesis y sus componentes Opciones, opciones y más opciones,” Amputee Coalition of America, 2005. [2] B. Mundial, “Informe mundial la discapacidad discapacidad.” pp. 3–15, 2011. [3] “OMS | Dispositivos y tecnologías de apoyo a las personas con discapacidad,” WHO, 2016. . [4] J. Cohen, “Current concepts review. Corrosion of metal orthopaedic implants.,” J. Bone Joint Surg. Am., vol. 80, no. 10, p. 1554, 1998. [5] G. Gonzalez, “Evaluación de la resistencia a la corrosión de recubrimientos de ZrOxNy sobre acero inoxidable y/o silicio mediante técnicas electroquímicas.” pp. 15–35, 2012. [6] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques - Principles, Methods, Equipment and Applications (2nd Edition). 2002. [7] K.-K. Chew, “The corrosion scenario in human body: Stainless steel 316L orthopaedic implants,” Nat. Sci., vol. 04, no. 3, pp. 184–188, 2012. [8] R. Seligman, Corrosion Handbook. 2008. [9] D. A. Jones, Principles and Prevention of Corrosion. 1996. [10] European Federation of Corrosion, A Working Party Report Illustrated Case Histories of Marine Corrosion, no. 5. 1990. [11] B. Samuel, Corrosion Control, Second., no. 780. 2001. [12] M. A. Arenas and J. J. De Damborenea, “Generation of conversion coatings using rare earths on galvanised steel | Generación de capas de conversión con elementos de tierras raras sobre acero galvanizado,” Rev. Metal., vol. SPEC. VOL., no. December, pp. 433–437, 2005. [13] M. Atik, P. de Lima Neto, L. A. Avaca, and M. A. Aegerter, “Sol-gel thin films for corrosion protection,” Ceramics International, vol. 21, no. 6. pp. 403–406, 1995. CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. 87 [14] D. M. Mattox, “Substrate preparation for thin film deposition-a survey,” vol. 124, no. 1, pp. 3–10, 1985. [15] W. F. Smith, Fundamentos de la ciencia e ingenieria de materiales, 4ta ed. 2004. [16] M. Street, L. Wt, T. Albrektsson, P.-I. Brånemark, H.-A. Hansson, and J. Lindström, “Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man,” Direct, vol. 6470, no. 780368323, pp. 155–170, 1981. [17] H. Ming, Z. Zhang, J. Wang, E. H. Han, and W. Ke, “Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint,” Mater. Charact., vol. 97, no. November, pp. 101–115, 2014. [18] U.S. Geological Survey, Mineral Commodity Summaries 2018. 2018. [19] J. T. Dahle and Y. Arai, “Environmental Geochemistry of Cerium : Applications and Toxicology of Cerium Oxide Nanoparticles,” pp. 1253–1278, 2015. [20] F. Zhang et al., “Cerium oxide nanoparticles : Size-selective formation and structure analysis,” vol. 80, no. 1, pp. 127–129, 2002. [21] Y. Li, J. G. He, and X. W. Huang, “Synthesis and Properties of Cerium Oxide Nanoparticles,” Adv. Mater. Res., vol. 299–300, pp. 118–121, 2011. [22] R. Sharmila, N. Selvakumar, and K. Jeyasubramanian, “Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles,” Mater. Lett., vol. 91, pp. 78–80, 2013. [23] Z. Shi, Z. Zhou, P. Shum, and L. K. Y. Li, “Thermal stability, wettability and corrosion resistance of sputtered ceria films on 316 stainless steel,” Appl. Surf. Sci., 2017. [24] M. V. R. Murty, “Sputtering: The material erosion tool,” Surf. Sci., vol. 500, no. 1– 3, pp. 523–544, 2002. [25] W. Jane and C. Tip-Wah, “Encyclopedia of tribology,” Springuer Reference, vol. 150, no. 1–2. p. 382, 1991. 88 CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. [26] A. Edgar, O. Jairo, and C. Ivonne, “High-efficiency solar cell with earth-abundant liquid-processed absorber,” in Journal of Electronic Materials, vol. 23, no. 7, 1977, pp. 11–12. [27] P. D. Davidse, “Theory and practice of RF sputtering,” Vacuum, vol. 17, no. 3, pp. 139–145, 1967. [28] B. Charles, Vacuum deposition onto webs, films, and foils, 3rd ed. 2015. [29] R. D. Arnell, P. J. Kelly, and J. W. Bradley, “Recent developments in pulsed magnetron sputtering,” Surf. Coatings Technol., vol. 188–189, no. 1-3 SPEC.ISS., pp. 158–163, 2004. [30] M. de Jager and J. van Noort, Atomic Force Microscopy. 2007. [31] JEOL, “Scanning Electron Microscope A To Z,” Serv. Adv. Technol., p. 32, 2006. [32] Y. Hamaguchi, “Optical microscopy,” Tanpakushitsu Kakusan Koso., vol. 42, no. 7 Suppl, pp. 1026–1032, 1997. [33] S. Amelinckx, D. van Dyck, J. van Landuyt and G. van Tendeloo, Handbook of Microscopy: Applications in materials Science, Solid-State Physics and Chemistry Methods I. 1997. [34] D. B. Murphy, Fundamentals of light microscopy and Electronic Imaging, vol. 83, no. 991. 2001. [35] O. Ledea, H. Castro, R. Gonzáles, M. Farina, A. Linhares, and M. Oliveira, “Application of Scanning Electron Microscopy on Poliapatita,” Rev. CENIC. Ciencias Químicas, pp. 1–6, 2010. [36] Australian Microscopy & Microanalysis Research Facility, “Scanning Electron Microscope Training module,” 2014. [37] F. Spanish and M. Faraldos, “Técnicas de analisis y caracterización de MaTeriales Marisol Faraldos,” no. September, 2014. [38] S. Reed, “Introduction to Energy Dispersive X-ray Spectrometry,” in Electron probe microanalysis, 1969, pp. 1–12. [39] A. Wassilkowska, A. Czaplicka-Kotas, A. Bielski, and M. Zielina, “an Analysis of CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. 89 the Elemental Composition of Micro-Samples Using Eds Technique,” http://www.ejournals.eu/Czasopismo-Techniczne/, vol. 2014, no. Chemia Zeszyt 1- Ch (18) 2014, pp. 133–148, 2015. [40] B. andrzej W. Anna, c.-k. Anna, Z. Michaeł, “An analysis of the elemental composition of micro-samples using eds technique,” 2014. [41] W. Dan, S. Michael, and J. Donovan, “Specimen interaction and information generated with electron beam instruments.,” in Electron Beam Microanalysis theory and apli cation, no. 1, 2013, pp. 1–25. [42] W. Dan, S. Michael, and J. Donovan, “The Energy Discriminating X-ray Detector,” in 2013, pp. 1–18. [43] M. M. J. Treacy, “Collection of simulated XRD powder patterns for zeolites,” Appl. Catal., vol. 21, no. 2, pp. 388–389, 1986. [44] W. Yoshio, M. Eiichiro, and S. Kozo, X-Ray Diffraction Crystallography. Springer, 2011. [45] G. Rene, X-ray By Diffraction Polycrystalline Materials. 2007. [46] Corrosion Education Committe od Assiessing, Assessment of Corrosion education. 2007. [47] DANE, “Discapacidad,” 2010. . [48] M. F. García-Sánchez et al., “Synthesis and characterization of nanostructured cerium dioxide thin films deposited by ultrasonic spray pyrolysis,” J. Am. Ceram. Soc., vol. 93, no. 1, pp. 155–160, 2010. [49] D. Roman et al., “Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering,” Mater. Chem. Phys., vol. 130, no. 1–2, pp. 147–153, 2011. [50] K. Velásquez, “ESTUDIO PRELIMINAR DE BIOCOMPATIBILIDAD DE CÉLULAS OSTEOBLÁSTICAS DE RATÓN CON MATERIALES CERÁMICOS TIPO OXINITRURO.” pp. 27–29, 2015. 90 CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. [51] G. I. Cubillos, M. Bethencourt, and J. J. Olaya, “Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding,” Appl. Surf. Sci., vol. 327, no. January 2019, pp. 288–295, 2015. [52] W. Phae-ngam et al., “Oblique angle deposition of nanocolumnar TiZrN films via reactive magnetron co-sputtering technique: The influence of the Zr target powers,” Curr. Appl. Phys., vol. 19, no. 8, pp. 894–901, 2019. [53] G. I. Cubillos González, “Evaluación de la resistencia a la corrosión de recubrimientos de ZrOxNy sobre acero inoxidable y/o silicio mediante técnicas electroquímicas,” p. 321, 2013. [54] G. I. Cubillos, J. J. Olaya, M. Bethencourt, G. Antorrena, and K. El Amrani, “Synthesis and characterization of zirconium oxynitride ZrO x N y coatings deposited via unbalanced DC magnetron sputtering,” Mater. Chem. Phys., vol. 141, no. 1, pp. 42–51, 2013. [55] K. Konstantinov, I. Stambolova, P. Peshev, B. Darriet, and S. Vassilev, “Preparation of ceria films by spray pyrolysis method,” Int. J. Inorg. Mater., vol. 2, no. 2–3, pp. 277–280, 2000. [56] M. Garcia-Heras, A. Jimenez-Morales, B. Casal, J. C. Galvan, S. Radzki, and M. A. Villegas, “Preparation and electrochemical study of cerium-silica sol-gel thin films,” J. Alloys Compd., vol. 380, no. 1-2 SPEC. ISS., pp. 219–224, 2004. [57] A. U. Chaudhry, B. Mansoor, T. Mungole, G. Ayoub, and D. P. Field, “Corrosion mechanism in PVD deposited nano-scale titanium nitride thin film with intercalated titanium for protecting the surface of silicon,” Electrochim. Acta, vol. 264, pp. 69– 82, 2018. [58] Z. Abdullah, I. Azzura, and S. Ahmad, “The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel,” J. Phys. Conf. Ser., vol. 914, no. 1, 2017. [59] A. S. Hamdy, “Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys,” Mater. Lett., vol. 60, no. 21–22, pp. 2633–2637, 2006
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 90
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75637/1/1016057987_2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75637/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75637/3/1016057987_2019.pdf.jpg
bitstream.checksum.fl_str_mv 27e77c065b57624ffcebc6bd84bba9de
6f3f13b02594d02ad110b3ad534cd5df
02b4fc6cf3e9a4b23bc254e691dbaea7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090016712818688
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cubillos González, Gloria Ivonne23535be7-e948-4aff-8ce4-168812d5c614-1Umaña Perez, Yadi Adriana3a10f2b0-d687-4a58-a639-e4caace3d5ba-1Garcia Rodriguez, Alejandro06ce7182-9016-48cf-a318-9740d7148cf2Materiales y Procesos Quimicos2020-02-18T16:08:49Z2020-02-18T16:08:49Z2020-02-17https://repositorio.unal.edu.co/handle/unal/75637Through the sputtering technique, cerium oxynitride and / or cerium oxide films were synthesized on AISI 316L surgical steel. In total 8 deposit conditions were planned under which the temperature (180, 200, 250 and 300 ° C) and the nitrogen flow (15.0 and 20.0 sccm) were changed. Additionally, the results of morphology and corrosion resistance were compared with those of zirconia oxynitride films and nickel copper oxynitrides which are known to improve the corrosion resistance of surgical grade stainless steel and favor osteoblast cell growth. The latter were deposited under previously standardized conditions within the research group. CeO2 and / or CeOxNy, ZrOxNy and NiCuON films were morphologically, chemically and structurally characterized by SEM, EDX and DRX. Zirconium and nickel copper oxynitride have a homogeneous morphology with good adhesion, without micropores and microcracks; while those of CeO2 and / or CeOxNy, are characterized by having a large number of surface defects and low adhesion to the substrate in some of the selected deposit conditions. Those deposited at a temperature of 200 ° C and nitrogen flow N2 = 20.0 sccm, presented the best morphology, with little delamination, micropores and microcracks. As for the crystalline structure of the CeO2 and / or CeOxNy films, it was cubic with preferential growth on the planes (111) and (220) of CeO2. The corrosion resistance results evaluated from EIS electrochemical impedance spectroscopy and potentiodynamic polarization curves show that despite the surface defects of the CeO2 and / or CeOxNy films, all the test pieces presented impedance values, Corrosion current density, polarization resistance, corrosion potential and pitting nucleation, better than bare 316L stainless steel, suggesting that the cerium ceramic coating would induce galvanic protection of the steel. The films deposited at 200 ° C and flow of N2 = 20.0 sccm presented the greatest protection against corrosion in Hank's solution. The results obtained in this work are a contribution to the development of surgical steel surface coatings for biomedical applications.Por medio de la técnica sputtering se sintetizaron películas de oxinitruro de cerio y/o oxido de cerio sobre acero quirúrgico AISI 316L. En total se planearon 8 condiciones de depósito en las que se cambió la temperatura (180, 200, 250 y 300°C) y el flujo de nitrógeno (15.0 y 20.0 sccm). Adicionalmente, los resultados de morfología y resistencia a la corrosión se compararon con los de películas de oxinitruros de zirconia y oxinitruros de níquel cobre de los que se sabe mejoran la resistencia a la corrosión del acero inoxidable grado quirúrgico y favorecen el crecimiento celular de osteoblastos. Estos últimos, se depositaron en condiciones previamente estandarizadas dentro del grupo de investigación. Las películas de CeO2 y/o CeOxNy, ZrOxNy y NiCuOxNy se caracterizaron morfológica, química y estructuralmente mediante SEM, EDX y DRX. Las de oxinitruro de zirconio y de níquel cobre presentan una morfología homogénea con buena adherencia, sin microporos y microgrietas; mientas que las de CeO2 y/o CeOxNy, se caracterizan por tener gran cantidad de defectos superficiales y baja adherencia al sustrato en algunas de las condiciones de depósito seleccionadas. Las depositadas a una temperatura de 200°C y flujo de nitrógeno N2=20.0 sccm, presentaron la mejor morfología, con poca delaminación, microporos y microgrietas. En cuanto a la estructura cristalina de las películas de CeO2 y/o CeOxNy, fue cubica con crecimiento preferencial sobre los planos (111) y (220) de CeO2. Los resultados de resistencia a la corrosión evaluados a partir de espectroscopía de impedancia electroquímica EIS y curvas de polarización potenciodinámica, muestran que a pesar de los defectos de la superficie de las películas de CeO2 y/o CeOxNy, todas las probetas presentaron valores de impedancia, densidad de corriente de corrosión, resistencia a la polarización, potencial de corrosión y de nucleación de picadura, mejores que el acero inoxidable 316L desnudo, lo que sugiere que el recubrimiento cerámico de cerio induciría una protección galvánica del acero. Las películas depositadas a 200°C y flujo de N2=20.0 sccm presentaron la mayor protección contra la corrosión en solución de Hank. Los resultados obtenidos en este trabajo son un aporte al desarrollo de recubrimientos de superficies de acero quirúrgico para aplicaciones biomédicas.Magister En Ciencias-QuímicaMaestría90application/pdfspaQuímica y ciencias afinesPelículas DelgadasCorrosiónSputteringThin filmSputteringCaracterización y evaluación de la resistencia a la corrosión de películas delgadas de oxinitruro y/o óxido de cerio sobre AISI 316lCharacterization and evaluation of resistance to corrosion of thin films of oxinitride and / or oxide films of cerio on AISI 316lDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPDepartamento de QuímicaUniversidad Nacional de Colombia - Sede Bogotá[1] J. B. Holmes, “La prótesis y sus componentes Opciones, opciones y más opciones,” Amputee Coalition of America, 2005. [2] B. Mundial, “Informe mundial la discapacidad discapacidad.” pp. 3–15, 2011. [3] “OMS | Dispositivos y tecnologías de apoyo a las personas con discapacidad,” WHO, 2016. . [4] J. Cohen, “Current concepts review. Corrosion of metal orthopaedic implants.,” J. Bone Joint Surg. Am., vol. 80, no. 10, p. 1554, 1998. [5] G. Gonzalez, “Evaluación de la resistencia a la corrosión de recubrimientos de ZrOxNy sobre acero inoxidable y/o silicio mediante técnicas electroquímicas.” pp. 15–35, 2012. [6] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques - Principles, Methods, Equipment and Applications (2nd Edition). 2002. [7] K.-K. Chew, “The corrosion scenario in human body: Stainless steel 316L orthopaedic implants,” Nat. Sci., vol. 04, no. 3, pp. 184–188, 2012. [8] R. Seligman, Corrosion Handbook. 2008. [9] D. A. Jones, Principles and Prevention of Corrosion. 1996. [10] European Federation of Corrosion, A Working Party Report Illustrated Case Histories of Marine Corrosion, no. 5. 1990. [11] B. Samuel, Corrosion Control, Second., no. 780. 2001. [12] M. A. Arenas and J. J. De Damborenea, “Generation of conversion coatings using rare earths on galvanised steel | Generación de capas de conversión con elementos de tierras raras sobre acero galvanizado,” Rev. Metal., vol. SPEC. VOL., no. December, pp. 433–437, 2005. [13] M. Atik, P. de Lima Neto, L. A. Avaca, and M. A. Aegerter, “Sol-gel thin films for corrosion protection,” Ceramics International, vol. 21, no. 6. pp. 403–406, 1995. CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. 87 [14] D. M. Mattox, “Substrate preparation for thin film deposition-a survey,” vol. 124, no. 1, pp. 3–10, 1985. [15] W. F. Smith, Fundamentos de la ciencia e ingenieria de materiales, 4ta ed. 2004. [16] M. Street, L. Wt, T. Albrektsson, P.-I. Brånemark, H.-A. Hansson, and J. Lindström, “Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man,” Direct, vol. 6470, no. 780368323, pp. 155–170, 1981. [17] H. Ming, Z. Zhang, J. Wang, E. H. Han, and W. Ke, “Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint,” Mater. Charact., vol. 97, no. November, pp. 101–115, 2014. [18] U.S. Geological Survey, Mineral Commodity Summaries 2018. 2018. [19] J. T. Dahle and Y. Arai, “Environmental Geochemistry of Cerium : Applications and Toxicology of Cerium Oxide Nanoparticles,” pp. 1253–1278, 2015. [20] F. Zhang et al., “Cerium oxide nanoparticles : Size-selective formation and structure analysis,” vol. 80, no. 1, pp. 127–129, 2002. [21] Y. Li, J. G. He, and X. W. Huang, “Synthesis and Properties of Cerium Oxide Nanoparticles,” Adv. Mater. Res., vol. 299–300, pp. 118–121, 2011. [22] R. Sharmila, N. Selvakumar, and K. Jeyasubramanian, “Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles,” Mater. Lett., vol. 91, pp. 78–80, 2013. [23] Z. Shi, Z. Zhou, P. Shum, and L. K. Y. Li, “Thermal stability, wettability and corrosion resistance of sputtered ceria films on 316 stainless steel,” Appl. Surf. Sci., 2017. [24] M. V. R. Murty, “Sputtering: The material erosion tool,” Surf. Sci., vol. 500, no. 1– 3, pp. 523–544, 2002. [25] W. Jane and C. Tip-Wah, “Encyclopedia of tribology,” Springuer Reference, vol. 150, no. 1–2. p. 382, 1991. 88 CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. [26] A. Edgar, O. Jairo, and C. Ivonne, “High-efficiency solar cell with earth-abundant liquid-processed absorber,” in Journal of Electronic Materials, vol. 23, no. 7, 1977, pp. 11–12. [27] P. D. Davidse, “Theory and practice of RF sputtering,” Vacuum, vol. 17, no. 3, pp. 139–145, 1967. [28] B. Charles, Vacuum deposition onto webs, films, and foils, 3rd ed. 2015. [29] R. D. Arnell, P. J. Kelly, and J. W. Bradley, “Recent developments in pulsed magnetron sputtering,” Surf. Coatings Technol., vol. 188–189, no. 1-3 SPEC.ISS., pp. 158–163, 2004. [30] M. de Jager and J. van Noort, Atomic Force Microscopy. 2007. [31] JEOL, “Scanning Electron Microscope A To Z,” Serv. Adv. Technol., p. 32, 2006. [32] Y. Hamaguchi, “Optical microscopy,” Tanpakushitsu Kakusan Koso., vol. 42, no. 7 Suppl, pp. 1026–1032, 1997. [33] S. Amelinckx, D. van Dyck, J. van Landuyt and G. van Tendeloo, Handbook of Microscopy: Applications in materials Science, Solid-State Physics and Chemistry Methods I. 1997. [34] D. B. Murphy, Fundamentals of light microscopy and Electronic Imaging, vol. 83, no. 991. 2001. [35] O. Ledea, H. Castro, R. Gonzáles, M. Farina, A. Linhares, and M. Oliveira, “Application of Scanning Electron Microscopy on Poliapatita,” Rev. CENIC. Ciencias Químicas, pp. 1–6, 2010. [36] Australian Microscopy & Microanalysis Research Facility, “Scanning Electron Microscope Training module,” 2014. [37] F. Spanish and M. Faraldos, “Técnicas de analisis y caracterización de MaTeriales Marisol Faraldos,” no. September, 2014. [38] S. Reed, “Introduction to Energy Dispersive X-ray Spectrometry,” in Electron probe microanalysis, 1969, pp. 1–12. [39] A. Wassilkowska, A. Czaplicka-Kotas, A. Bielski, and M. Zielina, “an Analysis of CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. 89 the Elemental Composition of Micro-Samples Using Eds Technique,” http://www.ejournals.eu/Czasopismo-Techniczne/, vol. 2014, no. Chemia Zeszyt 1- Ch (18) 2014, pp. 133–148, 2015. [40] B. andrzej W. Anna, c.-k. Anna, Z. Michaeł, “An analysis of the elemental composition of micro-samples using eds technique,” 2014. [41] W. Dan, S. Michael, and J. Donovan, “Specimen interaction and information generated with electron beam instruments.,” in Electron Beam Microanalysis theory and apli cation, no. 1, 2013, pp. 1–25. [42] W. Dan, S. Michael, and J. Donovan, “The Energy Discriminating X-ray Detector,” in 2013, pp. 1–18. [43] M. M. J. Treacy, “Collection of simulated XRD powder patterns for zeolites,” Appl. Catal., vol. 21, no. 2, pp. 388–389, 1986. [44] W. Yoshio, M. Eiichiro, and S. Kozo, X-Ray Diffraction Crystallography. Springer, 2011. [45] G. Rene, X-ray By Diffraction Polycrystalline Materials. 2007. [46] Corrosion Education Committe od Assiessing, Assessment of Corrosion education. 2007. [47] DANE, “Discapacidad,” 2010. . [48] M. F. García-Sánchez et al., “Synthesis and characterization of nanostructured cerium dioxide thin films deposited by ultrasonic spray pyrolysis,” J. Am. Ceram. Soc., vol. 93, no. 1, pp. 155–160, 2010. [49] D. Roman et al., “Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering,” Mater. Chem. Phys., vol. 130, no. 1–2, pp. 147–153, 2011. [50] K. Velásquez, “ESTUDIO PRELIMINAR DE BIOCOMPATIBILIDAD DE CÉLULAS OSTEOBLÁSTICAS DE RATÓN CON MATERIALES CERÁMICOS TIPO OXINITRURO.” pp. 27–29, 2015. 90 CARACTERIZACIÓN Y EVALUACIÓN DE LA RESISTENCIA A LA CORROSIÓN DE PELÍCULAS DELGADAS DE OXINITRURO Y/O ÓXIDO DE CERIO SOBRE AISI 316L. [51] G. I. Cubillos, M. Bethencourt, and J. J. Olaya, “Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding,” Appl. Surf. Sci., vol. 327, no. January 2019, pp. 288–295, 2015. [52] W. Phae-ngam et al., “Oblique angle deposition of nanocolumnar TiZrN films via reactive magnetron co-sputtering technique: The influence of the Zr target powers,” Curr. Appl. Phys., vol. 19, no. 8, pp. 894–901, 2019. [53] G. I. Cubillos González, “Evaluación de la resistencia a la corrosión de recubrimientos de ZrOxNy sobre acero inoxidable y/o silicio mediante técnicas electroquímicas,” p. 321, 2013. [54] G. I. Cubillos, J. J. Olaya, M. Bethencourt, G. Antorrena, and K. El Amrani, “Synthesis and characterization of zirconium oxynitride ZrO x N y coatings deposited via unbalanced DC magnetron sputtering,” Mater. Chem. Phys., vol. 141, no. 1, pp. 42–51, 2013. [55] K. Konstantinov, I. Stambolova, P. Peshev, B. Darriet, and S. Vassilev, “Preparation of ceria films by spray pyrolysis method,” Int. J. Inorg. Mater., vol. 2, no. 2–3, pp. 277–280, 2000. [56] M. Garcia-Heras, A. Jimenez-Morales, B. Casal, J. C. Galvan, S. Radzki, and M. A. Villegas, “Preparation and electrochemical study of cerium-silica sol-gel thin films,” J. Alloys Compd., vol. 380, no. 1-2 SPEC. ISS., pp. 219–224, 2004. [57] A. U. Chaudhry, B. Mansoor, T. Mungole, G. Ayoub, and D. P. Field, “Corrosion mechanism in PVD deposited nano-scale titanium nitride thin film with intercalated titanium for protecting the surface of silicon,” Electrochim. Acta, vol. 264, pp. 69– 82, 2018. [58] Z. Abdullah, I. Azzura, and S. Ahmad, “The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel,” J. Phys. Conf. Ser., vol. 914, no. 1, 2017. [59] A. S. Hamdy, “Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys,” Mater. Lett., vol. 60, no. 21–22, pp. 2633–2637, 2006ORIGINAL1016057987_2019.pdf1016057987_2019.pdfapplication/pdf3385013https://repositorio.unal.edu.co/bitstream/unal/75637/1/1016057987_2019.pdf27e77c065b57624ffcebc6bd84bba9deMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75637/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52THUMBNAIL1016057987_2019.pdf.jpg1016057987_2019.pdf.jpgGenerated Thumbnailimage/jpeg4065https://repositorio.unal.edu.co/bitstream/unal/75637/3/1016057987_2019.pdf.jpg02b4fc6cf3e9a4b23bc254e691dbaea7MD53unal/75637oai:repositorio.unal.edu.co:unal/756372024-03-15 23:07:28.098Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==