Degradación catalítica de pesticidas organoclorados y organofosforados
ilustraciones (principalmente a color), diagramas
- Autores:
-
Prieto Martinez, John Fredy
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86452
- Palabra clave:
- 540 - Química y ciencias afines::546 - Química inorgánica
Plaguicidas
Compuestos organoclorados
Compuestos organofosforados
Degradación ambiental
Pesticides
Organochlorine compounds
Organophosphorus compounds
Environmental degradation
Pesticidas
Plaguicidas
Compuestos organoclorados
Compuestos organofosforados
Fotocatálisis
Degradación catalítica
Procesos avanzados de oxidación
Pesticides
Plaguicides
Organochlorine compounds
Organophosphorus compounds
Photocatalysis
Catalytic degradation
Advanced oxidation processes
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_bd3353484b19b168afff0e49fb49bde8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86452 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Degradación catalítica de pesticidas organoclorados y organofosforados |
dc.title.translated.eng.fl_str_mv |
Catalytic degradation of organochlorine and organophosphorus pesticides |
title |
Degradación catalítica de pesticidas organoclorados y organofosforados |
spellingShingle |
Degradación catalítica de pesticidas organoclorados y organofosforados 540 - Química y ciencias afines::546 - Química inorgánica Plaguicidas Compuestos organoclorados Compuestos organofosforados Degradación ambiental Pesticides Organochlorine compounds Organophosphorus compounds Environmental degradation Pesticidas Plaguicidas Compuestos organoclorados Compuestos organofosforados Fotocatálisis Degradación catalítica Procesos avanzados de oxidación Pesticides Plaguicides Organochlorine compounds Organophosphorus compounds Photocatalysis Catalytic degradation Advanced oxidation processes |
title_short |
Degradación catalítica de pesticidas organoclorados y organofosforados |
title_full |
Degradación catalítica de pesticidas organoclorados y organofosforados |
title_fullStr |
Degradación catalítica de pesticidas organoclorados y organofosforados |
title_full_unstemmed |
Degradación catalítica de pesticidas organoclorados y organofosforados |
title_sort |
Degradación catalítica de pesticidas organoclorados y organofosforados |
dc.creator.fl_str_mv |
Prieto Martinez, John Fredy |
dc.contributor.advisor.none.fl_str_mv |
CARRIAZO, José G. |
dc.contributor.author.none.fl_str_mv |
Prieto Martinez, John Fredy |
dc.contributor.researchgroup.spa.fl_str_mv |
Diseño y Reactividad de Estructuras Sólidas |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::546 - Química inorgánica |
topic |
540 - Química y ciencias afines::546 - Química inorgánica Plaguicidas Compuestos organoclorados Compuestos organofosforados Degradación ambiental Pesticides Organochlorine compounds Organophosphorus compounds Environmental degradation Pesticidas Plaguicidas Compuestos organoclorados Compuestos organofosforados Fotocatálisis Degradación catalítica Procesos avanzados de oxidación Pesticides Plaguicides Organochlorine compounds Organophosphorus compounds Photocatalysis Catalytic degradation Advanced oxidation processes |
dc.subject.lemb.spa.fl_str_mv |
Plaguicidas Compuestos organoclorados Compuestos organofosforados Degradación ambiental |
dc.subject.lemb.eng.fl_str_mv |
Pesticides Organochlorine compounds Organophosphorus compounds Environmental degradation |
dc.subject.proposal.spa.fl_str_mv |
Pesticidas Plaguicidas Compuestos organoclorados Compuestos organofosforados Fotocatálisis Degradación catalítica Procesos avanzados de oxidación |
dc.subject.proposal.eng.fl_str_mv |
Pesticides Plaguicides Organochlorine compounds Organophosphorus compounds Photocatalysis Catalytic degradation Advanced oxidation processes |
description |
ilustraciones (principalmente a color), diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-16T14:39:16Z |
dc.date.available.none.fl_str_mv |
2024-07-16T14:39:16Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86452 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86452 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[2] Abeldaño, D y Hurtado, B.(2022) Revisión sistemática: Remoción de antibióticos por ozono, universidad cesar vallejo, lima, Peru [3] Ahmad, F., Nisar,S.,Mehmood,M., Zakiratullah. (2022). A Critical Review on the Photo Degradation of Diazinon,A Persistent Organic Pesticides. Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt(47040), Punjab, Pakistan. https://doi.org/10.52568/001120/JCSP/44.05.2022 [4] Aidoo, O. F., Osei-Owusu, J., Chia, S. Y., Dofuor, A. K., Antwi-Agyakwa, A. K., Okyere, H., Gyan, M., Edusei, G., Ninsin, K. D., Duker, R. Q., Siddiqui, S. A., & Borgemeister, C. (2023). Remediation of pesticide residues using ozone: A comprehensive overview. In Science of the Total Environment (Vol. 894). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.164933 [5] Aktar, M,W., Sengupta, D., Chowdhury, A,(2009). Impact of pesticides use in agriculture: their benefits and hazards Interdiscip. Toxicol., 2 (1), pp. 1-12 [6] Albert L, Reyes R. (2000) Plaguicidas organoclorados. Rev Soc Quim Mex; 22: 65-72 [7] Alberto, E. A., Santos, G. M., Marson, E. O., Mbié, M. J., Paniagua, C. E. S., Ricardo, I. A., Starling, M. C. V. M., Pérez, J. A. S., & Trovó, A. G. (2023). Performance of different peroxide sources and UV-C radiation for the degradation of microcontaminants in tertiary effluent from a municipal wastewater treatment plant. Journal of Environmental Chemical Engineering, 11(5). https://doi.org/10.1016/j.jece.2023.110698 [8] Alley, K. R., Gavenda-Eaton, T. R., & Prieto-Centurion, D. (2022). Photo-thermal catalytic degradation of organophosphate simulant over Cu, Co, and Fe on titania. Catalysis Communications, 162. https://doi.org/10.1016/j.catcom.2021.106369 [9] Al-Saleh I A.(1994). Pesticides: a review article. J Environ Pathol Toxicol Oncol; 13:151-161. [10] Alsulami, A., Kumarswamy, Y. K., Prashanth, M. K., Hamzada, S., Lakshminarayana, P., Pradeep Kumar, C. B., Jeon, B. H., & Raghu, M. S. (2022). Fabrication of FeVO4/RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. ACS Omega, 7(49), 45239–45252. https://doi.org/10.1021/acsomega.2c05729 [11] An, X., Chen, Y., Ao, M., Jin, Y., Zhan, L., Yu, B., Wu, Z., & Jiang, P. (2022). Sequential photocatalytic degradation of organophosphorus pesticides and recovery of orthophosphate by biochar/α-Fe2O3/MgO composite: A new enhanced strategy for reducing the impacts of organophosphorus from wastewater. Chemical Engineering Journal, 435. https://doi.org/10.1016/j.cej.2022.135087 [12] An, X., Liu, H., Qu, J., Moniz, S. J. A., & Tang, J. (2015). Photocatalytic mineralisation of herbicide 2,4,5-trichlorophenoxyacetic acid: Enhanced performance by triple junction Cu-TiO2-Cu2O and the underlying reaction mechanism. New Journal of Chemistry, 39(1), 314–320. https://doi.org/10.1039/c4nj01317d [13] Anajafi, Z., Naseri, M., & Neri, G. (2020). Acetone sensing behavior of p-SmFeO3/n-ZnO nanocomposite synthesized by thermal treatment method. Sensors and Actuators, B: Chemical, 304. https://doi.org/10.1016/j.snb.2019.127252 [14] Anirudhan, T. S., Manjusha, V., & Shainy, F. (2021). Magnetically retrievable cysteine modified graphene oxide@nickelferrite@titanium dioxide photocatalyst for the effective degradation of chlorpyrifos from aqueous solutions. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101633 [15] Askarniya, Z., Rayaroth, M. P., Sun, X., Wang, Z., & Boczkaj, G. (2023). Degradation of bisphenol S – a contaminant of emerging concern - by synergistic ozone and percarbonate based AOP. Water Resources and Industry, 29. https://doi.org/10.1016/j.wri.2023.100208 [16] Atalay, S., & Ersöz, G. (2016). Springer Briefs In Molecular Science Green Chemistry For Sustainability Novel Catalysts in Advanced Oxidation of Organic Pollutants. http://www.springer.com/series/10045 [17] Aungpradit, T., Sutthivaiyakit, P., Martens, D., Sutthivaiyakit, S., & Kettrup, A. A. F. (2007). Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways. Journal of Hazardous Materials, 146(1–2), 204–213. https://doi.org/10.1016/j.jhazmat.2006.12.007 [18] Ayare, S. D., & Gogate, P. R. (2020). Sonochemical, photocatalytic and sonophotocatalytic oxidation of flonicamid pesticide solution using different catalysts. Chemical Engineering and Processing - Process Intensification, 154. https://doi.org/10.1016/j.cep.2020.108040. [19] Azarpira, H., Rasolevandi, T., Mahvi, A. H., & Karimy, M. (2022). Diazinon pesticide photocatalytic degradation in aqueous matrices based on reductive agent release in iodide exciting under UV Irradiation. Environmental Science and Pollution Research, 29(38), 58078–58087. https://doi.org/10.1007/s11356-022-19811-w [20] Aziz, K., Naz, A., Manzoor, S., Khan, M. I., Shanableh, A., & Fernandez Garcia, J. (2023). Visible Light Photodegradation of Glyphosate and Methylene Blue Using Defect-Modified Graphitic Carbon Nitride Decorated with Ag/TiO2. Catalysts, 13(7). https://doi.org/10.3390/catal13071087 [21] Bacheloth, Y. (2017). modelación del transporte de plaguicidas e insecticidas en suelos de cultivo de fresa mediante el software HYDRUS- 1D en la vereda de monteadentro pamplona norte de Santander. Universidad de Pamplona. Norte de Santander [22] Banco mundial. (2020). comunicado de prensa N.º 2020/133/GWA. https://www.bancomundial.org/es/news/press-release/2020/03/19/wastewater-a-resource-that-can-pay-dividends-for-people-the-environment-and-economies-says-world-bank. Con acceso 01-09-2022 [23] Becerra-Moreno, D., Rubio-Gómez, Y., Ramírez-Ríos, L.F., Barajas-Solano, A.F., & Machuca Martínez, F. (2021). Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios. Ciencia en Desarrollo. [24] Begum, A., Agnihotri, P., Mahindrakar, A. B., & Gautam, S. K. (2017). Degradation of endosulfan and lindane using Fenton’s reagent. Applied Water Science, 7(1), 207–215. https://doi.org/10.1007/s13201-014-0237-z. [25] Benito, M., & María, J. (2011). Dinámica de fungicidas en suelos de viñedo enmendados con sustratos postcultivo de hongos. [26] Berberidou, C., Kokkinos, P., Poulios, I., & Mantzavinos, D. (2022). Homogeneous Photo-Fenton Degradation and Mineralization of Model and Simulated Pesticide Wastewaters in Lab- and Pilot-Scale Reactors. Catalysts, 12(12). https://doi.org/10.3390/catal12121512 [27] Blanco, S.Z. (2017). Transformación Catalítica Selectiva de Metanol Sobre Catalizadores Basados en Óxidos Mixtos Metálicos. [28] Boukhemkhem, A., Bedia, J., Belver, C., & Molina, C. B. (2023). Degradation of pesticides by heterogeneous Fenton using iron-exchanged clays. Catalysis Communications, 183. https://doi.org/10.1016/j.catcom.2023.106771. [29] Brienza,M., Ozkal,C., Puma,G.,(2019) Photo(Catalytic) Oxidation Processes for the Removal of Natural Organic Matter and Contaminants of Emerging Concern from Water A. Gil et al. (eds.), Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, Hdb Env Chem (2019) 67: 133–154, DOI 10.1007/698_2017_189, © Springer International Publishing AG 2018, Published online: 14 April 2018 [30] Briggs SA, Rachel Carson Council. (1992). Basic guide to pesticides. Their characteristics and hazards. Washington: Taylor & Francis Publisher. [31] Brouwera A, Ahlborgb UG, Van den Bergc M, Birnbaumd LS, Ruud BE, Bosveldc B, Denisonf MS, Earl GL, Hagmarg L, Holeneh E, Huismane M, Jacobsoni SW, Jacobsoni JL, Koopman-Esseboomj C, Koppek JG, Kuligl BM, Morsea DS, Mucklem G, Petersonn RE, Sauerj PJJ, Seegalo RF, Smits-Van PAE, Touwenq BCL, Weisglas-Kuperusj N, Winneker G. (1995).Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. Eur J Pharmacol Environ Toxicol Pharmacol; 293(1):1-40 [32] Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531–3555. https://doi.org/10.1016/j.jece.2017.07.080 [33] Cadavid Salazar, A. S., Rivera Vergara, J. G., & Becerra Moreno, D. (2022). Procesos avanzados de oxidación usando peróxido de hidrogeno activado con diferentes catalizadores para tratamiento de lixiviado de relleno sanitarios. Revista Ing-Nova, 1(2), 205–214. https://doi.org/10.32997/rin-2022-4005 [34] Cai, Y. L., Xu, Y. H., Xiang, J. Z., Zhang, Z. Q., He, Q. X., Li, Y. F., & Lü, J. (2024). Iron–doped bismuth oxybromides as visible−light−responsive Fenton catalysts for the degradation of atrazine in aqueous phases. Journal of Environmental Sciences (China), 137, 321–332. https://doi.org/10.1016/j.jes.2023.01.005 [35] CAR (2022). “Si continúa vertimiento de detergentes y otros contaminantes al río Balsillas espuma no desaparecerá”, advierte la CAR. https://www.car.gov.co/saladeprensa/si-continua-vertimiento-de-detergentes-y-otros-contaminantes-al-rio-balsillas-espuma-no-desaparecera-advierte-la-car. Con acceso 05-10-2022 [36] Centeno-Bordones, G., & Jiménez, Y. (2020). Evaluación del Lodo Rojo Activado como Catalizador Heterogéneo en Procesos de Oxidación Avanzada con Radiación Solar para la Degradación de Aguas Agrias Petroleras. [37] Chambers, J, E., Meek, E,C., Chambers., H.W.,(2010)The metabolism of organophosphorus insecticides Hayes’ Handbook of Pesticide Toxicology, Academic Press, pp. 1399-1407 [38] Chen X, Q. Zhou, F. Liu, Q. Peng, P. (2019), Teng Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase Chemosphere, 233 pp. 49-56 [39] Chen, K., Cui, Z., Zhang, Z., Pang, H., Yang, J., Huang, X., & Lu, J. (2022). Life-sustaining of H+ in S(IV)/Fe(VI) system for efficient removal of dimethoate in water: Active species identification and mechanism. Chemical Engineering Journal, 445. https://doi.org/10.1016/j.cej.2022.136865 [40] Chen, L., Wei, L., Ru, Y., Weng, M., Wang, L., & Dai, Q. (2023). A mini-review of the electro-peroxone technology for wastewaters: Characteristics, mechanism and prospect. In Chinese Chemical Letters (Vol. 34, Issue 9). Elsevier B.V. https://doi.org/10.1016/j.cclet.2023.108162 [41] Chinnappa, K., Karuna Ananthai, P., Srinivasan, P. P., & Dharmaraj Glorybai, C. (2022). Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. Environmental Science and Pollution Research, 29(38), 58121–58132. https://doi.org/10.1007/s11356-022-19917-1 [42] Chiron, S., Fernandez-Alba, A., Rodriguez, A., & Garcia-Calvo, E. (2000). PESTICIDE CHEMICAL OXIDATION: STATE-OF-THE-ART. www.elsevier.com/locate/watres. [43] Choudhary, S., Rani, M., Keshu, & Shanker, U. (2022). Green biosynthesized N-doped Bi2O3@SnO2 nanocomposite for efficient remediation of endocrine disrupting pesticides. Environmental Nanotechnology, Monitoring and Management, 18. https://doi.org/10.1016/j.enmm.2022.100746 [44] Cole,S., Cooper,W., Fox, R.,Piero R. Gardinali, Mezyk, S.,Bruce J. Mincher, O’shea, K. (2007) Free Radical Chemistry of Disinfection Byproducts. 2. Rate Constants and Degradation Mechanisms of Trichloronitromethane (Chloropicrin). Environ. Sci. Technol. 2007, 41, 863-869. [45] Comunidad Andina,(2017) Sistema de Información del Medio Ambiente de los Países de la Comunidad Andina [46] Contreras, W.A., Bautista-Carrascosa, I., Lidón, A., & Ginestar, D. (2011). Utilización de un modelo compartimental de transporte de pesticidas en las prácticas de Química Agrícola y Ambiental. Modelización en la Educación y el Aprendizaje de las Ciencias, 4, 147-157. [47] Corporación Autónoma Regional de los Valles del Sinú y San Jorge, CVS. (2006). Plan de ordenación forestal-cerro Murrucucu, cuenca de la Quebrada Jui: Caracterización física. Ed. Universidad Nacional, sede Medellín (Colombia). 120p. [48] Cruz,G., julcour,C., Jáuregui,U., (2017) El Estado actual y perspectivas de la degradación de pesticidas por procesos avanzados de oxidación Rev. Cubana Quím.Vol. 29, no.3, sept.-dic., 2017, págs. 492-516, e-ISSN: 2224-5421 [49] Cuerda-Correa, E. M., Alexandre-Franco, M. F., & Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. In Water (Switzerland) (Vol. 12, Issue 1). MDPI AG. https://doi.org/10.3390/w12010102 [50] Cui, H., Zeng, J., Ren, Y. F., Liu, H., Deng, R., Zhang, W., Lv, Y., Wan, Q., Yang, L., Liu, P., & Yang, H. (2023). Theoretical studies on the degradation mechanism of organochlorine pesticides in the presence of Si-OH in sepiolite. Journal of Molecular Structure, 1279. https://doi.org/10.1016/j.molstruc.2023.134955 [51] Dai, K., Peng, T., Chen, H., Zhang, R., & Zhang, Y. (2008). Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science and Technology, 42(5), 1505–1510. https://doi.org/10.1021/es702268p. [52] Daley JM, Paterson G y Drouillard KG. (2014).Bioamplification as a bioaccumulation mechanism for persistent organic pollutants (POPs) in Wildlife. Rev Environ Contam Toxicol; 227:107-154. [53] Daneshvar, N., Hejazi, M. J., Rangarangy, B., & Khataee, A. R. (2004). Photocatalytic Degradation of an Organophosphorus Pesticide Phosalone in Aqueous Suspensions of Titanium Dioxide. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 39(2), 285–296. https://doi.org/10.1081/PFC-120030242. [54] De Luna, M. D. G., Gumaling, R. P., Barte, E. G., Abarca, R. R. M., Garcia-Segura, S., & Lu, M. C. (2022). Electrochemically-driven regeneration of iron (II) enhances Fenton abatement of pesticide cartap. Journal of Hazardous Materials, 421. https://doi.org/10.1016/j.jhazmat.2021.126713 [55] De Oliveira,R., da Silva Martini, W., Sant'Ana, A., (2022) Combined effect involving semiconductors and plasmonic nanoparticles in photocatalytic degradation of pesticides,Environmental Nanotechnology, Monitoring & Management,Volume 17,2022,100657,ISSN 2215-1532,https://doi.org/10.1016/j.enmm.2022.100657. [56] Debabrata, P., & Sivakumar, M. (2018). Sonochemical degradation of endocrine-disrupting organochlorine pesticide Dicofol: Investigations on the transformation pathways of dechlorination and the influencing operating parameters. Chemosphere, 204, 101–108. https://doi.org/10.1016/j.chemosphere.2018.04.014. [57] Dell'Arciprete, M.L. (2010). Mecanismos, cinética y toxicidad de insecticidas cloronicotinoides y sus productos de degradación con especies reactivas oxidantes de interés ambiental. [58] Despotović, V., Finčur, N., Bognar, S., Šojić Merkulov, D., Putnik, P., Abramović, B., & Panić, S. (2023). Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System. Separations, 10(4). https://doi.org/10.3390/separations10040258 [59] Domènech, X.; Jardim, W. F.; Litter, M. (2004). “Procesos avanzados de oxidación para la remoción de contaminantes”. En: Blesa, M. A.; Sánchez, B., eds. “Eliminación de contaminantes por fotocatálisis heterogénea”. Madrid: CIEMAT. [60] Dong, X., Gan, Z., Lu, X., Jin, W., Yu, Y., & Zhang, M. (2015). Study on catalytic and non-catalytic supercritical water oxidation of p-nitrophenol wastewater. Chemical Engineering Journal, 277, 30–39. https://doi.org/10.1016/j.cej.2015.04.134 [61] Duan, X., Niu, X., Gao, J., Wacławek, S., Tang, L., & Dionysiou, D. D. (2022). Comparison of sulfate radical with other reactive species. In Current Opinion in Chemical Engineering (Vol. 38). Elsevier Ltd. https://doi.org/10.1016/j.coche.2022.100867 [62] Elfikrie,N., Ho,Y,B.,Zaidon,S,Z., Juahir,H., Tan,E,S.,(2020). Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia,Science of The Total Environment, Volume 712,. https://doi.org/10.1016/j.scitotenv.2020.136540 [63] El-Khalafy, S. H., Hassanein, M. T., Elsigeny, S. M., Taha, H. F., Shoueir, K. R., & Kenawy, E. R. S. (2023). Catalytic activity of Mn(III) porphyrin complex supported onto cross linked polymers in the green oxidation of malathion with hydrogen peroxide in aqueous solution. Arabian Journal of Chemistry, 16(8). https://doi.org/10.1016/j.arabjc.2023.104969 [64] El-Mekkawi, H.; et al.(2009). Determination of chlorinated organic pesticide residues in water, sediments, and fish from private fish farms at Abbassa and Sahl Al-Husainia, Shakia Governorate Aust. J. Basic Appl. Sci., 3 [65] El-Nahhal,I., El-Nahhal,Y.,(2021).Pesticide residues in drinking water, their potential risk to human health and removal options,Journal of Environmental Management,Volume 299. https://doi.org/10.1016/j.jenvman.2021.113611 [66] Elsayed, E., Hassan, H., El-Raouf, A. E. R. A., & Salman, S. N. (2021). Coupling between laser irradiation and TiO2nanoparticles on efficient decontamination of some pesticide’s residues from orange and tomato puree. Egyptian Journal of Chemistry, 64(2), 971–979. https://doi.org/10.21608/EJCHEM.2020.45989.2941. [67] EPA., Información básica sobre pesticidas (2022). https://espanol.epa.gov/espanol/informacion-basica-sobre-pesticidas#:~:text=Un%20pesticida%20es%20cualquier%20sustancia,repeler%20o%20controlar%20una%20plaga. (con acceso 29-08-2022) [68] Esfandian, H., Samadi-Maybodi, A., Khoshandam, B., & Parvini, M. (2017). Experimental and CFD modeling of diazinon pesticide removal using fixed bed column with Cu-modified zeolite nanoparticle. Journal of the Taiwan Institute of Chemical Engineers, 75, 164–173. https://doi.org/10.1016/j.jtice.2017.03.024. [69] Estrada, S., & Garcias, C., Perez,C., Cantu, L., (2023). Nanomateriales: conceptos, aplicación en nanoterapia y regulaciones Nanomaterials: concepts, application in nanotherapy and regulations. In Palabras clave: Nanomateriales, departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280Saltillo, Coahuila, México. [70] Evgenidou, E., Konstantinou, I., Fytianos, K., & Poulios, I. (2007). Oxidation of two organophosphorous insecticides by the photo-assisted Fenton reaction. Water Research, 41(9), 2015–2027. https://doi.org/10.1016/j.watres.2007.01.027. [71] Fadaei, A., & Kargar, M. (2013). Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresenius Environmental Bulletin, © by PSP Volume 22 – No 8a. 2013. [72] Ferreira, J., Takarada, W., Orth, E., (2022). Waste-derived biocatalysts for pesticide degradation, Journal of Hazardous Materials, Volume 427. https://doi.org/10.1016/j.jhazmat.2021.127885. [73] Fishel, F. M., (2005). Pesticide Toxicity Profile: Triazole Pesticides. University of Florida, IFAS Ext PI 6 [74] Flyunt et al. (2003). Determination of •OH, O2•-, and Hydroperoxide Yields in Ozone Reactions in Aqueous Solution. J. Phys. Chem. B 2003, 107, 7242-7253. DOI:10.1021/jp022455b. [75] Food and Agriculture Organization of the United Nations (FAO).(1986). international Code of Conduct on the Distribution and Use of Pesticides. Roma: FAO, 1986; 28. [76] Frank R. (2009).Organochlorine insecticides. Rev Soc Quim Mex; 12:77-79. [77] Ganie, S, Y., Javaid, D., Hajam, Y, A., Reshi, M, S., (2022). Mechanisms and treatment strategies of organophosphate pesticide induced neurotoxicity in humans: A critical appraisal, Toxicology, Volume 472, https://doi.org/10.1016/j.tox.2022.153181. [78] Gao, J., Qin, T., Wacławek, S., Duan, X., Huang, Y., Liu, H., & Dionysiou, D. D. (2023). The application of advanced oxidation processes (AOPs) to treat unconventional water for fit-for-purpose reuse. In Current Opinion in Chemical Engineering (Vol. 42). Elsevier Ltd. https://doi.org/10.1016/j.coche.2023.100974. [79] Garibay, S. J., Farha, O. K., & Decoste, J. B. (2019). Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. Chemical Communications, 55(49), 7005–7008. https://doi.org/10.1039/c9cc02236h [80] Garzón-Cucaita, V., & Carriazo, J. (2022). Óxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminantes,”TecnoLógicas, vol. 25, nro.55, e2393,2022.https://doi.org/10.22430/22565337.2393 [81] Ghauch, A., & Tuqan, A. (2008). Catalytic degradation of chlorothalonil in water using bimetallic iron-based systems. Chemosphere, 73(5), 751–759. https://doi.org/10.1016/j.chemosphere.2008.06.035. [82] Gil,A., Galeano,L., Vicente,M.,(2019). Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment The Handbook of Environmental Chemistry 67. Series Editors: Damià Barceló · Andrey G. Kostianoy [83] Glaze, W.(1987). "Drinking-water treatment with ozone". Environmental Science and Technology. Vol. 21, pp. 224-230. [84] Godínez Muñoz, E. 2005. Análisis de residuos de pesticidas en muestras de tomate de cáscara y col. Tesis Licenciatura. Ciencias Farmacéuticas. Departamento de Química y Biología, Escuela de Ciencias, Universidad de las Américas Puebla. Mayo. 2005. [85] Gomez, S. V, Leal Marchena, C., Pizzio, L. R., & Pierella, L. B. (2012). DEGRADACIÓN DE DICLORVOS SOBRE ZEOLITAS ZSM-11 IMPREGNADAS CON TiO2. [86] Gonçalves, D.D. (2023). Degradação sequencial redutiva-oxidativa de pesticidas em água. [87] González Finol, M., (2010). Estudio De La Degradación Desustancias Peligrosas Presentes En Aguas De Salida De Edar Mediante Ozono/Luz Uv. Departamento de ingeniería química y medio ambiente. Universidad de Zaragoza. España. [88] Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. In Journal of Environmental Management (Vol. 270). Academic Press. https://doi.org/10.1016/j.jenvman.2020.110906 [89] Guerra-Rodríguez, S., Cuesta, S., Pérez, J., Rodríguez, E., & Rodríguez-Chueca, J. (2023). Life Cycle Assessment of sulfate radical based-AOPs for wastewater disinfection. Chemical Engineering Journal, 474. https://doi.org/10.1016/j.cej.2023.145427 [90] Guo, Y., Wang, Y., Hu, C., Wang, Y., Wang, E., Zhou, Y., & Feng, S. (2000). Microporous Polyoxometalates POMs/SiO2 : Synthesis and Photocatalytic Degradation of Aqueous Organocholorine Pesticides. https://doi.org/10.1021/cm000074 [91] Gupta, P., & Verma, N. (2021). Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chemical Engineering Journal, 417. https://doi.org/10.1016/j.cej.2020.128029. [92] Guzmán González, C.A.(2012). Oxidación catalítica en fase líquida de MTBE con catalizadores de Au/TiO₂ y Au/TiO₂-CeO₂. [93] Gyalpo T, Fritsche L, Bouwman H, Bornman R, Scheringer M, Hungerbühler K.(2012) Estimation of human body concentrations of DDT from indoor residual spraying for malaria control. Environ Pollut; 169:235-241 [94] Hernández Álvarez, U.; Pinedo-Hernández, J.; Paternina-Uribe, R.; Marrugo-Negrete, J.L. 2021. Evaluación de calidad del agua en la Quebrada Jui, afluente del río Sinú, Colombia. Rev. U.D.C.A Act. & Div. Cient. 24(1):e1678. http://doi.org/10.31910/rudca. v24.n1.2021.1678 [95] Hernandez, D. (2022). Utilización de la nanotecnología En el Desarrollo de Fertilizantes Orgánicos y Pesticidas. International Journal of Science and Society. [96] Herrera, W., Vera, J., Aponte, H., Hermosilla, E., Fincheira, P., Parada, J., Tortella, G., Seabra, A. B., Diez, M. C., & Rubilar, O. (2023). Meta-analysis of metal nanoparticles degrading pesticides: what parameters are relevant? Environmental Science and Pollution Research, 30(21), 60168–60179. https://doi.org/10.1007/s11356-023-26756-1. [97] Hlophe, P. V., & Dlamini, L. N. (2021). Photocatalytic degradation of diazinon with a 2d/3d nanocomposite of black phosphorous/metal organic framework. Catalysts, 11(6). https://doi.org/10.3390/catal11060679. [98] Huang, H., Li, N., Chen, Y., Shentu, X., Yu, X., & Ye, Z. (2024). Synthesis of multiwalled carbon nanotubes/metal-organic framework composite for the determination of neonicotinoid pesticides in medicine and food homology products. Food Chemistry, 434, 137354. https://doi.org/10.1016/j.foodchem.2023.137354. [99] Huang, Y., Bu, L., Wu, Y., Zhu, S., Zhou, S., Shi, Z., & Dionysiou, D. D. (2022). Degradation of contaminants of emerging concern in UV/Sodium percarbonate Process: Kinetic understanding of carbonate radical and energy consumption evaluation. Chemical Engineering Journal, 442. https://doi.org/10.1016/j.cej.2022.135995. [100] ICA. (2023). Registro Nacionales de Plaguicidas. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos/estadisticas/9-bd_registros-nacionales-plaguicidas_20-de-septi.aspx Con acceso 06-12-2023. [101] INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES, IDEAM. 2018. Reporte de avance del Estudio Nacional del Agua. Disponible desde Internet en: http://www.andi.com.co/Uploads/Cartilla_ENA_%20 2018.pdf (con acceso el 8/05/2022). [102] INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES. (2001) definiciones Disponible desde Internet en, http://doc umentacion.ideam.gov.co/openbiblio/bvirtual/005247/HTM/CAPITULO_7.HTM (con acceso el 05/10/2022) [103] Isidro, E., Judith Amador-Hernández, D., Iliana Margarita de la Garza Rodríguez, D., Rosario Enríquez Rosado, D., & Velázquez-Manzanares, M. (2021). Área: Biología y Química Triazinas, los herbicidas más usados alrededor del mundo: aspectos químicos y biológicos Triazines, the most used herbicides around the world: chemical and biological aspects. [104] IUPAC 'fotocatálisis' (2019) en Compendio de Terminología Química de la IUPAC, 3ª ed. Unión Internacional de Química Pura y Aplicada; 2006. En línea versión 3.0.1, 2019. https://doi.org/10.1351/goldbook.P04580 [105] Jafari, B., Godini, H., Soltani, R. D. C., & Seydi, E. (2022). Effectiveness of UV/SO32− advanced reduction process for degradation and mineralization of trichlorfon pesticide in water: identification of intermediates and toxicity assessment. Environmental Science and Pollution Research, 29(14), 20409–20420. https://doi.org/10.1007/s11356-021-17274-z [106] Jalili-Jahani, N., Fatehi, A., Azizi-Saadi, J., & Moallem, M. (2022). Enhanced photocatalytic degradation of diazinon by bimetallic Au/Ag-decorated TiO2 nanorods and quadrupole time-of-flight LC-MS/MS assay for detection of by-products. Ceramics International, 48(23), 34415–34427. https://doi.org/10.1016/j.ceramint.2022.08.020 [107] Jaquez, V., Gonzalez, L., Campusano, R., Ortega, V (S.F) Comportamiento De Plaguicidas Persistentes En El Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango del Instituto Politécnico Nacional, Sigma 119. https://www.labamerex.com/newsletter/news18/Comportamiento-de-plaguicidas.pdf. [108] Jatoi, A. S., Hashmi, Z., Adriyani, R., Yuniarto, A., Mazari, S. A., Akhter, F., & Mubarak, N. M. (2021). Recent trends and future challenges of pesticide removal techniques - A comprehensive review. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105571. [109] Jiad, M. M., & Abbar, A. H. (2023). Treatment of petroleum refinery wastewater by electrofenton process using a low cost porous graphite air-diffusion cathode with a novel design. Chemical Engineering Research and Design, 193, 207–221. https://doi.org/10.1016/j.cherd.2023.03.021 [110] Jurewicz, J., Radwan, P., Wielgomas, B., Radwan, M., Karwacka, A., Kałużny, P., Piskunowicz, M., Dziewirska, E., & Hanke, W. (2020). Exposure to pyrethroid pesticides and ovarian reserve. Environment International, 144. https://doi.org/10.1016/j.envint.2020.106028. [111] Kahle M, Buerge IJ, Hauser A, Müller MD, Poiger T.(2008). Fungicidas azoles: ocurrencia y destino en aguas residuales y superficiales. Environ Sci Technol. 1 de octubre de 2008; 42(19):7193-200. doi: 10.1021/es8009309. PMID: 18939546. [112] Kalantar, S., Bemani, A., Sayadi, M. H., & Chamanehpour, E. (2023). Visible light–driven ZnO/Fe3O4 magnetic nanoparticles for detoxification of diazinon: the photocatalytic optimization process with RSM-BBD model. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29024-4 [113] Keihan, A. H., Hosseinzadeh, R., Farhadian, M., Kooshki, H., & Hosseinzadeh, G. (2016). Solvothermal preparation of Ag nanoparticle and graphene co-loaded TiO2 for the photocatalytic degradation of paraoxon pesticide under visible light irradiation. RSC Advances, 6(87), 83673–83687. https://doi.org/10.1039/c6ra19478h [114] Khan, J. A., Han, C., Shah, N. S., Khan, H. M., Nadagouda, M. N., Likodimos, V., Falaras, P., O’Shea, K., & Dionysiou, D. D. (2014). Ultraviolet-Visible Light-Sensitive High Surface Area Phosphorous-Fluorine-Co-Doped TiO2 Nanoparticles for the Degradation of Atrazine in Water. Environmental Engineering Science, 31(7), 435–446. https://doi.org/10.1089/ees.2013.0486 [115] Khan, S., He, X., Khan, J. A., Khan, H. M., Boccelli, D. L., & Dionysiou, D. D. (2017). Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chemical Engineering Journal, 318, 135–142. https://doi.org/10.1016/j.cej.2016.05.150 [116] Khan, S., Sohail, M., Han, C., Khan, J. A., Khan, H. M., & Dionysiou, D. D. (2021). Degradation of highly chlorinated pesticide, lindane, in water using UV/persulfate: kinetics and mechanism, toxicity evaluation, and synergism by H2O2. Journal of Hazardous Materials, 402. https://doi.org/10.1016/j.jhazmat.2020.123558. [117] Khoiriah, K., Wellia, D. V., Gunlazuardi, J., & Safni, S. (2020). C. Indonesian Journal of Chemistry, 20(3), 587–596. https://doi.org/10.22146/ijc.43982. [118] Kumar, A., & Verma, N. (2020). Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr(VI) in wet air. Catalysis Today, 348, 194–202. https://doi.org/10.1016/j.cattod.2019.08.025 [119] Kumar,J., Kaushik,G., Dar,M,A., Nimesh,S., López,J., Villarreal,J,F.,(2018), Microbial Degradation of Organophosphate Pesticides: A Review Pedosphere, Pages 190-208 https://doi.org/10.1016/S1002-0160(18)60017-7. [120] Kumar,R., & Mukherji, S. (2021) Photocatalysis of dichlorvos using graphene oxide-TiO2 nanocomposite under visible irradiation: process optimization using response surface methodology. Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, Powai,Mumbai—400076, India. Nanotechnology 32, 405708 (15pp). https://doi.org/10.1088/1361-6528/ac101a. [121] Kumari, P., & Kumar, A. (2023). Advanced Oxidation Process: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces, 11, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122. [122] Lee, Y. M., Lee, G., & Zoh, K. D. (2021). Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123591 [123] Li, J., Chu, B., Xie, Z., Deng, Y., Zhou, Y., Dong, L., Li, B., & Chen, Z. (2022). Mechanism and DFT Study of Degradation of Organic Pollutants on Rare Earth Ions Doped TiO2 Photocatalysts Prepared by Sol-Hydrothermal Synthesis. Catalysis Letters, 152(2), 489–502. https://doi.org/10.1007/s10562-021-03634-4 [124] Li, W., Chen, C., Yang, R., Cheng, S., Sang, X., Zhang, M., Zhang, J., Wang, Z., & Li, Z. (2023). Efficient and Stable Degradation of Triazophos Pesticide by TiO2/WO3 Nanocomposites with S-Scheme Heterojunctions and Oxygen Defects. Catalysts, 13(7). https://doi.org/10.3390/catal13071136. [125] Liu, J., Wang, Y., Dai, Z., Jia, C. Q., Yang, L., Liu, J., Chen, Y., Yao, L., Wang, B., Huang, W., & Jiang, W. (2024). Recent advances in Zeolite-Based catalysts for volatile organic compounds decontamination by thermal catalytic oxidation. In Separation and Purification Technology (Vol. 330). Elsevier B.V. https://doi.org/10.1016/j.seppur.2023.125339. [126] López CL. (1993). Exposición a plaguicidas organofosforados. Perspectivas en Salud Pública N.o18. México: Instituto Nacional de Salud Pública. Monografia em Espanhol | LILACS | ID: lil-167674 [127] López, E., & Carlos., J. (2018). Nuevos materiales carbonosos como catalizadores heterogéneos y su aplicación en procesos de oxidación avanzada y en reacciones de interés industrial. [128] Lourenço, F.M.(2022). Influência nos processos de retenção e transporte de pesticidas e ecotoxicidade de microplásticos em solo tropical. [129] Lousada, M. E., Lopez Maldonado, E. A., Nthunya, L. N., Mosai, A., Antunes, M. L. P., Fraceto, L. F., & Baigorria, E. (2023). Nanoclays and mineral derivates applied to pesticide water remediation. Journal of Contaminant Hydrology, 259. https://doi.org/10.1016/j.jconhyd.2023.104264 [130] Malato, S., Blanco, J., Maldonado, M. I., Fernández-Ibáñez, P., & Campos, A. (2000). Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species; application to the recycling of pesticide containers. In Applied Catalysis B: Environmental (Vol. 28). [131] Meng, X., Guo, Y., Wang, Y., Fan, S., Wang, K., & Han, W. (2022). A Systematic Review of Photolysis and Hydrolysis Degradation Modes, Degradation Mechanisms, and Identification Methods of Pesticides. In Journal of Chemistry (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/9552466 [132] Moezabadi, A. N., Masoumi, A., Asadikaram, G., & Rezaee, A. (2023). Removal of diazinon from aqueous solutions using 3D electrochemical system including a nanocomposite of microbial cellulose/nanomagnetite. Journal of Water Process Engineering, 55, 104232. https://doi.org/10.1016/j.jwpe.2023.104232 [133] Mohamed A. Hassaan, Ahmed El Nemr,(2020) Pesticides pollution: Classifications, human health impact, extraction and treatment techniques,Egyptian Journal of Aquatic Research,Volume 46, Issue 3,Pages 207-220,ISSN 1687-4285,https://doi.org/10.1016/j.ejar.2020.08.007. [134] Mohammadi, P., & Sheibani, H. (2019). Evaluation, of the bimetallic photocatalytic performance of Resin–Au–Pd nanocomposite for degradation of parathion pesticide under visible light. Polyhedron, 170, 132–137. https://doi.org/10.1016/j.poly.2019.05.030 [135] Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. In Applied Catalysis B: Environmental (Vol. 202, pp. 217–261). Elsevier B.V. https://doi.org/10.1016/j.apcatb.2016.08.037 [136] Moreno, D.M., Rivera, M.E., Delgado, J., & Vargas, M.E. (2018). Modelación del Transporte de Plaguicidas e Insecticidas en Suelos de Cultivo de Arveja con el Software Hydrus-1d en Vereda el Escorial, Pamplona Norte de Santander. Bistua Revista de la Facultad de Ciencias Básicas. [137] Mosleh, S., Rezaei, K., Dashtian, K., & Salehi, Z. (2021). Ce/Eu redox couple functionalized HKUST-1 MOF insight to sono-photodegradation of malathion. Journal of Hazardous Materials, 409. https://doi.org/10.1016/j.jhazmat.2020.124478 [138] Muff, J., Andersen, C. D., Erichsen, R., & Soegaard, E. G. (2009). Electrochemical treatment of drainage water from toxic dump of pesticides and degradation products. Electrochimica Acta, 54(7), 2062–2068. https://doi.org/10.1016/j.electacta.2008.09.032 [139] Nekooie, R., Ghasemi, J. B., Badiei, A., Shamspur, T., Mostafavi, A., & Moradian, S. (2022). Design and synthesis of g-C3N4/(Cu/TiO2) nanocomposite for the visible light photocatalytic degradation of endosulfan in aqueous solutions. Journal of Molecular Structure, 1258. https://doi.org/10.1016/j.molstruc.2022.132650 [140] Neoblau.(2022) Blossom PinIt Developed By Blossom Themes. Powered by WordPress. Organización Mundial de la Salud (OMS), Organización Panamericana de la Salud (OPS), Centro Panamericano de Ecología Humana y Salud. Serie Vigilancia, 9. Plaguicidas organoclorados. México: OMS/OPS, 1990. [141] Nivia,E (2004). Los plaguicidas en Colombia. https://www.semillas.org.co/es/los-plaguicidas-en-colombia. (Consultado 22-09-2022) [142] Nurdin, M., Watoni, A. H., Natsir, M., Rahmatilah, S., Maulidiyah, M., Wibowo, D., Salim, L. O. A., Sadikin, S. N., Bijang, C. M., & Umar, A. A. (2023). Photoelectrocatalysis performance of Se doped-TiO2/Ti nanotube arrays for visible-light-driven degradation of diazinon pesticide. Korean Journal of Chemical Engineering. https://doi.org/10.1007/s11814-023-1395-1. [143] Organización Mundial de la Salud. (2011). Guidelines for drinking-water quality. 4o ed. Ginebra: Organización Mundial de la Salud: WHO Library cataloguing-in-publication data. [144] Organización Mundial de la Salud.(2021) WHO Library cataloguing-in-publication data. [145] Organización Mundial de la Salud: (1990) WHO Library cataloguing-in-publication data. [146] Oturan, M. A.,& Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. In Critical Reviews in Environmental Science and Technology (Vol. 44, Issue 23, pp. 2577–2641). https://doi.org/10.1080/10643389.2013.829765 [147] Paredes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water, Air, and Soil Pollution, 232(1). https://doi.org/10.1007/s11270-020-04968-2 [148] Parthenidis, P., Evgenidou, E., & Lambropoulou, D. (2023). Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Journal of Water Process Engineering, 53. https://doi.org/10.1016/j.jwpe.2023.103768 [149] Patil, P. B., Raut-Jadhav, S., Topare, N. S., & Pandit, A. B. (2023). Combined strategy of hydrodynamic cavitation and Fenton chemistry for the intensified degradation of acetamiprid. Separation and Purification Technology, 325. https://doi.org/10.1016/j.seppur.2023.124701 [150] Pergal, M. V., Kodranov, I. D., Pergal, M. M., Gašić, U., Stanković, D. M., Petković, B. B., & Manojlović, D. D. (2020). Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion. Water, Air, and Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04800-x. [151] Petsas, A. S., & Vagi, M. C. (2018). Photocatalytic Degradation of Selected Organophosphorus Pesticides Using Titanium Dioxide and UV Light. In Titanium Dioxide - Material for a Sustainable Environment. InTech. https://doi.org/10.5772/intechopen.72193. [152] Pinzon.F., fundación Hidrósfera., entrevista a EL COLOMBIANO.2022 https://www.elcolombiano.com/colombia/espuma-de-mosquera-empezo-a-desaparecer-del-rio-DD17363365 (con Acceso el 16-09-2022) [153] Ponnaiah, S. K., & Periakaruppan, P. (2024). Fabrication of tin oxide and carbon black nanocomposite for effectual electron-hole separation and visible light-harvesting: Enhanced photocatalytic degradation of an organophosphorus pesticide. Materials Chemistry and Physics, 313. https://doi.org/10.1016/j.matchemphys.2023.128806 [154] Quilez-Molina, A. I., Barroso-Solares, S., Hurtado-García, V., Heredia-Guerrero, J. A., Rodriguez-Mendez, M. L., Rodríguez-Pérez, M. Á., & Pinto, J. (2023). Encapsulation of Copper Nanoparticles in Electrospun Nanofibers for Sustainable Removal of Pesticides. ACS Applied Materials and Interfaces, 15(16), 20385–20397. https://doi.org/10.1021/acsami.3c00849 [155] Ramírez, A.D. (2017). Oxidación Selectiva de Propano y Etano Empleando Catalizadores Basados En Oxidos Multicomponentes. http://hdl.handle.net/10251/90463 [156] Rani, M., Choudhary, S., Yadav, J., Keshu, & Shanker, U. (2023). Metal Oxide-Based Nanocomposites for Elimination of Hazardous Pesticides. In Handbook of Green and Sustainable Nanotechnology (pp. 1123–1148). Springer International Publishing. https://doi.org/10.1007/978-3-031-16101-8_40. [157] Rapeyko, A. (2017). Materiales Metalorgánicos estructurados (MOFs) y óxidos metálicos como catalizadores heterogéneos para la obtención de compuestos de química fina y valorización de biomasa. [158] Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. In Environment International (Vol. 75, pp. 33–51). Elsevier Ltd. https://doi.org/10.1016/j.envint.2014.10.027. [159] Rocío-Bautista, P., Taima-Mancera, I., Pasán, J., & Pino, V. (2019). Metal-organic frameworks in green analytical chemistry. In Separations (Vol. 6, Issue 3). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/separations6030033 [160] Rodriguez, M y Barrera, C. (2020). Procesos de oxidación avanzada en el tratamiento de agua. Universidad Autónoma del Estado de México, Toluca. [161] Roselló-Márquez,G., Fernández-Domene, R., García-Antón, J.(2021) Organophosphorus pesticides (chlorfenvinphos, phosmet and fenamiphos) photoelectrodegradation by using WO3 nanostructures as photoanode,Journal of Electroanalytical Chemistry,Volume 894,2021,115366,ISSN 1572-6657. https://doi.org/10.1016/j.jelechem.115366. [162] Roshani, M., Nematollahi, D., Ansari, A., Adib, K., & Masoudi-Khoram, M. (2024). Boosted electrocatalytic oxidation of organophosphorus pesticides by a novel high-efficiency CeO2-Doped PbO2 anode: An electrochemical study, parameter optimization and degradation mechanisms. Chemosphere, 346. https://doi.org/10.1016/j.chemosphere.2023.140597. [163] Sahithya, K., Kounin, S., Sahana, P., & Arjun, K. P. (2022). Applications of Nanomaterials for Adsorptive and Catalytic Removal of Chemical Pesticides: An Overview. In Asian Journal of Chemistry (Vol. 34, Issue 4, pp. 807–818). Asian Publication Corporation. https://doi.org/10.14233/ajchem.2022.23579 [164] Salazar,M., (2023) Efecto de las propiedades electrocatalíticas de materiales catódicos carbonosos para la decoloración de moléculas modelo aniónica catiónica en un proceso electro-Fenton. Centro De Investigación Y Desarrollo Tecnológico En Electroquimica [165] Saljooqi, A., Shamspur, T., & Mostafavi, A. (2020). Synthesis of titanium nanoplate decorated by Pd and Fe3O4 nanoparticles immobilized on graphene oxide as a novel photocatalyst for degradation of parathion pesticide. Polyhedron, 179. https://doi.org/10.1016/j.poly.2020.114371 [166] Sánchez, N. Rodríguez, M. Sarria, V.(2006). Obsolete pesticides in Colombia. Current situation and alternatives for treatment and disposal. [167] Saqib, M., Solomonenko, A. N., Barek, J., Dorozhko, E. V., Korotkova, E. I., & Aljasar, S. A. (2023). Graphene derivatives-based electrodes for the electrochemical determination of carbamate pesticides in food products: A review. In Analytica Chimica Acta (Vol. 1272). Elsevier B.V. https://doi.org/10.1016/j.aca.2023.341449 [168] Saravanan, A., Kumar, P. S., Vo, D. V. N., Yaashikaa, P. R., Karishma, S., Jeevanantham, S., Gayathri, B., & Bharathi, V. D. (2021). Photocatalysis for removal of environmental pollutants and fuel production: a review. In Environmental Chemistry Letters (Vol. 19, Issue 1, pp. 441–463). Springer Science andBusinessMedia Deutschland GmbH. https://doi.org/10.1007/s10311-020-01077-8 [169] Serna-Galvis, E. A., Silva-Agredo, J., Hernández, F., Botero-Coy, A. M., & Torres-Palma, R. A. (2023). Methods involved in the treatment of four representative pharmaceuticals in hospital wastewater using sonochemical and biological processes. MethodsX, 10. https://doi.org/10.1016/j.mex.2023.102128 [170] Shalini Devi, K. S., Anusha, N., Raja, S., & Senthil Kumar, A. (2018). A New Strategy for Direct Electrochemical Sensing of a Organophosphorus Pesticide, Triazophos, Using a Coomassie Brilliant-Blue Dye Surface-Confined Carbon-Black-Nanoparticle-Modified Electrode. ACS Applied Nano Materials, 1(8), 4110–4119. https://doi.org/10.1021/acsanm.8b00861 [171] Shanaah, H. H., Alzaimoor, E. F. H., Rashdan, S., Abdalhafith, A. A., & Kamel, A. H. (2023). Photocatalytic Degradation and Adsorptive Removal of Emerging Organic Pesticides Using Metal Oxide and Their Composites: Recent Trends and Future Perspectives. In Sustainability (Switzerland) (Vol. 15, Issue 9). MDPI. https://doi.org/10.3390/su15097336 [172] Sharma, S., Sharma, A., Chauhan, N. S., Tahir, M., Kumari, K., Mittal, A., & Kumar, N. (2022). TiO2/Bi2O3/PANI nanocomposite materials for enhanced photocatalytic decontamination of organic pollutants. Inorganic Chemistry Communications, 146. https://doi.org/10.1016/j.inoche.2022.110093 [173] Singh, J., Sharma, S., Aanchal, Basu, S.,(2019) Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis, Journal of Photochemistry and Photobiology A: Chemistry, Volume 376, https://doi.org/10.1016/j.jphotochem.2019.03.004. [174] Soares da Silva, R.G., Panis, C., Pascotto, C.R., Defante Ferreto, L.E., Lucio, L.C., & Mazetto Brizola, F. (2022). Mecanismos de carcinogênese induzidos por agrotóxicos: revisão sistemática. Acta Elit Salutis. [175] Sraw, A., Kaur, T., Pandey, Y., Sobti, A., Wanchoo, R. K., & Toor, A. P. (2018). Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. Journal of Environmental Chemical Engineering, 6(6), 7035–7043. https://doi.org/10.1016/j.jece.2018.10.062 [176] Svensson, F. G., & Österlund, L. (2023). Adsorption and Photo-Degradation of Organophosphates onSulfate-Terminated Anatase TiO2 Nanoparticles. Catalysts, 13(3). https://doi.org/10.3390/catal13030526 [177] Sud,D., & Kaur,P., (2012): Heterogeneous Photocatalytic Degradation of Selected Organophosphate Pesticides: A Review, Critical Reviews in Environmental Science and Technology, 42:22, 2365-2407 To link to this article: http://dx.doi.org/10.1080/10643389.2011.574184 [178] Tahmasebi, A. A., Salimi Beni, A., Azhdarpoor, A., & Moeini, Z. (2023). The application of granular and biological activated carbon columns in removal of organochlorine and organophosphorus pesticides in a water treatment plant. Journal of Water Process Engineering, 56. https://doi.org/10.1016/j.jwpe.2023.104383. [179] Torres-Mendoza, K.E., Lara-Tambaco, R.M., & León-Araujo, M.E. (2023). Evaluación del proceso de efluentes en refinería Esmeraldas a partir del tratamiento secundario frente al proceso de oxidación húmeda avanzada. Ibero-American Journal of Engineering & Technology Studies. [180] Trenco, A.G. (2014). Desarrollo de catalizadores híbridos CuZnOAl2O3/zeolita para el proceso de síntesis directa de DME. [181] Vaya, D., & Surolia, P. K. (2020). C. In Environmental Technology and Innovation (Vol. 20). Elsevier B.V. https://doi.org/10.1016/j.eti.2020.101128 [182] Vela-Monroy, C. A., Saavedra-Alemán, M. J., & Carriazo-Baños, J. G. (2016). Catalizadores homogéneos y heterogéneos de Fe 3+ , Co 2+ y Cu 2+ para la degradación de metilparatión en medio acuoso diluido Homogeneous and heterogeneous catalysts of Fe 3+ , Co 2+ and Cu 2+ for the degradation of methyl parathion in diluted aqueous medium (Vol. 19, Issue 37). , pp. 13-28, 2016. [183] Wang, C., Shi, P., Wang, Z., Guo, R., You, J., & Zhang, H. (2023). Efficient wastewater disinfection through FeOOH-mediated photo-Fenton reaction: A review. In Journal of Environmental Chemical Engineering (Vol. 11, Issue 6). Elsevier Ltd. https://doi.org/10.1016/j.jece.2023.111269 [184] Wang, D., Li, Y., Jiang, Y., Cai, X., & Yao, X. (2022). Perspectives on surface chemistry of nanostructured catalysts for heterogeneous advanced oxidation processes. Environmental Functional Materials, 1(2), 182–186. https://doi.org/10.1016/j.efmat.2022.08.003 [185] Wang, F., Gao, J., Zhai, W., Cui, J., Hua, Y., Zhou, Z., Liu, D., Wang, P., & Zhang, H. (2021). Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Ecotoxicology and Environmental Safety, 219. https://doi.org/10.1016/j.ecoenv.2021.112236 [186] Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698 [187] Xochihua Juan, J. L., Solis Maldonado, C., Luna Sánchez, R. A., Enciso Díaz, O. J., Rojas Ronquillo, M. R., Sandoval-Rangel, L., Pineda Aguilar, N., Ramos Delgado, N. A., & Martínez-Vargas, D. X. (2022). TiO2 doped with europium (Eu): Synthesis, characterization and catalytic performance on pesticide degradation under solar irradiation. Catalysis Today, 394–396, 304–313. https://doi.org/10.1016/j.cattod.2021.08.024 [188] Xu, D., Wang, S., Zhang, J., Tang, X., Guo, Y., & Huang, C. (2015). Supercritical water oxidation of a pesticide wastewater. Chemical Engineering Research and Design, 94, 396–406. https://doi.org/10.1016/j.cherd.2014.08.016 [189] Zammataro, A., Santonocito, R., Pappalardo, A., & Sfrazzetto, G. T. (2020). Catalytic degradation of nerve agents. In Catalysts (Vol. 10, Issue 8, pp. 1–18). MDPI. https://doi.org/10.3390/catal10080881 [190] Zawadzki, P. (2022). Visible Light–Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. In Water, Air, and Soil Pollution (Vol. 233, Issue 9). Institute for Ionics. https://doi.org/10.1007/s11270-022-05831-2 [191] Zekkaoui, C., Berrama, T., Dumoulin, D., Billon, G., & Kadmi, Y. (2021). Optimal degradation of organophosphorus pesticide at low levels in water using fenton and photo-fenton processes and identification of by-products by GC-MS/MS. Chemosphere, 279. https://doi.org/10.1016/j.chemosphere.2021.130544 [192] Zeng, Y., Zhang, S., Yin, L., & Dai, Y. (2022). Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode. Chinese Chemical Letters, 33(12), 5196–5199. https://doi.org/10.1016/j.cclet.2022.01.031 [193] Zhang, J., Zhao, Z., Liu, J., Wang, J., Sa, G., & Xu, A. (2023). Preparation of mesoporous Hangjin 2# clay supported Nd-TiO2 and its photodegradation of organophosphorus pesticides wastewater. Journal of Environmental Chemical Engineering, 11(6). https://doi.org/10.1016/j.jece.2023.111472 [194] Zhang, Y., Cao, X., Yang, Y., Guan, S., Wang, X., Li, H., Zheng, X., Zhou, L., Jiang, Y., & Gao, J. (2023). Visible light assisted enzyme-photocatalytic cascade degradation of organophosphorus pesticides. Green Chemical Engineering, 4(1), 30–38. https://doi.org/10.1016/j.gce.2022.02.001 [195] Zheng, W., Sun, Y., & Gu, Y. (2022). Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. Journal of Hazardous Materials, 436. https://doi.org/10.1016/j.jhazmat.2022.129058 [196] Zhou, H., Zhang, H., He, Y., Huang, B., Zhou, C., Yao, G., & Lai, B. (2021). Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. In Applied Catalysis B: Environmental (Vol. 286). Elsevier B.V. https://doi.org/10.1016/j.apcatb.2021.119900 [197] Zhu, Z., Guo, F., Xu, Z., Di, X., & Zhang, Q. (2020). Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. RSC Advances, 10(20), 11929–11938. https://doi.org/10.1039/d0ra01741h. [198] Zolfaghari, H., Yousefi, F., Ghaedi, M., & Mosleh, S. (2022). Performance evaluation of Zr(CUR)/NiCo2S4/CuCo2S4 and Zr(CUR)/CuCo2S4/Ag2S composites for photocatalytic degradation of the methyl parathion pesticide using a spiral-shaped photocatalytic reactor. RSC Advances, 12(45), 29503–29515. https://doi.org/10.1039/d2ra06277a |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 96 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86452/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86452/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Qu%c3%admica https://repositorio.unal.edu.co/bitstream/unal/86452/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Qu%c3%admica.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 4f7a3d6a514ceee3851e07c8ca5db2d3 51fb0db0fde87fe12d0c514f9f272022 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089856083558400 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CARRIAZO, José G.cfab27522e3f509cbb53c80d5a1bc762600Prieto Martinez, John Fredy66c36a795d1a1ee0534cbb466bcf7c11Diseño y Reactividad de Estructuras Sólidas2024-07-16T14:39:16Z2024-07-16T14:39:16Z2024https://repositorio.unal.edu.co/handle/unal/86452Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramasEsta monografía de investigación recopila información sobre los métodos más eficaces para la degradación catalítica de pesticidas organoclorados y organofosforados. Hace hincapié en la identificación y clasificación de diversos métodos de degradación oxidativa (catalítica y fotocatalítica), los mecanismos de degradación, la identificación de diferentes materiales inorgánicos para la degradación de pesticidas, la correlación entre la superficie de los materiales inorgánicos y su actividad catalítica, las condiciones ambientales como el pH y la temperatura, y la eficacia catalítica de los métodos de degradación. En los últimos años, el uso de pesticidas ha aumentado significativamente, lo que ha tenido un grave impacto en el medio y el ambiente. La acumulación de estos productos químicos tóxicos en el suelo y en los cuerpos de agua es un problema grave que afecta la salud de los organismos vivos. Por lo tanto, es esencial explorar y desarrollar métodos efectivos para la degradación y eliminación de estos pesticidas tanto en el agua como en el suelo. La monografía proporciona información detallada sobre los diversos métodos de degradación catalítica, incluido el uso de catalizadores homogéneos y heterogéneos, como TiO2, zeolitas, óxidos metálicos y materiales de carbono, redes metalorgánicas (MOF), arcillas modificadas y nanomateriales. También analiza el papel del catalizador en el proceso de degradación, incluida la activación de la molécula del pesticida y la generación de especies reactivas de oxígeno (por ejemplo, radicales libres). Además, la monografía proporciona información sobre el efecto de factores ambientales, como el pH y la temperatura, en el proceso de degradación catalítica. Las condiciones de pH y temperatura afectan significativamente la eficiencia del catalizador, y es crucial optimizar estos parámetros para lograr la máxima eficiencia (Texto tomado de la fuente).This research monograph compiles information on the most effective methods for the catalytic degradation of organochlorine and organophosphorus pesticides. This document emphasizes the identification and classification of various oxidative degradation methods (catalytic and photocatalytic), degradation mechanisms, the inorganic materials used as catalysts for removing pesticides, the correlation between the surface of inorganic materials and their catalytic activity, environmental conditions such as pH and temperature, and the catalytic efficiency of the degradation processes. In recent years, the use of pesticides has increased significantly, which has had a serious impact on the environment. The accumulation of these toxic substances in soil and water bodies is a serious problem affecting the health of living organisms and the quality of natural waters. Therefore, it is essential to explore and develop effective methods for the degradation and removal of these hazardous pesticides from soil and aqueous media. This monograph provides detailed information on the various catalytic degradation methods, including the use of homogeneous and heterogeneous catalysts, such as TiO2, zeolites, metal oxides and carbon materials, metal-organic frameworks (MOF), modified clays and nanomaterials. It also discusses the role of the catalyst in the degradation processes, including the activation of pesticide molecules and the generation of reactive oxygen species (e.g. free radicals). In addition, the monograph provides information on the effect of environmental factors, such as pH and temperature, on the catalytic degradation processes. The pH and temperature significantly affect the catalytic activity of the catalysts used for pesticides degradation, so it is crucial to optimize these parameters to achieve their maximum efficiency.MaestríaMagister en Ciencias - QuímicaAplicación de nuevos materiales en la degradación oxidativa de contaminantes orgánicos e inorgánicos en medio acuosoxv, 96 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::546 - Química inorgánicaPlaguicidasCompuestos organocloradosCompuestos organofosforadosDegradación ambientalPesticidesOrganochlorine compoundsOrganophosphorus compoundsEnvironmental degradationPesticidasPlaguicidasCompuestos organocloradosCompuestos organofosforadosFotocatálisisDegradación catalíticaProcesos avanzados de oxidaciónPesticidesPlaguicidesOrganochlorine compoundsOrganophosphorus compoundsPhotocatalysisCatalytic degradationAdvanced oxidation processesDegradación catalítica de pesticidas organoclorados y organofosforadosCatalytic degradation of organochlorine and organophosphorus pesticidesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TM[2] Abeldaño, D y Hurtado, B.(2022) Revisión sistemática: Remoción de antibióticos por ozono, universidad cesar vallejo, lima, Peru[3] Ahmad, F., Nisar,S.,Mehmood,M., Zakiratullah. (2022). A Critical Review on the Photo Degradation of Diazinon,A Persistent Organic Pesticides. Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt(47040), Punjab, Pakistan. https://doi.org/10.52568/001120/JCSP/44.05.2022[4] Aidoo, O. F., Osei-Owusu, J., Chia, S. Y., Dofuor, A. K., Antwi-Agyakwa, A. K., Okyere, H., Gyan, M., Edusei, G., Ninsin, K. D., Duker, R. Q., Siddiqui, S. A., & Borgemeister, C. (2023). Remediation of pesticide residues using ozone: A comprehensive overview. In Science of the Total Environment (Vol. 894). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.164933[5] Aktar, M,W., Sengupta, D., Chowdhury, A,(2009). Impact of pesticides use in agriculture: their benefits and hazards Interdiscip. Toxicol., 2 (1), pp. 1-12[6] Albert L, Reyes R. (2000) Plaguicidas organoclorados. Rev Soc Quim Mex; 22: 65-72[7] Alberto, E. A., Santos, G. M., Marson, E. O., Mbié, M. J., Paniagua, C. E. S., Ricardo, I. A., Starling, M. C. V. M., Pérez, J. A. S., & Trovó, A. G. (2023). Performance of different peroxide sources and UV-C radiation for the degradation of microcontaminants in tertiary effluent from a municipal wastewater treatment plant. Journal of Environmental Chemical Engineering, 11(5). https://doi.org/10.1016/j.jece.2023.110698[8] Alley, K. R., Gavenda-Eaton, T. R., & Prieto-Centurion, D. (2022). Photo-thermal catalytic degradation of organophosphate simulant over Cu, Co, and Fe on titania. Catalysis Communications, 162. https://doi.org/10.1016/j.catcom.2021.106369[9] Al-Saleh I A.(1994). Pesticides: a review article. J Environ Pathol Toxicol Oncol; 13:151-161.[10] Alsulami, A., Kumarswamy, Y. K., Prashanth, M. K., Hamzada, S., Lakshminarayana, P., Pradeep Kumar, C. B., Jeon, B. H., & Raghu, M. S. (2022). Fabrication of FeVO4/RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. ACS Omega, 7(49), 45239–45252. https://doi.org/10.1021/acsomega.2c05729[11] An, X., Chen, Y., Ao, M., Jin, Y., Zhan, L., Yu, B., Wu, Z., & Jiang, P. (2022). Sequential photocatalytic degradation of organophosphorus pesticides and recovery of orthophosphate by biochar/α-Fe2O3/MgO composite: A new enhanced strategy for reducing the impacts of organophosphorus from wastewater. Chemical Engineering Journal, 435. https://doi.org/10.1016/j.cej.2022.135087[12] An, X., Liu, H., Qu, J., Moniz, S. J. A., & Tang, J. (2015). Photocatalytic mineralisation of herbicide 2,4,5-trichlorophenoxyacetic acid: Enhanced performance by triple junction Cu-TiO2-Cu2O and the underlying reaction mechanism. New Journal of Chemistry, 39(1), 314–320. https://doi.org/10.1039/c4nj01317d[13] Anajafi, Z., Naseri, M., & Neri, G. (2020). Acetone sensing behavior of p-SmFeO3/n-ZnO nanocomposite synthesized by thermal treatment method. Sensors and Actuators, B: Chemical, 304. https://doi.org/10.1016/j.snb.2019.127252[14] Anirudhan, T. S., Manjusha, V., & Shainy, F. (2021). Magnetically retrievable cysteine modified graphene oxide@nickelferrite@titanium dioxide photocatalyst for the effective degradation of chlorpyrifos from aqueous solutions. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101633[15] Askarniya, Z., Rayaroth, M. P., Sun, X., Wang, Z., & Boczkaj, G. (2023). Degradation of bisphenol S – a contaminant of emerging concern - by synergistic ozone and percarbonate based AOP. Water Resources and Industry, 29. https://doi.org/10.1016/j.wri.2023.100208[16] Atalay, S., & Ersöz, G. (2016). Springer Briefs In Molecular Science Green Chemistry For Sustainability Novel Catalysts in Advanced Oxidation of Organic Pollutants. http://www.springer.com/series/10045[17] Aungpradit, T., Sutthivaiyakit, P., Martens, D., Sutthivaiyakit, S., & Kettrup, A. A. F. (2007). Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways. Journal of Hazardous Materials, 146(1–2), 204–213. https://doi.org/10.1016/j.jhazmat.2006.12.007[18] Ayare, S. D., & Gogate, P. R. (2020). Sonochemical, photocatalytic and sonophotocatalytic oxidation of flonicamid pesticide solution using different catalysts. Chemical Engineering and Processing - Process Intensification, 154. https://doi.org/10.1016/j.cep.2020.108040.[19] Azarpira, H., Rasolevandi, T., Mahvi, A. H., & Karimy, M. (2022). Diazinon pesticide photocatalytic degradation in aqueous matrices based on reductive agent release in iodide exciting under UV Irradiation. Environmental Science and Pollution Research, 29(38), 58078–58087. https://doi.org/10.1007/s11356-022-19811-w[20] Aziz, K., Naz, A., Manzoor, S., Khan, M. I., Shanableh, A., & Fernandez Garcia, J. (2023). Visible Light Photodegradation of Glyphosate and Methylene Blue Using Defect-Modified Graphitic Carbon Nitride Decorated with Ag/TiO2. Catalysts, 13(7). https://doi.org/10.3390/catal13071087[21] Bacheloth, Y. (2017). modelación del transporte de plaguicidas e insecticidas en suelos de cultivo de fresa mediante el software HYDRUS- 1D en la vereda de monteadentro pamplona norte de Santander. Universidad de Pamplona. Norte de Santander[22] Banco mundial. (2020). comunicado de prensa N.º 2020/133/GWA. https://www.bancomundial.org/es/news/press-release/2020/03/19/wastewater-a-resource-that-can-pay-dividends-for-people-the-environment-and-economies-says-world-bank. Con acceso 01-09-2022[23] Becerra-Moreno, D., Rubio-Gómez, Y., Ramírez-Ríos, L.F., Barajas-Solano, A.F., & Machuca Martínez, F. (2021). Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios. Ciencia en Desarrollo.[24] Begum, A., Agnihotri, P., Mahindrakar, A. B., & Gautam, S. K. (2017). Degradation of endosulfan and lindane using Fenton’s reagent. Applied Water Science, 7(1), 207–215. https://doi.org/10.1007/s13201-014-0237-z.[25] Benito, M., & María, J. (2011). Dinámica de fungicidas en suelos de viñedo enmendados con sustratos postcultivo de hongos.[26] Berberidou, C., Kokkinos, P., Poulios, I., & Mantzavinos, D. (2022). Homogeneous Photo-Fenton Degradation and Mineralization of Model and Simulated Pesticide Wastewaters in Lab- and Pilot-Scale Reactors. Catalysts, 12(12). https://doi.org/10.3390/catal12121512[27] Blanco, S.Z. (2017). Transformación Catalítica Selectiva de Metanol Sobre Catalizadores Basados en Óxidos Mixtos Metálicos.[28] Boukhemkhem, A., Bedia, J., Belver, C., & Molina, C. B. (2023). Degradation of pesticides by heterogeneous Fenton using iron-exchanged clays. Catalysis Communications, 183. https://doi.org/10.1016/j.catcom.2023.106771.[29] Brienza,M., Ozkal,C., Puma,G.,(2019) Photo(Catalytic) Oxidation Processes for the Removal of Natural Organic Matter and Contaminants of Emerging Concern from Water A. Gil et al. (eds.), Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, Hdb Env Chem (2019) 67: 133–154, DOI 10.1007/698_2017_189, © Springer International Publishing AG 2018, Published online: 14 April 2018[30] Briggs SA, Rachel Carson Council. (1992). Basic guide to pesticides. Their characteristics and hazards. Washington: Taylor & Francis Publisher.[31] Brouwera A, Ahlborgb UG, Van den Bergc M, Birnbaumd LS, Ruud BE, Bosveldc B, Denisonf MS, Earl GL, Hagmarg L, Holeneh E, Huismane M, Jacobsoni SW, Jacobsoni JL, Koopman-Esseboomj C, Koppek JG, Kuligl BM, Morsea DS, Mucklem G, Petersonn RE, Sauerj PJJ, Seegalo RF, Smits-Van PAE, Touwenq BCL, Weisglas-Kuperusj N, Winneker G. (1995).Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. Eur J Pharmacol Environ Toxicol Pharmacol; 293(1):1-40[32] Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531–3555. https://doi.org/10.1016/j.jece.2017.07.080[33] Cadavid Salazar, A. S., Rivera Vergara, J. G., & Becerra Moreno, D. (2022). Procesos avanzados de oxidación usando peróxido de hidrogeno activado con diferentes catalizadores para tratamiento de lixiviado de relleno sanitarios. Revista Ing-Nova, 1(2), 205–214. https://doi.org/10.32997/rin-2022-4005[34] Cai, Y. L., Xu, Y. H., Xiang, J. Z., Zhang, Z. Q., He, Q. X., Li, Y. F., & Lü, J. (2024). Iron–doped bismuth oxybromides as visible−light−responsive Fenton catalysts for the degradation of atrazine in aqueous phases. Journal of Environmental Sciences (China), 137, 321–332. https://doi.org/10.1016/j.jes.2023.01.005[35] CAR (2022). “Si continúa vertimiento de detergentes y otros contaminantes al río Balsillas espuma no desaparecerá”, advierte la CAR. https://www.car.gov.co/saladeprensa/si-continua-vertimiento-de-detergentes-y-otros-contaminantes-al-rio-balsillas-espuma-no-desaparecera-advierte-la-car. Con acceso 05-10-2022[36] Centeno-Bordones, G., & Jiménez, Y. (2020). Evaluación del Lodo Rojo Activado como Catalizador Heterogéneo en Procesos de Oxidación Avanzada con Radiación Solar para la Degradación de Aguas Agrias Petroleras.[37] Chambers, J, E., Meek, E,C., Chambers., H.W.,(2010)The metabolism of organophosphorus insecticides Hayes’ Handbook of Pesticide Toxicology, Academic Press, pp. 1399-1407[38] Chen X, Q. Zhou, F. Liu, Q. Peng, P. (2019), Teng Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase Chemosphere, 233 pp. 49-56[39] Chen, K., Cui, Z., Zhang, Z., Pang, H., Yang, J., Huang, X., & Lu, J. (2022). Life-sustaining of H+ in S(IV)/Fe(VI) system for efficient removal of dimethoate in water: Active species identification and mechanism. Chemical Engineering Journal, 445. https://doi.org/10.1016/j.cej.2022.136865[40] Chen, L., Wei, L., Ru, Y., Weng, M., Wang, L., & Dai, Q. (2023). A mini-review of the electro-peroxone technology for wastewaters: Characteristics, mechanism and prospect. In Chinese Chemical Letters (Vol. 34, Issue 9). Elsevier B.V. https://doi.org/10.1016/j.cclet.2023.108162[41] Chinnappa, K., Karuna Ananthai, P., Srinivasan, P. P., & Dharmaraj Glorybai, C. (2022). Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. Environmental Science and Pollution Research, 29(38), 58121–58132. https://doi.org/10.1007/s11356-022-19917-1[42] Chiron, S., Fernandez-Alba, A., Rodriguez, A., & Garcia-Calvo, E. (2000). PESTICIDE CHEMICAL OXIDATION: STATE-OF-THE-ART. www.elsevier.com/locate/watres.[43] Choudhary, S., Rani, M., Keshu, & Shanker, U. (2022). Green biosynthesized N-doped Bi2O3@SnO2 nanocomposite for efficient remediation of endocrine disrupting pesticides. Environmental Nanotechnology, Monitoring and Management, 18. https://doi.org/10.1016/j.enmm.2022.100746[44] Cole,S., Cooper,W., Fox, R.,Piero R. Gardinali, Mezyk, S.,Bruce J. Mincher, O’shea, K. (2007) Free Radical Chemistry of Disinfection Byproducts. 2. Rate Constants and Degradation Mechanisms of Trichloronitromethane (Chloropicrin). Environ. Sci. Technol. 2007, 41, 863-869.[45] Comunidad Andina,(2017) Sistema de Información del Medio Ambiente de los Países de la Comunidad Andina[46] Contreras, W.A., Bautista-Carrascosa, I., Lidón, A., & Ginestar, D. (2011). Utilización de un modelo compartimental de transporte de pesticidas en las prácticas de Química Agrícola y Ambiental. Modelización en la Educación y el Aprendizaje de las Ciencias, 4, 147-157.[47] Corporación Autónoma Regional de los Valles del Sinú y San Jorge, CVS. (2006). Plan de ordenación forestal-cerro Murrucucu, cuenca de la Quebrada Jui: Caracterización física. Ed. Universidad Nacional, sede Medellín (Colombia). 120p.[48] Cruz,G., julcour,C., Jáuregui,U., (2017) El Estado actual y perspectivas de la degradación de pesticidas por procesos avanzados de oxidación Rev. Cubana Quím.Vol. 29, no.3, sept.-dic., 2017, págs. 492-516, e-ISSN: 2224-5421[49] Cuerda-Correa, E. M., Alexandre-Franco, M. F., & Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. In Water (Switzerland) (Vol. 12, Issue 1). MDPI AG. https://doi.org/10.3390/w12010102[50] Cui, H., Zeng, J., Ren, Y. F., Liu, H., Deng, R., Zhang, W., Lv, Y., Wan, Q., Yang, L., Liu, P., & Yang, H. (2023). Theoretical studies on the degradation mechanism of organochlorine pesticides in the presence of Si-OH in sepiolite. Journal of Molecular Structure, 1279. https://doi.org/10.1016/j.molstruc.2023.134955[51] Dai, K., Peng, T., Chen, H., Zhang, R., & Zhang, Y. (2008). Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science and Technology, 42(5), 1505–1510. https://doi.org/10.1021/es702268p.[52] Daley JM, Paterson G y Drouillard KG. (2014).Bioamplification as a bioaccumulation mechanism for persistent organic pollutants (POPs) in Wildlife. Rev Environ Contam Toxicol; 227:107-154.[53] Daneshvar, N., Hejazi, M. J., Rangarangy, B., & Khataee, A. R. (2004). Photocatalytic Degradation of an Organophosphorus Pesticide Phosalone in Aqueous Suspensions of Titanium Dioxide. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 39(2), 285–296. https://doi.org/10.1081/PFC-120030242.[54] De Luna, M. D. G., Gumaling, R. P., Barte, E. G., Abarca, R. R. M., Garcia-Segura, S., & Lu, M. C. (2022). Electrochemically-driven regeneration of iron (II) enhances Fenton abatement of pesticide cartap. Journal of Hazardous Materials, 421. https://doi.org/10.1016/j.jhazmat.2021.126713[55] De Oliveira,R., da Silva Martini, W., Sant'Ana, A., (2022) Combined effect involving semiconductors and plasmonic nanoparticles in photocatalytic degradation of pesticides,Environmental Nanotechnology, Monitoring & Management,Volume 17,2022,100657,ISSN 2215-1532,https://doi.org/10.1016/j.enmm.2022.100657.[56] Debabrata, P., & Sivakumar, M. (2018). Sonochemical degradation of endocrine-disrupting organochlorine pesticide Dicofol: Investigations on the transformation pathways of dechlorination and the influencing operating parameters. Chemosphere, 204, 101–108. https://doi.org/10.1016/j.chemosphere.2018.04.014.[57] Dell'Arciprete, M.L. (2010). Mecanismos, cinética y toxicidad de insecticidas cloronicotinoides y sus productos de degradación con especies reactivas oxidantes de interés ambiental.[58] Despotović, V., Finčur, N., Bognar, S., Šojić Merkulov, D., Putnik, P., Abramović, B., & Panić, S. (2023). Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System. Separations, 10(4). https://doi.org/10.3390/separations10040258[59] Domènech, X.; Jardim, W. F.; Litter, M. (2004). “Procesos avanzados de oxidación para la remoción de contaminantes”. En: Blesa, M. A.; Sánchez, B., eds. “Eliminación de contaminantes por fotocatálisis heterogénea”. Madrid: CIEMAT.[60] Dong, X., Gan, Z., Lu, X., Jin, W., Yu, Y., & Zhang, M. (2015). Study on catalytic and non-catalytic supercritical water oxidation of p-nitrophenol wastewater. Chemical Engineering Journal, 277, 30–39. https://doi.org/10.1016/j.cej.2015.04.134[61] Duan, X., Niu, X., Gao, J., Wacławek, S., Tang, L., & Dionysiou, D. D. (2022). Comparison of sulfate radical with other reactive species. In Current Opinion in Chemical Engineering (Vol. 38). Elsevier Ltd. https://doi.org/10.1016/j.coche.2022.100867[62] Elfikrie,N., Ho,Y,B.,Zaidon,S,Z., Juahir,H., Tan,E,S.,(2020). Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia,Science of The Total Environment, Volume 712,. https://doi.org/10.1016/j.scitotenv.2020.136540[63] El-Khalafy, S. H., Hassanein, M. T., Elsigeny, S. M., Taha, H. F., Shoueir, K. R., & Kenawy, E. R. S. (2023). Catalytic activity of Mn(III) porphyrin complex supported onto cross linked polymers in the green oxidation of malathion with hydrogen peroxide in aqueous solution. Arabian Journal of Chemistry, 16(8). https://doi.org/10.1016/j.arabjc.2023.104969[64] El-Mekkawi, H.; et al.(2009). Determination of chlorinated organic pesticide residues in water, sediments, and fish from private fish farms at Abbassa and Sahl Al-Husainia, Shakia Governorate Aust. J. Basic Appl. Sci., 3[65] El-Nahhal,I., El-Nahhal,Y.,(2021).Pesticide residues in drinking water, their potential risk to human health and removal options,Journal of Environmental Management,Volume 299. https://doi.org/10.1016/j.jenvman.2021.113611[66] Elsayed, E., Hassan, H., El-Raouf, A. E. R. A., & Salman, S. N. (2021). Coupling between laser irradiation and TiO2nanoparticles on efficient decontamination of some pesticide’s residues from orange and tomato puree. Egyptian Journal of Chemistry, 64(2), 971–979. https://doi.org/10.21608/EJCHEM.2020.45989.2941.[67] EPA., Información básica sobre pesticidas (2022). https://espanol.epa.gov/espanol/informacion-basica-sobre-pesticidas#:~:text=Un%20pesticida%20es%20cualquier%20sustancia,repeler%20o%20controlar%20una%20plaga. (con acceso 29-08-2022)[68] Esfandian, H., Samadi-Maybodi, A., Khoshandam, B., & Parvini, M. (2017). Experimental and CFD modeling of diazinon pesticide removal using fixed bed column with Cu-modified zeolite nanoparticle. Journal of the Taiwan Institute of Chemical Engineers, 75, 164–173. https://doi.org/10.1016/j.jtice.2017.03.024.[69] Estrada, S., & Garcias, C., Perez,C., Cantu, L., (2023). Nanomateriales: conceptos, aplicación en nanoterapia y regulaciones Nanomaterials: concepts, application in nanotherapy and regulations. In Palabras clave: Nanomateriales, departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280Saltillo, Coahuila, México.[70] Evgenidou, E., Konstantinou, I., Fytianos, K., & Poulios, I. (2007). Oxidation of two organophosphorous insecticides by the photo-assisted Fenton reaction. Water Research, 41(9), 2015–2027. https://doi.org/10.1016/j.watres.2007.01.027.[71] Fadaei, A., & Kargar, M. (2013). Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresenius Environmental Bulletin, © by PSP Volume 22 – No 8a. 2013.[72] Ferreira, J., Takarada, W., Orth, E., (2022). Waste-derived biocatalysts for pesticide degradation, Journal of Hazardous Materials, Volume 427. https://doi.org/10.1016/j.jhazmat.2021.127885.[73] Fishel, F. M., (2005). Pesticide Toxicity Profile: Triazole Pesticides. University of Florida, IFAS Ext PI 6[74] Flyunt et al. (2003). Determination of •OH, O2•-, and Hydroperoxide Yields in Ozone Reactions in Aqueous Solution. J. Phys. Chem. B 2003, 107, 7242-7253. DOI:10.1021/jp022455b.[75] Food and Agriculture Organization of the United Nations (FAO).(1986). international Code of Conduct on the Distribution and Use of Pesticides. Roma: FAO, 1986; 28.[76] Frank R. (2009).Organochlorine insecticides. Rev Soc Quim Mex; 12:77-79.[77] Ganie, S, Y., Javaid, D., Hajam, Y, A., Reshi, M, S., (2022). Mechanisms and treatment strategies of organophosphate pesticide induced neurotoxicity in humans: A critical appraisal, Toxicology, Volume 472, https://doi.org/10.1016/j.tox.2022.153181.[78] Gao, J., Qin, T., Wacławek, S., Duan, X., Huang, Y., Liu, H., & Dionysiou, D. D. (2023). The application of advanced oxidation processes (AOPs) to treat unconventional water for fit-for-purpose reuse. In Current Opinion in Chemical Engineering (Vol. 42). Elsevier Ltd. https://doi.org/10.1016/j.coche.2023.100974.[79] Garibay, S. J., Farha, O. K., & Decoste, J. B. (2019). Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. Chemical Communications, 55(49), 7005–7008. https://doi.org/10.1039/c9cc02236h[80] Garzón-Cucaita, V., & Carriazo, J. (2022). Óxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminantes,”TecnoLógicas, vol. 25, nro.55, e2393,2022.https://doi.org/10.22430/22565337.2393[81] Ghauch, A., & Tuqan, A. (2008). Catalytic degradation of chlorothalonil in water using bimetallic iron-based systems. Chemosphere, 73(5), 751–759. https://doi.org/10.1016/j.chemosphere.2008.06.035.[82] Gil,A., Galeano,L., Vicente,M.,(2019). Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment The Handbook of Environmental Chemistry 67. Series Editors: Damià Barceló · Andrey G. Kostianoy[83] Glaze, W.(1987). "Drinking-water treatment with ozone". Environmental Science and Technology. Vol. 21, pp. 224-230.[84] Godínez Muñoz, E. 2005. Análisis de residuos de pesticidas en muestras de tomate de cáscara y col. Tesis Licenciatura. Ciencias Farmacéuticas. Departamento de Química y Biología, Escuela de Ciencias, Universidad de las Américas Puebla. Mayo. 2005.[85] Gomez, S. V, Leal Marchena, C., Pizzio, L. R., & Pierella, L. B. (2012). DEGRADACIÓN DE DICLORVOS SOBRE ZEOLITAS ZSM-11 IMPREGNADAS CON TiO2.[86] Gonçalves, D.D. (2023). Degradação sequencial redutiva-oxidativa de pesticidas em água.[87] González Finol, M., (2010). Estudio De La Degradación Desustancias Peligrosas Presentes En Aguas De Salida De Edar Mediante Ozono/Luz Uv. Departamento de ingeniería química y medio ambiente. Universidad de Zaragoza. España.[88] Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. In Journal of Environmental Management (Vol. 270). Academic Press. https://doi.org/10.1016/j.jenvman.2020.110906[89] Guerra-Rodríguez, S., Cuesta, S., Pérez, J., Rodríguez, E., & Rodríguez-Chueca, J. (2023). Life Cycle Assessment of sulfate radical based-AOPs for wastewater disinfection. Chemical Engineering Journal, 474. https://doi.org/10.1016/j.cej.2023.145427[90] Guo, Y., Wang, Y., Hu, C., Wang, Y., Wang, E., Zhou, Y., & Feng, S. (2000). Microporous Polyoxometalates POMs/SiO2 : Synthesis and Photocatalytic Degradation of Aqueous Organocholorine Pesticides. https://doi.org/10.1021/cm000074[91] Gupta, P., & Verma, N. (2021). Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chemical Engineering Journal, 417. https://doi.org/10.1016/j.cej.2020.128029.[92] Guzmán González, C.A.(2012). Oxidación catalítica en fase líquida de MTBE con catalizadores de Au/TiO₂ y Au/TiO₂-CeO₂.[93] Gyalpo T, Fritsche L, Bouwman H, Bornman R, Scheringer M, Hungerbühler K.(2012) Estimation of human body concentrations of DDT from indoor residual spraying for malaria control. Environ Pollut; 169:235-241[94] Hernández Álvarez, U.; Pinedo-Hernández, J.; Paternina-Uribe, R.; Marrugo-Negrete, J.L. 2021. Evaluación de calidad del agua en la Quebrada Jui, afluente del río Sinú, Colombia. Rev. U.D.C.A Act. & Div. Cient. 24(1):e1678. http://doi.org/10.31910/rudca. v24.n1.2021.1678[95] Hernandez, D. (2022). Utilización de la nanotecnología En el Desarrollo de Fertilizantes Orgánicos y Pesticidas. International Journal of Science and Society.[96] Herrera, W., Vera, J., Aponte, H., Hermosilla, E., Fincheira, P., Parada, J., Tortella, G., Seabra, A. B., Diez, M. C., & Rubilar, O. (2023). Meta-analysis of metal nanoparticles degrading pesticides: what parameters are relevant? Environmental Science and Pollution Research, 30(21), 60168–60179. https://doi.org/10.1007/s11356-023-26756-1.[97] Hlophe, P. V., & Dlamini, L. N. (2021). Photocatalytic degradation of diazinon with a 2d/3d nanocomposite of black phosphorous/metal organic framework. Catalysts, 11(6). https://doi.org/10.3390/catal11060679.[98] Huang, H., Li, N., Chen, Y., Shentu, X., Yu, X., & Ye, Z. (2024). Synthesis of multiwalled carbon nanotubes/metal-organic framework composite for the determination of neonicotinoid pesticides in medicine and food homology products. Food Chemistry, 434, 137354. https://doi.org/10.1016/j.foodchem.2023.137354.[99] Huang, Y., Bu, L., Wu, Y., Zhu, S., Zhou, S., Shi, Z., & Dionysiou, D. D. (2022). Degradation of contaminants of emerging concern in UV/Sodium percarbonate Process: Kinetic understanding of carbonate radical and energy consumption evaluation. Chemical Engineering Journal, 442. https://doi.org/10.1016/j.cej.2022.135995.[100] ICA. (2023). Registro Nacionales de Plaguicidas. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos/estadisticas/9-bd_registros-nacionales-plaguicidas_20-de-septi.aspx Con acceso 06-12-2023.[101] INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES, IDEAM. 2018. Reporte de avance del Estudio Nacional del Agua. Disponible desde Internet en: http://www.andi.com.co/Uploads/Cartilla_ENA_%20 2018.pdf (con acceso el 8/05/2022).[102] INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES. (2001) definiciones Disponible desde Internet en, http://doc umentacion.ideam.gov.co/openbiblio/bvirtual/005247/HTM/CAPITULO_7.HTM (con acceso el 05/10/2022)[103] Isidro, E., Judith Amador-Hernández, D., Iliana Margarita de la Garza Rodríguez, D., Rosario Enríquez Rosado, D., & Velázquez-Manzanares, M. (2021). Área: Biología y Química Triazinas, los herbicidas más usados alrededor del mundo: aspectos químicos y biológicos Triazines, the most used herbicides around the world: chemical and biological aspects.[104] IUPAC 'fotocatálisis' (2019) en Compendio de Terminología Química de la IUPAC, 3ª ed. Unión Internacional de Química Pura y Aplicada; 2006. En línea versión 3.0.1, 2019. https://doi.org/10.1351/goldbook.P04580[105] Jafari, B., Godini, H., Soltani, R. D. C., & Seydi, E. (2022). Effectiveness of UV/SO32− advanced reduction process for degradation and mineralization of trichlorfon pesticide in water: identification of intermediates and toxicity assessment. Environmental Science and Pollution Research, 29(14), 20409–20420. https://doi.org/10.1007/s11356-021-17274-z[106] Jalili-Jahani, N., Fatehi, A., Azizi-Saadi, J., & Moallem, M. (2022). Enhanced photocatalytic degradation of diazinon by bimetallic Au/Ag-decorated TiO2 nanorods and quadrupole time-of-flight LC-MS/MS assay for detection of by-products. Ceramics International, 48(23), 34415–34427. https://doi.org/10.1016/j.ceramint.2022.08.020[107] Jaquez, V., Gonzalez, L., Campusano, R., Ortega, V (S.F) Comportamiento De Plaguicidas Persistentes En El Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango del Instituto Politécnico Nacional, Sigma 119. https://www.labamerex.com/newsletter/news18/Comportamiento-de-plaguicidas.pdf.[108] Jatoi, A. S., Hashmi, Z., Adriyani, R., Yuniarto, A., Mazari, S. A., Akhter, F., & Mubarak, N. M. (2021). Recent trends and future challenges of pesticide removal techniques - A comprehensive review. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105571.[109] Jiad, M. M., & Abbar, A. H. (2023). Treatment of petroleum refinery wastewater by electrofenton process using a low cost porous graphite air-diffusion cathode with a novel design. Chemical Engineering Research and Design, 193, 207–221. https://doi.org/10.1016/j.cherd.2023.03.021[110] Jurewicz, J., Radwan, P., Wielgomas, B., Radwan, M., Karwacka, A., Kałużny, P., Piskunowicz, M., Dziewirska, E., & Hanke, W. (2020). Exposure to pyrethroid pesticides and ovarian reserve. Environment International, 144. https://doi.org/10.1016/j.envint.2020.106028.[111] Kahle M, Buerge IJ, Hauser A, Müller MD, Poiger T.(2008). Fungicidas azoles: ocurrencia y destino en aguas residuales y superficiales. Environ Sci Technol. 1 de octubre de 2008; 42(19):7193-200. doi: 10.1021/es8009309. PMID: 18939546.[112] Kalantar, S., Bemani, A., Sayadi, M. H., & Chamanehpour, E. (2023). Visible light–driven ZnO/Fe3O4 magnetic nanoparticles for detoxification of diazinon: the photocatalytic optimization process with RSM-BBD model. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29024-4[113] Keihan, A. H., Hosseinzadeh, R., Farhadian, M., Kooshki, H., & Hosseinzadeh, G. (2016). Solvothermal preparation of Ag nanoparticle and graphene co-loaded TiO2 for the photocatalytic degradation of paraoxon pesticide under visible light irradiation. RSC Advances, 6(87), 83673–83687. https://doi.org/10.1039/c6ra19478h[114] Khan, J. A., Han, C., Shah, N. S., Khan, H. M., Nadagouda, M. N., Likodimos, V., Falaras, P., O’Shea, K., & Dionysiou, D. D. (2014). Ultraviolet-Visible Light-Sensitive High Surface Area Phosphorous-Fluorine-Co-Doped TiO2 Nanoparticles for the Degradation of Atrazine in Water. Environmental Engineering Science, 31(7), 435–446. https://doi.org/10.1089/ees.2013.0486[115] Khan, S., He, X., Khan, J. A., Khan, H. M., Boccelli, D. L., & Dionysiou, D. D. (2017). Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chemical Engineering Journal, 318, 135–142. https://doi.org/10.1016/j.cej.2016.05.150[116] Khan, S., Sohail, M., Han, C., Khan, J. A., Khan, H. M., & Dionysiou, D. D. (2021). Degradation of highly chlorinated pesticide, lindane, in water using UV/persulfate: kinetics and mechanism, toxicity evaluation, and synergism by H2O2. Journal of Hazardous Materials, 402. https://doi.org/10.1016/j.jhazmat.2020.123558.[117] Khoiriah, K., Wellia, D. V., Gunlazuardi, J., & Safni, S. (2020). C. Indonesian Journal of Chemistry, 20(3), 587–596. https://doi.org/10.22146/ijc.43982.[118] Kumar, A., & Verma, N. (2020). Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr(VI) in wet air. Catalysis Today, 348, 194–202. https://doi.org/10.1016/j.cattod.2019.08.025[119] Kumar,J., Kaushik,G., Dar,M,A., Nimesh,S., López,J., Villarreal,J,F.,(2018), Microbial Degradation of Organophosphate Pesticides: A Review Pedosphere, Pages 190-208 https://doi.org/10.1016/S1002-0160(18)60017-7.[120] Kumar,R., & Mukherji, S. (2021) Photocatalysis of dichlorvos using graphene oxide-TiO2 nanocomposite under visible irradiation: process optimization using response surface methodology. Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, Powai,Mumbai—400076, India. Nanotechnology 32, 405708 (15pp). https://doi.org/10.1088/1361-6528/ac101a.[121] Kumari, P., & Kumar, A. (2023). Advanced Oxidation Process: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces, 11, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122.[122] Lee, Y. M., Lee, G., & Zoh, K. D. (2021). Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123591[123] Li, J., Chu, B., Xie, Z., Deng, Y., Zhou, Y., Dong, L., Li, B., & Chen, Z. (2022). Mechanism and DFT Study of Degradation of Organic Pollutants on Rare Earth Ions Doped TiO2 Photocatalysts Prepared by Sol-Hydrothermal Synthesis. Catalysis Letters, 152(2), 489–502. https://doi.org/10.1007/s10562-021-03634-4[124] Li, W., Chen, C., Yang, R., Cheng, S., Sang, X., Zhang, M., Zhang, J., Wang, Z., & Li, Z. (2023). Efficient and Stable Degradation of Triazophos Pesticide by TiO2/WO3 Nanocomposites with S-Scheme Heterojunctions and Oxygen Defects. Catalysts, 13(7). https://doi.org/10.3390/catal13071136.[125] Liu, J., Wang, Y., Dai, Z., Jia, C. Q., Yang, L., Liu, J., Chen, Y., Yao, L., Wang, B., Huang, W., & Jiang, W. (2024). Recent advances in Zeolite-Based catalysts for volatile organic compounds decontamination by thermal catalytic oxidation. In Separation and Purification Technology (Vol. 330). Elsevier B.V. https://doi.org/10.1016/j.seppur.2023.125339.[126] López CL. (1993). Exposición a plaguicidas organofosforados. Perspectivas en Salud Pública N.o18. México: Instituto Nacional de Salud Pública. Monografia em Espanhol | LILACS | ID: lil-167674[127] López, E., & Carlos., J. (2018). Nuevos materiales carbonosos como catalizadores heterogéneos y su aplicación en procesos de oxidación avanzada y en reacciones de interés industrial.[128] Lourenço, F.M.(2022). Influência nos processos de retenção e transporte de pesticidas e ecotoxicidade de microplásticos em solo tropical.[129] Lousada, M. E., Lopez Maldonado, E. A., Nthunya, L. N., Mosai, A., Antunes, M. L. P., Fraceto, L. F., & Baigorria, E. (2023). Nanoclays and mineral derivates applied to pesticide water remediation. Journal of Contaminant Hydrology, 259. https://doi.org/10.1016/j.jconhyd.2023.104264[130] Malato, S., Blanco, J., Maldonado, M. I., Fernández-Ibáñez, P., & Campos, A. (2000). Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species; application to the recycling of pesticide containers. In Applied Catalysis B: Environmental (Vol. 28).[131] Meng, X., Guo, Y., Wang, Y., Fan, S., Wang, K., & Han, W. (2022). A Systematic Review of Photolysis and Hydrolysis Degradation Modes, Degradation Mechanisms, and Identification Methods of Pesticides. In Journal of Chemistry (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/9552466[132] Moezabadi, A. N., Masoumi, A., Asadikaram, G., & Rezaee, A. (2023). Removal of diazinon from aqueous solutions using 3D electrochemical system including a nanocomposite of microbial cellulose/nanomagnetite. Journal of Water Process Engineering, 55, 104232. https://doi.org/10.1016/j.jwpe.2023.104232[133] Mohamed A. Hassaan, Ahmed El Nemr,(2020) Pesticides pollution: Classifications, human health impact, extraction and treatment techniques,Egyptian Journal of Aquatic Research,Volume 46, Issue 3,Pages 207-220,ISSN 1687-4285,https://doi.org/10.1016/j.ejar.2020.08.007.[134] Mohammadi, P., & Sheibani, H. (2019). Evaluation, of the bimetallic photocatalytic performance of Resin–Au–Pd nanocomposite for degradation of parathion pesticide under visible light. Polyhedron, 170, 132–137. https://doi.org/10.1016/j.poly.2019.05.030[135] Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. In Applied Catalysis B: Environmental (Vol. 202, pp. 217–261). Elsevier B.V. https://doi.org/10.1016/j.apcatb.2016.08.037[136] Moreno, D.M., Rivera, M.E., Delgado, J., & Vargas, M.E. (2018). Modelación del Transporte de Plaguicidas e Insecticidas en Suelos de Cultivo de Arveja con el Software Hydrus-1d en Vereda el Escorial, Pamplona Norte de Santander. Bistua Revista de la Facultad de Ciencias Básicas.[137] Mosleh, S., Rezaei, K., Dashtian, K., & Salehi, Z. (2021). Ce/Eu redox couple functionalized HKUST-1 MOF insight to sono-photodegradation of malathion. Journal of Hazardous Materials, 409. https://doi.org/10.1016/j.jhazmat.2020.124478[138] Muff, J., Andersen, C. D., Erichsen, R., & Soegaard, E. G. (2009). Electrochemical treatment of drainage water from toxic dump of pesticides and degradation products. Electrochimica Acta, 54(7), 2062–2068. https://doi.org/10.1016/j.electacta.2008.09.032[139] Nekooie, R., Ghasemi, J. B., Badiei, A., Shamspur, T., Mostafavi, A., & Moradian, S. (2022). Design and synthesis of g-C3N4/(Cu/TiO2) nanocomposite for the visible light photocatalytic degradation of endosulfan in aqueous solutions. Journal of Molecular Structure, 1258. https://doi.org/10.1016/j.molstruc.2022.132650[140] Neoblau.(2022) Blossom PinIt Developed By Blossom Themes. Powered by WordPress. Organización Mundial de la Salud (OMS), Organización Panamericana de la Salud (OPS), Centro Panamericano de Ecología Humana y Salud. Serie Vigilancia, 9. Plaguicidas organoclorados. México: OMS/OPS, 1990.[141] Nivia,E (2004). Los plaguicidas en Colombia. https://www.semillas.org.co/es/los-plaguicidas-en-colombia. (Consultado 22-09-2022)[142] Nurdin, M., Watoni, A. H., Natsir, M., Rahmatilah, S., Maulidiyah, M., Wibowo, D., Salim, L. O. A., Sadikin, S. N., Bijang, C. M., & Umar, A. A. (2023). Photoelectrocatalysis performance of Se doped-TiO2/Ti nanotube arrays for visible-light-driven degradation of diazinon pesticide. Korean Journal of Chemical Engineering. https://doi.org/10.1007/s11814-023-1395-1.[143] Organización Mundial de la Salud. (2011). Guidelines for drinking-water quality. 4o ed. Ginebra: Organización Mundial de la Salud: WHO Library cataloguing-in-publication data.[144] Organización Mundial de la Salud.(2021) WHO Library cataloguing-in-publication data.[145] Organización Mundial de la Salud: (1990) WHO Library cataloguing-in-publication data.[146] Oturan, M. A.,& Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. In Critical Reviews in Environmental Science and Technology (Vol. 44, Issue 23, pp. 2577–2641). https://doi.org/10.1080/10643389.2013.829765[147] Paredes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water, Air, and Soil Pollution, 232(1). https://doi.org/10.1007/s11270-020-04968-2[148] Parthenidis, P., Evgenidou, E., & Lambropoulou, D. (2023). Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Journal of Water Process Engineering, 53. https://doi.org/10.1016/j.jwpe.2023.103768[149] Patil, P. B., Raut-Jadhav, S., Topare, N. S., & Pandit, A. B. (2023). Combined strategy of hydrodynamic cavitation and Fenton chemistry for the intensified degradation of acetamiprid. Separation and Purification Technology, 325. https://doi.org/10.1016/j.seppur.2023.124701[150] Pergal, M. V., Kodranov, I. D., Pergal, M. M., Gašić, U., Stanković, D. M., Petković, B. B., & Manojlović, D. D. (2020). Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion. Water, Air, and Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04800-x.[151] Petsas, A. S., & Vagi, M. C. (2018). Photocatalytic Degradation of Selected Organophosphorus Pesticides Using Titanium Dioxide and UV Light. In Titanium Dioxide - Material for a Sustainable Environment. InTech. https://doi.org/10.5772/intechopen.72193.[152] Pinzon.F., fundación Hidrósfera., entrevista a EL COLOMBIANO.2022 https://www.elcolombiano.com/colombia/espuma-de-mosquera-empezo-a-desaparecer-del-rio-DD17363365 (con Acceso el 16-09-2022)[153] Ponnaiah, S. K., & Periakaruppan, P. (2024). Fabrication of tin oxide and carbon black nanocomposite for effectual electron-hole separation and visible light-harvesting: Enhanced photocatalytic degradation of an organophosphorus pesticide. Materials Chemistry and Physics, 313. https://doi.org/10.1016/j.matchemphys.2023.128806[154] Quilez-Molina, A. I., Barroso-Solares, S., Hurtado-García, V., Heredia-Guerrero, J. A., Rodriguez-Mendez, M. L., Rodríguez-Pérez, M. Á., & Pinto, J. (2023). Encapsulation of Copper Nanoparticles in Electrospun Nanofibers for Sustainable Removal of Pesticides. ACS Applied Materials and Interfaces, 15(16), 20385–20397. https://doi.org/10.1021/acsami.3c00849[155] Ramírez, A.D. (2017). Oxidación Selectiva de Propano y Etano Empleando Catalizadores Basados En Oxidos Multicomponentes. http://hdl.handle.net/10251/90463[156] Rani, M., Choudhary, S., Yadav, J., Keshu, & Shanker, U. (2023). Metal Oxide-Based Nanocomposites for Elimination of Hazardous Pesticides. In Handbook of Green and Sustainable Nanotechnology (pp. 1123–1148). Springer International Publishing. https://doi.org/10.1007/978-3-031-16101-8_40.[157] Rapeyko, A. (2017). Materiales Metalorgánicos estructurados (MOFs) y óxidos metálicos como catalizadores heterogéneos para la obtención de compuestos de química fina y valorización de biomasa.[158] Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. In Environment International (Vol. 75, pp. 33–51). Elsevier Ltd. https://doi.org/10.1016/j.envint.2014.10.027.[159] Rocío-Bautista, P., Taima-Mancera, I., Pasán, J., & Pino, V. (2019). Metal-organic frameworks in green analytical chemistry. In Separations (Vol. 6, Issue 3). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/separations6030033[160] Rodriguez, M y Barrera, C. (2020). Procesos de oxidación avanzada en el tratamiento de agua. Universidad Autónoma del Estado de México, Toluca.[161] Roselló-Márquez,G., Fernández-Domene, R., García-Antón, J.(2021) Organophosphorus pesticides (chlorfenvinphos, phosmet and fenamiphos) photoelectrodegradation by using WO3 nanostructures as photoanode,Journal of Electroanalytical Chemistry,Volume 894,2021,115366,ISSN 1572-6657. https://doi.org/10.1016/j.jelechem.115366.[162] Roshani, M., Nematollahi, D., Ansari, A., Adib, K., & Masoudi-Khoram, M. (2024). Boosted electrocatalytic oxidation of organophosphorus pesticides by a novel high-efficiency CeO2-Doped PbO2 anode: An electrochemical study, parameter optimization and degradation mechanisms. Chemosphere, 346. https://doi.org/10.1016/j.chemosphere.2023.140597.[163] Sahithya, K., Kounin, S., Sahana, P., & Arjun, K. P. (2022). Applications of Nanomaterials for Adsorptive and Catalytic Removal of Chemical Pesticides: An Overview. In Asian Journal of Chemistry (Vol. 34, Issue 4, pp. 807–818). Asian Publication Corporation. https://doi.org/10.14233/ajchem.2022.23579[164] Salazar,M., (2023) Efecto de las propiedades electrocatalíticas de materiales catódicos carbonosos para la decoloración de moléculas modelo aniónica catiónica en un proceso electro-Fenton. Centro De Investigación Y Desarrollo Tecnológico En Electroquimica[165] Saljooqi, A., Shamspur, T., & Mostafavi, A. (2020). Synthesis of titanium nanoplate decorated by Pd and Fe3O4 nanoparticles immobilized on graphene oxide as a novel photocatalyst for degradation of parathion pesticide. Polyhedron, 179. https://doi.org/10.1016/j.poly.2020.114371[166] Sánchez, N. Rodríguez, M. Sarria, V.(2006). Obsolete pesticides in Colombia. Current situation and alternatives for treatment and disposal.[167] Saqib, M., Solomonenko, A. N., Barek, J., Dorozhko, E. V., Korotkova, E. I., & Aljasar, S. A. (2023). Graphene derivatives-based electrodes for the electrochemical determination of carbamate pesticides in food products: A review. In Analytica Chimica Acta (Vol. 1272). Elsevier B.V. https://doi.org/10.1016/j.aca.2023.341449[168] Saravanan, A., Kumar, P. S., Vo, D. V. N., Yaashikaa, P. R., Karishma, S., Jeevanantham, S., Gayathri, B., & Bharathi, V. D. (2021). Photocatalysis for removal of environmental pollutants and fuel production: a review. In Environmental Chemistry Letters (Vol. 19, Issue 1, pp. 441–463). Springer Science andBusinessMedia Deutschland GmbH. https://doi.org/10.1007/s10311-020-01077-8[169] Serna-Galvis, E. A., Silva-Agredo, J., Hernández, F., Botero-Coy, A. M., & Torres-Palma, R. A. (2023). Methods involved in the treatment of four representative pharmaceuticals in hospital wastewater using sonochemical and biological processes. MethodsX, 10. https://doi.org/10.1016/j.mex.2023.102128[170] Shalini Devi, K. S., Anusha, N., Raja, S., & Senthil Kumar, A. (2018). A New Strategy for Direct Electrochemical Sensing of a Organophosphorus Pesticide, Triazophos, Using a Coomassie Brilliant-Blue Dye Surface-Confined Carbon-Black-Nanoparticle-Modified Electrode. ACS Applied Nano Materials, 1(8), 4110–4119. https://doi.org/10.1021/acsanm.8b00861[171] Shanaah, H. H., Alzaimoor, E. F. H., Rashdan, S., Abdalhafith, A. A., & Kamel, A. H. (2023). Photocatalytic Degradation and Adsorptive Removal of Emerging Organic Pesticides Using Metal Oxide and Their Composites: Recent Trends and Future Perspectives. In Sustainability (Switzerland) (Vol. 15, Issue 9). MDPI. https://doi.org/10.3390/su15097336[172] Sharma, S., Sharma, A., Chauhan, N. S., Tahir, M., Kumari, K., Mittal, A., & Kumar, N. (2022). TiO2/Bi2O3/PANI nanocomposite materials for enhanced photocatalytic decontamination of organic pollutants. Inorganic Chemistry Communications, 146. https://doi.org/10.1016/j.inoche.2022.110093[173] Singh, J., Sharma, S., Aanchal, Basu, S.,(2019) Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis, Journal of Photochemistry and Photobiology A: Chemistry, Volume 376, https://doi.org/10.1016/j.jphotochem.2019.03.004.[174] Soares da Silva, R.G., Panis, C., Pascotto, C.R., Defante Ferreto, L.E., Lucio, L.C., & Mazetto Brizola, F. (2022). Mecanismos de carcinogênese induzidos por agrotóxicos: revisão sistemática. Acta Elit Salutis.[175] Sraw, A., Kaur, T., Pandey, Y., Sobti, A., Wanchoo, R. K., & Toor, A. P. (2018). Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. Journal of Environmental Chemical Engineering, 6(6), 7035–7043. https://doi.org/10.1016/j.jece.2018.10.062[176] Svensson, F. G., & Österlund, L. (2023). Adsorption and Photo-Degradation of Organophosphates onSulfate-Terminated Anatase TiO2 Nanoparticles. Catalysts, 13(3). https://doi.org/10.3390/catal13030526[177] Sud,D., & Kaur,P., (2012): Heterogeneous Photocatalytic Degradation of Selected Organophosphate Pesticides: A Review, Critical Reviews in Environmental Science and Technology, 42:22, 2365-2407 To link to this article: http://dx.doi.org/10.1080/10643389.2011.574184[178] Tahmasebi, A. A., Salimi Beni, A., Azhdarpoor, A., & Moeini, Z. (2023). The application of granular and biological activated carbon columns in removal of organochlorine and organophosphorus pesticides in a water treatment plant. Journal of Water Process Engineering, 56. https://doi.org/10.1016/j.jwpe.2023.104383.[179] Torres-Mendoza, K.E., Lara-Tambaco, R.M., & León-Araujo, M.E. (2023). Evaluación del proceso de efluentes en refinería Esmeraldas a partir del tratamiento secundario frente al proceso de oxidación húmeda avanzada. Ibero-American Journal of Engineering & Technology Studies.[180] Trenco, A.G. (2014). Desarrollo de catalizadores híbridos CuZnOAl2O3/zeolita para el proceso de síntesis directa de DME.[181] Vaya, D., & Surolia, P. K. (2020). C. In Environmental Technology and Innovation (Vol. 20). Elsevier B.V. https://doi.org/10.1016/j.eti.2020.101128[182] Vela-Monroy, C. A., Saavedra-Alemán, M. J., & Carriazo-Baños, J. G. (2016). Catalizadores homogéneos y heterogéneos de Fe 3+ , Co 2+ y Cu 2+ para la degradación de metilparatión en medio acuoso diluido Homogeneous and heterogeneous catalysts of Fe 3+ , Co 2+ and Cu 2+ for the degradation of methyl parathion in diluted aqueous medium (Vol. 19, Issue 37). , pp. 13-28, 2016.[183] Wang, C., Shi, P., Wang, Z., Guo, R., You, J., & Zhang, H. (2023). Efficient wastewater disinfection through FeOOH-mediated photo-Fenton reaction: A review. In Journal of Environmental Chemical Engineering (Vol. 11, Issue 6). Elsevier Ltd. https://doi.org/10.1016/j.jece.2023.111269[184] Wang, D., Li, Y., Jiang, Y., Cai, X., & Yao, X. (2022). Perspectives on surface chemistry of nanostructured catalysts for heterogeneous advanced oxidation processes. Environmental Functional Materials, 1(2), 182–186. https://doi.org/10.1016/j.efmat.2022.08.003[185] Wang, F., Gao, J., Zhai, W., Cui, J., Hua, Y., Zhou, Z., Liu, D., Wang, P., & Zhang, H. (2021). Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Ecotoxicology and Environmental Safety, 219. https://doi.org/10.1016/j.ecoenv.2021.112236[186] Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698[187] Xochihua Juan, J. L., Solis Maldonado, C., Luna Sánchez, R. A., Enciso Díaz, O. J., Rojas Ronquillo, M. R., Sandoval-Rangel, L., Pineda Aguilar, N., Ramos Delgado, N. A., & Martínez-Vargas, D. X. (2022). TiO2 doped with europium (Eu): Synthesis, characterization and catalytic performance on pesticide degradation under solar irradiation. Catalysis Today, 394–396, 304–313. https://doi.org/10.1016/j.cattod.2021.08.024[188] Xu, D., Wang, S., Zhang, J., Tang, X., Guo, Y., & Huang, C. (2015). Supercritical water oxidation of a pesticide wastewater. Chemical Engineering Research and Design, 94, 396–406. https://doi.org/10.1016/j.cherd.2014.08.016[189] Zammataro, A., Santonocito, R., Pappalardo, A., & Sfrazzetto, G. T. (2020). Catalytic degradation of nerve agents. In Catalysts (Vol. 10, Issue 8, pp. 1–18). MDPI. https://doi.org/10.3390/catal10080881[190] Zawadzki, P. (2022). Visible Light–Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. In Water, Air, and Soil Pollution (Vol. 233, Issue 9). Institute for Ionics. https://doi.org/10.1007/s11270-022-05831-2[191] Zekkaoui, C., Berrama, T., Dumoulin, D., Billon, G., & Kadmi, Y. (2021). Optimal degradation of organophosphorus pesticide at low levels in water using fenton and photo-fenton processes and identification of by-products by GC-MS/MS. Chemosphere, 279. https://doi.org/10.1016/j.chemosphere.2021.130544[192] Zeng, Y., Zhang, S., Yin, L., & Dai, Y. (2022). Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode. Chinese Chemical Letters, 33(12), 5196–5199. https://doi.org/10.1016/j.cclet.2022.01.031[193] Zhang, J., Zhao, Z., Liu, J., Wang, J., Sa, G., & Xu, A. (2023). Preparation of mesoporous Hangjin 2# clay supported Nd-TiO2 and its photodegradation of organophosphorus pesticides wastewater. Journal of Environmental Chemical Engineering, 11(6). https://doi.org/10.1016/j.jece.2023.111472[194] Zhang, Y., Cao, X., Yang, Y., Guan, S., Wang, X., Li, H., Zheng, X., Zhou, L., Jiang, Y., & Gao, J. (2023). Visible light assisted enzyme-photocatalytic cascade degradation of organophosphorus pesticides. Green Chemical Engineering, 4(1), 30–38. https://doi.org/10.1016/j.gce.2022.02.001[195] Zheng, W., Sun, Y., & Gu, Y. (2022). Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. Journal of Hazardous Materials, 436. https://doi.org/10.1016/j.jhazmat.2022.129058[196] Zhou, H., Zhang, H., He, Y., Huang, B., Zhou, C., Yao, G., & Lai, B. (2021). Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. In Applied Catalysis B: Environmental (Vol. 286). Elsevier B.V. https://doi.org/10.1016/j.apcatb.2021.119900[197] Zhu, Z., Guo, F., Xu, Z., Di, X., & Zhang, Q. (2020). Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. RSC Advances, 10(20), 11929–11938. https://doi.org/10.1039/d0ra01741h.[198] Zolfaghari, H., Yousefi, F., Ghaedi, M., & Mosleh, S. (2022). Performance evaluation of Zr(CUR)/NiCo2S4/CuCo2S4 and Zr(CUR)/CuCo2S4/Ag2S composites for photocatalytic degradation of the methyl parathion pesticide using a spiral-shaped photocatalytic reactor. RSC Advances, 12(45), 29503–29515. https://doi.org/10.1039/d2ra06277aBibliotecariosEstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86452/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de Maestría en Ciencias - QuímicaTesis de Maestría en Ciencias - Químicaapplication/pdf1800012https://repositorio.unal.edu.co/bitstream/unal/86452/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Qu%c3%admica4f7a3d6a514ceee3851e07c8ca5db2d3MD52THUMBNAILTesis de Maestría en Ciencias - Química.jpgTesis de Maestría en Ciencias - Química.jpgGenerated Thumbnailimage/jpeg5004https://repositorio.unal.edu.co/bitstream/unal/86452/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Qu%c3%admica.jpg51fb0db0fde87fe12d0c514f9f272022MD53unal/86452oai:repositorio.unal.edu.co:unal/864522024-07-16 23:05:08.698Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |