Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus
ilustraciones, graficas
- Autores:
-
Pemberthy López, Daniel
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82950
- Palabra clave:
- 570 - Biología::572 - Bioquímica
VENENO DE INSECTOS
LECTINAS
Insect venom
Lectins
Lectinas
Veneno
Escorpión
Aglutinación
Caracterización bioqímica
Carbohidratos
Tityus macrochirus
Tityus obscurus
Taquilectinas
Glicoproteínas
Venom
Lectin
Carbohydrates
Glycoprotein
Scorpions
Agglutination
Biochemical characterization
Tachylectins
Tityus macrochirus
Tityus obscurus
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_bd25f0f2eb1f28f4141c8b7b408806b8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82950 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus |
dc.title.translated.eng.fl_str_mv |
Study of the lectins present in the venom of the scorpion Tityus macrochirus |
title |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus |
spellingShingle |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus 570 - Biología::572 - Bioquímica VENENO DE INSECTOS LECTINAS Insect venom Lectins Lectinas Veneno Escorpión Aglutinación Caracterización bioqímica Carbohidratos Tityus macrochirus Tityus obscurus Taquilectinas Glicoproteínas Venom Lectin Carbohydrates Glycoprotein Scorpions Agglutination Biochemical characterization Tachylectins Tityus macrochirus Tityus obscurus |
title_short |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus |
title_full |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus |
title_fullStr |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus |
title_full_unstemmed |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus |
title_sort |
Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus |
dc.creator.fl_str_mv |
Pemberthy López, Daniel |
dc.contributor.advisor.none.fl_str_mv |
Vega Castro, Nohora Angélica |
dc.contributor.author.none.fl_str_mv |
Pemberthy López, Daniel |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Proteinas Grip |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica VENENO DE INSECTOS LECTINAS Insect venom Lectins Lectinas Veneno Escorpión Aglutinación Caracterización bioqímica Carbohidratos Tityus macrochirus Tityus obscurus Taquilectinas Glicoproteínas Venom Lectin Carbohydrates Glycoprotein Scorpions Agglutination Biochemical characterization Tachylectins Tityus macrochirus Tityus obscurus |
dc.subject.lemb.spa.fl_str_mv |
VENENO DE INSECTOS LECTINAS |
dc.subject.lemb.eng.fl_str_mv |
Insect venom Lectins |
dc.subject.proposal.spa.fl_str_mv |
Lectinas Veneno Escorpión Aglutinación Caracterización bioqímica Carbohidratos Tityus macrochirus Tityus obscurus Taquilectinas Glicoproteínas |
dc.subject.proposal.eng.fl_str_mv |
Venom Lectin Carbohydrates Glycoprotein Scorpions Agglutination Biochemical characterization Tachylectins Tityus macrochirus Tityus obscurus |
description |
ilustraciones, graficas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-16T19:45:49Z |
dc.date.available.none.fl_str_mv |
2023-01-16T19:45:49Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82950 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82950 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Lahiani A, Yavin E, Lazarovici P. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) (Internet). 2017 Mar 16 (cited 2022 Feb 26);9(3). Available from: https://pubmed.ncbi.nlm.nih.gov/28300784/ Zhang Y. Why do we study animal toxins? Dong wu xue yan jiu = Zool Res. 2015 Jul 18;36(4):183–222. Gómez JP, Quintana JC, Arbeláez P, Fernández J, Silva JF, Barona J, et al. Tityus asthenes scorpion stings: epidemiological, clinical and toxicological aspects. Biomedica (Internet). 2010 (cited 2020 Oct 16);30(1):126–39. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/160 Irina Vetter; Jasmine L. Davis; Lachlan D. Rash; Raveendra Anangi; Mehdi Mobli; Paul F. Alewood; Richard J. Lewis; Glenn F. King (2011). Venomics: a new paradigm for natural products-based drug discovery. , 40(1), 15–28. doi:10.1007/s00726-010- 0516-4 Guerrero-Vargas JA, Mourão CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na +-channel scorpion toxins. PLoS One. 2012 Feb 15;7(2). Ward, Micaiah J.; Ellsworth, Schyler A.; Nystrom, Gunnar S. (2018). A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon, 151(), 137–155. doi:10.1016/j.toxicon.2018.07.007 Harvey AL. Toxins and drug discovery. Toxicon. 2014 Dec 15;92:193-200. doi: 10.1016/j.toxicon.2014.10.020. Epub 2014 Oct 29. PMID: 25448391. Bhavya J, Francois NN, More VS, More SS. Scorpion Toxin Polyptides as Therapeutic Agents: An Overview. Protein Pept Lett. 2016;23(9):848-59. doi: 10.2174/0929866523666160630184635. PMID: 27397476. Ghosh, Arijit; Roy, Rini; Nandi, Monoswini; Mukhopadhyay, Ashis (2018). Scorpion Venom–Toxins that Aid in Drug Development: A Review. International Journal of Peptide Research and Therapeutics, (), –. doi:10.1007/s10989-018-9721-x Gómez Rave, Lyz Jenny; Muñoz Bravo, Adriana Ximena; Sierra Castrillo, Jhoalmis; Román Marín, Laura Melisa; Corredor Pereira, Carlos (2019). Scorpion Venom: New Promise in the Treatment of Cancer. Acta Biológica Colombiana, 24(2), 213–223. doi:10.15446/abc.v24n2.71512 José Beltrán-Vidal;Edson Carcamo-Noriega;Nina Pastor;Fernando Zamudio- Zuñiga;Jimmy Alexander Guerrero-Vargas;Santiago Castaño;Lourival Domingos Possani;Rita Restano-Cassulini; (2021). Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel .Toxins,13,407. doi:10.3390/toxins13060407 Gopalakrishnakone, P.; Possani, Lourival D.; F. Schwartz, Elisabeth; Rodríguez de la Vega, Ricardo C. (2015). Scorpion Venoms || Scorpionism and Dangerous Species of Colombia Colombia. , 10.1007/978-94-007-6404-0(Chapter 22), 245–272. doi:10.1007/978-94-007-6404-0_22 Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett (Internet). 2009 Jun 5 (cited 2022 Feb 25);583(11):1736– 43. Available from: www.reptile-database.org Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013 Apr 1;28(4):219–29. Teixeira C, Moreira V, Gutiérrez JM. Venoms. Inflamm - From Mol Cell Mech to Clin (Internet). 2017 Oct 31 (cited 2022 Feb 25);99–128. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9783527692156.ch5 Tsaneva, M., de Schutter, K., Verstraeten, B., & Van Damme, E. J. M. (2019). Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020437 Sharon, N., & Lis, H. (2007). Lectins: Second edition. Springer. ISBN: 978-1-4020- 6605-4. 454 p. Konozy E, Osman M, Dirar A. Plant lectins as potent Anti-coronaviruses, Anti- inflammatory, antinociceptive and antiulcer agents. Saudi J Biol Sci. 2022 Jun;29(6):103301. doi: 10.1016/j.sjbs.2022.103301. Epub 2022 Apr 22. PMID: 35475119; PMCID: PMC9026953. N. A. Hoang; B. B. Berezin; V. M. Lakhtin; I. A. Yamskov (2001). Isolation and Partial Characterization of Lectin from the Venom of Vietnamese Scorpion Buthus occitanussp.. , 37(5), 534–537. doi:10.1023/a:1010266628552 Rincón-Cortés, C. A., Reyes-Montaño, E. A., & Vega-Castro, N. A. (2017). Partial purification of peptides presents in the Tityus macrochirus (Buthidae) scorpion venom and preliminary assessment of their cytotoxicity. Biomedica: revista del Instituto Nacional de Salud, 37(2), 238-249. Rincón C (2017). Identificación, aislamiento y caracterización bioquímica de péptido (s) con actividad citotóxica, presente (s) en el veneno del escorpión Tityus macrochirus (BUTHIDAE). Tesis doctoral en Ciencias Bioquímica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Química. Bogotá, Colombia. Clara A Rincón-Cortés, Timoteo Olamendi-Portugal, Edson N Cárcamo-Noriega, Edmundo González-Santillán, Fernando Zamudio, Edgar A Reyes-Montaño, Nohora A Vega-Castro., Lourival Domingos Possani. Structural and functional characterization of toxic peptides purified from the venom of the Colombian scorpion Tityus macrochirus. Toxicon 169 (2019) 5–11 Gabius HJ. Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften. 2000; 87 (3):108-21. Ghazarian H., Idoni B., Oppenheimer S. A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics”. Acta histochem. 2011; 113:236–47. Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease— mucin-type O-glycans in cancer. Adv. Cancer Res. 2015; 126:53–135. André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. Lectins: Getting Familiar with Translators of the Sugar Code. Molecules. 2015; 20: 1788-1823 Mislovicová D, Gemeiner P, Kozarova A, Kozár T. Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia. 2009; 64 (1):1-19. DOI: 10.2478/s11756-009-0029-3 Fohona S. Coulibaly, Bi-Botti C. Youan. Current status of lectin-based cancer diagnosis and therapy. AIMS Molecular Science, 2017, 4(1): 1-27. doi: 10.3934/molsci.2017.1.1 Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004; 95 (5):377-84. Syed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmaki U. Role of lectin microarrays in cancer diagnosis. Proteomics. 2016; 16(8):1257-65. Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cáncer. Breast Cancer Res. 2010; 12:204. Cipolla L, Peri F, Airoldi C. Glycoconjugates in Cancer Therapy. Anti-Cancer Agents Med. Chem. 2008; 8(1):92-121. Springer GF. Immunoreactive T and Tn epitopes en cancer diagnosis, prognosis and immunotherapy. J. Mol. Med. (Berl). 1997; 75 (8):594-602. Kanev MO, Bakar E. Glycoconjugates in cancer. J. Health Sci. KOU. 2016; 2 (1):1- 5. Kaptan, E., Sancar-Bas, S., Sancakli, A., Bektas, S., & Bolkent, S. (2018). The effect of plant lectins on the survival and malignant behaviors of thyroid cancer cells. Journal of Cellular Biochemistry, 119(7), 6274–6287. doi:10.1002/jcb.26875 Sancakli A, Kaptan E. Lectin Treatment Affects Malignant Characteristics of TPC-1 Papillary Thyroid Cancer Cells. Eur J Biol 2019; 78(1): 51-57. 10.26650/EurJBiol.2019.0006 Hirabayashi, J., Tateno, H., Shikanai, T., Aoki-Kinoshita, K. F., & Narimatsu, H. (2015). The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules, 20(1), 951-973. Kent Gartner; Kurt Stocker; Danny C. Williams (1980). Thrombolectin: A lectin isolated from Bothrops atrox venom. , 117(1-2), 0–16. doi:10.1016/0014- 5793(80)80902-1 Walker, J. R., Nagar, B., Young, N. M., Hirama, T., & Rini, J. M. (2004). X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochemistry, 43(13), 3783-3792. Sartim, Marco A.; Sampaio, Suely V. (2015). Snake venom galactoside-binding lectins: a structural and functional overview. Journal of Venomous Animals and Toxins including Tropical Diseases, 21(1), 35–. doi:10.1186/s40409-015-0038-3 Sharon, N., & Lis, H. (2003). Lectins. Springer Science & Business Media. Baruffi, M. D., Morani, E. d. S. C., Roncoletta, M., del Cistia Andrade, C., & Rodrigues, L. C. (2017). Methods for increasing the embryo implantation rate in mammals. In: Google Patents. Cui, B., Li, L., Zeng, Q., Lin, F., Yin, L., Liao, L., . . . Wang, J. (2017). A novel lectin from Artocarpus lingnanensis induces proliferation and Th1/Th2 cytokine secretion through CD45 signaling pathway in human T lymphocytes. Journal of natural medicines, 71(2), 409-421. Gabius, H. J. (1997). Animal lectins. European Journal of Biochemistry, 243(3), 543- 576. Mitchell, C. A., Ramessar, K., & O'Keefe, B. R. (2017). Antiviral lectins: Selective inhibitors of viral entry. Antiviral research. Ponraj, T., Paulpandi, M., Vivek, R., Vimala, K., & Kannan, S. (2017). Protein regulation and Apoptotic induction in human breast carcinoma cells (MCF-7) through lectin from G. beauts. International journal of biological macromolecules, 95, 1235- 1245. Singh, R. S., Walia, A. K., Khattar, J. S., Singh, D. P., & Kennedy, J. F. (2017). Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475-496. Varki, A., & Lowe, J. B. (2009). Biological roles of glycans. Mayer, S., Raulf, M.-K., & Lepenies, B. (2017). C-type lectins: their network and roles in pathogen recognition and immunity. Histochemistry and cell biology, 1-15. Wesener, D. A., Dugan, A., & Kiessling, L. L. (2017). Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology, 44, 168-178. R. Viswambari Devi, M. R. Basilrose & P. D. Mercy (2010) Prospect for lectins in arthropods, Italian Journal of Zoology, 77:3, 254-260, DOI: 10.1080/11250003.2010.492794 Bertozzi CR, Sasisekharan R. Glycomics. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds). Essentials of Glycobiology. Second Edition. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press; 2009. Hart G, Copeland R. Glycomics hits the big time. Cell. 2010;143:672-676. Bhutia SK, Panda PK, Sinha N, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Saha S, Patra S, Mishra SR, Behera BP, Patil S, Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol Res. 2019 Jun;144:8-18. doi: 10.1016/j.phrs.2019.04.001. Epub 2019 Apr 3. PMID: 30951812. Giacometti, J. (2015). Plant lectins in cancer prevention and treatment. Medicina Fluminensis: Medicina Fluminensis, 51(2), 0-0 Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., . . . Trinchieri, G. (1989). Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. Journal of Experimental Medicine, 170(3), 827-845. Fanayan, S., Hincapie, M., & Hancock, W. S. (2012). Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis, 33(12), 1746-1754. Zeng, Q., Lin, F., Zeng, L., Deng, Y., & Li, L. (2019). Purification and characterization of a novel immunomodulatory lectin from Artocarpus hypargyreus Hance. International immunopharmacology, 71, 285-294. Wijetunge, Sashini S.; Wen, Jianchuan; Yeh, Chih-Ko; Sun, Yuyu (2018). Lectin- Conjugated Liposomes as Biocompatible, Bioadhesive Drug Carriers for the Management of Oral Ulcerative Lesions. ACS Applied Bio Materials, (), acsabm.8b00425–. doi:10.1021/acsabm.8b00425 Müller SK, Wilhelm I, Schubert T, Zittlau K, Imberty A, Madl J, Eierhoff T, Thuenauer R, Römer W. Gb3-binding lectins as potential carriers for transcellular drug delivery. Expert Opin Drug Deliv. 2017 Feb;14(2):141-153. doi: 10.1080/17425247.2017.1266327. Epub 2016 Dec 16. PMID: 27935765. Å Urga S, Nanut MP, Kos J, Sabotič J. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget. 2017 Apr 18;8(16):26896-26910. doi: 10.18632/oncotarget.15849. PMID: 28460472; PMCID: PMC5432305. Micucci, H. A., & Camps, E. Lectinas: Obtención, estructura química, propiedades y aplicaciones diagnósticas y farmacológicas. Acta Farmacéutica Bonaerense, 6. Acta Farm. Bonaerense 6 (1): 35-54 (1987) Sharon, N., & Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53R-62R. Kilpatrick, D. C. (2002). Animal lectins: a historical introduction and overview. Biochimica et Biophysica Acta (BBA)-General Subjects, 1572(2), 187-197. Swaminathan, G. J., Leonidas, D. D., Savage, M. P., Ackerman, S. J., & Acharya, K. R. (1999). Selective recognition of mannose by the human eosinophil Charcot- Leyden crystal protein (galectin-10): a crystallographic study at 1.8 Å resolution. Biochemistry, 38(42), 13837-13843 Kaltner, H., & Gabius, H.-J. (2001). Animal lectins: from initial description to elaborated structural and functional classification. The Molecular Immunology of Complex Carbohydrates—2, 79-94 Zanetta, J. P. (1998). Structure and functions of lectins in the central and peripheral nervous system. Cells Tissues Organs, 161(1-4), 180-195. Toscano, M. A., Ilarregui, J. M., Bianco, G. A., Campagna, L., Croci, D. O., Salatino, M., & Rabinovich, G. A. (2007). Dissecting the pathophysiologic role of endogenous lectins: glycan-binding proteins with cytokine-like activity? Cytokine & growth factor reviews, 18(1-2), 57-71. Chen, P., De Schutter, K., Van Damme, E. J. M., & Smagghe, G. (2021). Can Plant Lectins Help to Elucidate Insect Lectin-Mediated Immune Response? Insects, 12(6), 497. Pees, B., Yang, W., Zárate-Potes, A., Schulenburg, H., & Dierking, K. (2016). High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. Journal of innate immunity, 8(2), 129-142. Xia, X., You, M., Rao, X.-J., & Yu, X.-Q. (2018). Insect C-type lectins in innate immunity. Developmental & Comparative Immunology, 83, 70-79. Cao, X.-T., Pan, X.-Y., Sun, M., Liu, Y., & Lan, J.-F. (2021). Hepatopancreas-Specific Lectin Participates in the Antibacterial Immune Response by Regulating the Expression of Antibacterial Proteins. Frontiers in Immunology, 12, 2331. Wang, L., Huang, M., Zhang, H., & Song, L. (2011). The immune role of C-type lectins in molluscs. Invertebrate Survival Journal, 8(2), 241-246. Hanington, P. C., Forys, M. A., Dragoo, J. W., Zhang, S.-M., Adema, C. M., & Loker, E. S. (2010). Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection. Proceedings of the National Academy of Sciences, 107(49), 21087-21092. Li, T., Wu, L., Jin, M., Ma, F., Huang, X., & Ren, Q. (2017). Function of two ficolin-like proteins in innate immune defense of the oriental river prawn, Macrobrachium nipponense. Fish & shellfish immunology, 68, 488-499. Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs. 2021 Apr 27;19(5):246. doi: 10.3390/md19050246. PMID: 33925365; PMCID: PMC8146879. Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–8. Selvaraj C, Abhirami R, Vijayakumar R, Alfaiz FA, Singh SK. Immunological insights of selectins in human disease mechanism. Adv Protein Chem Struct Biol. 2022;129:163–88. Gupta, G. S. (2012). Lectins: an overview. In Animal Lectins: Form, Function and Clinical Applications (pp. 3-25). Springer. Bonnardel, F., Kumar, A., Wimmerova, M., Lahmann, M., Perez, S., Varrot, A., . . . Imberty, A. (2019). Architecture and evolution of blade assembly in β-propeller lectins. Structure, 27(5), 764-775. Bonnardel, F., Mariethoz, J., Pérez, S., Imberty, A., & Lisacek, F. (2021). LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 49(D1), D1548- D1554. Bonnardel, F., Perez, S., Lisacek, F., & Imberty, A. (2020). Structural database for lectins and the UniLectin web platform. In Lectin Purification and Analysis (pp. 1-14). Springer. Fujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Lectins, 579-606. Kumar, K. K., Chandra, K. L. P., Sumanthi, J., Reddy, G. S., Shekar, P. C., & Reddy, B. V. R. (2012). Biological role of lectins: A review. Journal of orofacial sciences, 4(1), 20. Lannoo, N., & Van Damme, E. J. M. (2010). Nucleocytoplasmic plant lectins. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800(2), 190-201. Cruz, P. H., Campos, E. P., Martínez, L. M., Ortiz, B., & Martínez, G. (2005). Las lectinas vegetales como modelo de estudio de las interacciones proteína- carbohidrato. Revista de Educación Bioquímica, 24(1), 21-27. Van Damme, E. J. M., Lannoo, N., & Peumans, W. J. (2008). Plant lectins. Advances in botanical research, 48, 107-209 Nasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm PG, et al. (2017). Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes. ACS Chem Biol; 12(5):1288-96 Shirai, T., Matsui, Y., Shionyu-Mitsuyama, C., Yamane, T., Kamiya, H., Ishii, C., . . . Muramoto, K. (2002). Crystal structure of a conger eel galectin (Congerin II) at 1.45 Å resolution: Implication for the accelerated evolution of a new ligand-binding site following gene duplication. Journal of molecular biology, 321(5), 879-889. Nonaka, Y., Ogawa, T., Yoshida, H., Shoji, H., Nishi, N., Kamitori, S., & Nakamura, T. (2015). Crystal structure of a Xenopus laevis skin proto-type galectin, close to but distinct from galectin-1. Glycobiology, 25(7), 792-803. Bianchet, M. A., Odom, E. W., Vasta, G. R., & Amzel, L. M. (2010). Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis). Journal of molecular biology, 401(2), 239-252. Zelensky, A. N., & Gready, J. E. (2005). The C‐type lectin‐like domain superfamily. The FEBS journal, 272(24), 6179-6217. The Biophilia Hypothesis, Stephen R. Kellert and Edward O. Wilson. 1993. Island Press, Washington, DC. 484 pages. ISBN: 1-55963-148-1. http://dx.doi.org/101177/027046769501500125 (Internet). Crespi Abril, A. C., & Rubilar Panasiuk, C. T. (2018). Etica e invertebrados: análisis de los casos de los cefalópodos y equinodermos. https://ri.conicet.gov.ar/handle/11336/95031 D. Chapman. Numbers of Living Species in Australia and the World - DAWE (Internet). Australian Biodiversity Information Services, Toowoomba, Australia. 2009 (cited 2022 Apr 27). Available from: https://www.awe.gov.au/science- research/abrs/publications/other/numbers-living-species/executive-summary Moreno, A. G., Outerelo, R., Ruiz, E., Aguirre, J. I., Almodóvar, A., Alonso, J. A., & Cano, J. (2011). Prácticas de Zoología. Estudio y diversidad de los Moluscos. Disección de mejillón. REDUCA (Biología), 4(2). - http://revistareduca.es/index.php/biologia/article/view/837 Nevalainen TJ, Quinn RJ, Hooper JNA. Phospholipase A2 in porifera. Comp Biochem Physiol Part B Biochem Mol Biol. 2004 Mar 1;137(3):413–20. Becerra AJJ. Evolução do veneno em cnidários. 2021. https://repositorio.usp.br/item/003048273 Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel). 2015;7(6):2251-2271. Published 2015 Jun 18. doi:10.3390/toxins7062251 Arroyo-Vega, C., & Lechuga-Granados, A. (2021). Equinodermos de Isla La Roqueta de Acapulco, Guerrero, México. Revista de Biología Tropical, 69(Suppl. 1), 265-271. Ghyoot, M., Dubois, P., & Jangoux, M. (2004). The venom apparatus of the globiferous pedicellariae of the toxopneustid Sphaerechinus granularis (Echinodermata, Echinoida): Fine structure and mechanism of venom discharge. Zoomorphology, 114, 73-82. Moluscos | DIGITAL.CSIC (Internet). (cited 2022 Feb 26). Available from: https://digital.csic.es/handle/10261/100133 Liu F, Li Y, Yu H, Zhang L, Hu J, Bao Z, Wang S. MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca. Nucleic Acids Res. 2021 Jan 8;49(D1):D988-D997. doi: 10.1093/nar/gkaa918. Erratum in: Nucleic Acids Res. 2021 Jan 8;49(D1):D1556. PMID: 33219670; PMCID: PMC7779068. Buczek O, Bulaj G, Olivera BM. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci. 2005 Dec;62(24):3067–79. Aguilar MB, Luna-Ramírez KS, Echeverría D, Falcón A, Olivera BM, Heimer de la Cotera EP, et al. Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the venom of Conus spurius with activity in mice and mollusks. Peptides. 2008 Feb 1;29(2):186–95. Schierwater B (Bernd), DeSalle R. Invertebrate zoology : a tree of life approach. Francke OF. Biodiversity of Arthropoda (Chelicerata: Arachnida ex Acari) in Mexico. Rev Mex Biodivers. 2014;85(SUPPL.). Lourenço WR. The coevolution between telson morphology and venom glands in scorpions (Arachnida). J Venom Anim Toxins Incl Trop Dis. 2020;26:e20200128. Published 2020 Oct 9. doi:10.1590/1678-9199-JVATITD-2020-0128 Polis GA. The Biology of scorpions. Stanford Calif.: Stanford University Press; 1990. 587 p. van der Meijden A, Kleinteich T. A biomechanical view on stinger diversity in scorpions. J Anat. 2017 Apr 1;230(4):497–509. Caracterización de péptidos antimicrobianos derivados de SPC13 presente en el veneno de Scolopendra polymorpha (Internet). (cited 2022 Feb 26). Available from: http://riaa.uaem.mx/handle/20.500.12055/1765 Frazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs. 2012 Aug;10(8):1812-51. doi: 10.3390/md10081812. Epub 2012 Aug 22. PMID: 23015776; PMCID: PMC3447340. Six DA, Dennis EA. The expanding superfamily of phospholipase A2 enzymes: Classification and characterization. Biochim Biophys Acta - Mol Cell Biol Lipids. 2000 Oct 31;1488(1–2):1–19. Efecto toxicológico y proteómica del veneno de la víbora de cascabel de la Isla Coronado Sur (Crotalus helleri caliginis), Baja California, México. ttp://hdl.handle.net/11317/2212 Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005 Jun 15;45(8):969-85. doi: 10.1016/j.toxicon.2005.02.012. Epub 2005 Apr 9. PMID: 15922769. Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol. 2005 May;88(1):91-142. doi: 10.1016/j.pbiomolbio.2004.01.009. PMID: 15561302. Fedorov S, Dyshlovoy S, Monastyrnaya M, Shubina L, Leychenko E, Kozlovskaya E, Jin JO, Kwak JY, Bode AM, Dong Z, Stonik V. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon. 2010 Apr 1;55(4):811-7. doi: 10.1016/j.toxicon.2009.11.016. Epub 2009 Nov 26. PMID: 19944712; PMCID: PMC2823821. Lucía García-Ortega; Jorge Alegre-Cebollada; Sara García-Linares; Marta Bruix; Álvaro Martínez-del-Pozo; José G. Gavilanes (2011). The behavior of sea anemone actinoporins at the water–membrane interface. , 1808(9), 0–2288. doi:10.1016/j.bbamem.2011.05.012 Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010 May;235(1):35- 54. doi: 10.1111/j.0105-2896.2010.00896.x. PMID: 20536554 Castañeda O, Harvey AL. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels. Toxicon. 2009 Dec 15;54(8):1119-24. doi: 10.1016/j.toxicon.2009.02.032. Epub 2009 Mar 6. PMID: 19269305. Chi V, Pennington MW, Norton RS, et al. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012;59(4):529- 546. doi:10.1016/j.toxicon.2011.07.016. Béchohra L, Laraba-Djebari F, Hammoudi-Triki D. Cytotoxic activity of Androctonus australis hector venom and its toxic fractions on human lung cancer cell line. J Venom Anim Toxins Incl Trop Dis. 2016 Oct 22;22:29. doi: 10.1186/s40409-016-0085-4. PMID: 27790250; PMCID: PMC5075196. Ghavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ, Gibson SB, Booy EP, Naderi-Manesh H, Los M. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med. 2008 Jun;12(3):1005-22. doi: 10.1111/j.1582- 4934.2008.00129.x. PMID: 18494941; PMCID: PMC4401144. Reyes-Vega DF, Bermúdez JF, Buitrago-Toro K, Jiménez-Salazar S, Zamora-Suárez A. Aspectos epidemiológicos, clínicos y paraclínicos del accidente escorpiónico en el Hospital Universitario de Neiva, Colombia. Iatreia (Internet). 18 de noviembre de 2020 (citado 30 de mayo de 2022);34(4):295-306. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/342223 Borges, A., Graham, M. R., Cândido, D. M., & Pardal, P. (2021). Amazonian scorpions and scorpionism: integrating toxinological, clinical, and phylogenetic data to combat a human health crisis in the world's most diverse rainfores. The journal of venomous animals and toxins including tropical diseases, 27, e20210028. https://doi.org/10.1590/1678-9199-JVATITD-2021-0028 Humboldt-Paputsachis, Ciro, Fernandez, Gil Patrick. Morphological and morphometric analysis of Tityus (Tityus) sorataensis Kraepelin 1911 (Escorpionida: Buthidae) the two Andean mesothermic valleys, Quime and Cheje, La Paz-Bolivia. J. Selva Andina Res. Soc. (online). 2021, vol.12, n.1, pp.3-20. ISSN 2072-9294. Mendoza-Tobar LL, Meza-Cabrera IA, Sepúlveda-Arias JC, Guerrero-Vargas JA. Comparison of the Scorpionism Caused by Centruroidesmargaritatus, Tityuspachyurus and Tityus n. sp. aff. metuendus Scorpion Venoms in Colombia. Toxins (Basel). 2021 Oct 25;13(11):757. doi: 10.3390/toxins13110757. PMID: 34822541; PMCID: PMC8625436. Schwab, A., J. Reinhardt, S. W. Schneider, B. Gassner and B. Schuricht (1999). "K(+) channel-dependent migration of fibroblasts and human melanoma cells." Cell Physiol Biochem 9(3): 126-132. Escobar, E.; Velásquez, L.; Rivera, C. Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (Gervais, 1841) (Scorpiones: Buthidae). 2003. Rev. Perú. Biol. 10(2): 217-220 Kawachi, T.; Miyashita, M.; Nakagawa, Y.; Miyagawa, H. Isolation and Characterization of Anti-Isect β-Toxin from venom the Scorpion Isometrus maculatus. Biosci. Biotechnol. 2013. Biochem. 77(1): 205-507. Lopez-Giraldo, Andrea Estefania; Olamendi-Portugal, Timoteo; Riaño-Umbarila, Lidia; Becerril, Baltazar; Possani, Lourival D.; Delepierre, Muriel; del Rio Portilla, Federico (2020). The three-dimensional structure of the toxic peptide Cl13 from the scorpion Centruroides limpidus. Toxicon, 184(), 158–166. doi:10.1016/j.toxicon.2020.06.011 Schwab, A., J. Reinhardt, S. W. Schneider, B. Gassner and B. Schuricht (1999). "K(+) channel-dependent migration of fibroblasts and human melanoma cells." Cell Physiol Biochem 9(3): 126-132. Das Gupta, S., B. Halder, A. Gomes and A. Gomes (2013). "Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells." Life Sci 93(7): 271-276 Mackessy S. Handbook of Venoms and Toxins of Reptiles. Mackessy S, editor. Boca Raton, Fl: CRC Press; 2010 Beltrán-Vidal J, Carcamo-Noriega E, Pastor N, Zamudio-Zuñiga F, Guerrero-Vargas JA, Castaño S, Possani LD, Restano-Cassulini R. Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel. Toxins (Basel). 2021 Jun 8;13(6):407. doi: 10.3390/toxins13060407. PMID: 34201318; PMCID: PMC8273696 Santibáñez-López CE, Cid-Uribe JI, Batista CV, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016 Dec 9;8(12):367. doi: 10.3390/toxins8120367. PMID: 27941686; PMCID: PMC5198561. Romero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel). 2018;10(9):359. Published 2018 Sep 5. doi:10.3390/toxins10090359 Almeida DD, Scortecci KC, Kobashi LS, Agnez-Lima LF, Medeiros SR, Silva-Junior AA, Junqueira-de-Azevedo Ide L, Fernandes-Pedrosa Mde F. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics. 2012 Aug 1;13:362. doi: 10.1186/1471-2164-13-362. PMID: 22853446; PMCID: PMC3444934. Rendón-Anaya, M., Camargos, T. S., & Ortiz, E. (2015). Scorpion venom gland transcriptomics. Scorpion Venoms, 531-545. Barona J, Otero R, Núñez V. Aspectos toxinológicos e inmunoquímicos del veneno del escorpión Tityus pachyurus Pocock de Colombia: capacidad neutralizante de antivenenos producidos en Latinoamérica (Toxicological and immunological aspects of scorpion venom (Tytius pachyurus): neutralizing capacity of antivenoms produced in Latin America). Biomedica. 2004 Mar;24(1):42-9. Spanish. PMID: 15239600 Barona J, Batista CVF, Zamudio FZ, Gomez-Lagunas F, Wanke E, Otero R, et al. Proteomic analysis of the venom and characterization of toxins specific for Na+- and K+-channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta - Proteins Proteomics. 2006;1764(1):76–84 Lourenço WR, Leguin E-A. The true identity of Scorpio (Atreus) obscurus Gervais, 1843 (Scorpiones, Buthidae). Euscorpius. 2008;2008(75):1–9. de Oliveira UC, Nishiyama MY Jr, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de- Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One. 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739. PMID: 29561852; PMCID: PMC5862453. Almeida FM, Pimenta AM, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, Diniz CR, De Lima ME. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon. 2002 Jul;40(7):1041-5. doi: 10.1016/s0041- 0101(02)00084-3. PMID: 12076659. Fletcher PL Jr, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. J Biol Chem. 2010 Mar 5;285(10):7405-16. doi: 10.1074/jbc.M109.028365. Epub 2009 Dec 21. PMID: 20026600; PMCID: PMC2844189. Pimenta AM, Stöcklin R, Favreau P, Bougis PE, Martin-Eauclaire MF. Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Commun Mass Spectrom. 2001;15(17):1562-72. doi: 10.1002/rcm.415. PMID: 11713783. Becerril B, Marangoni S, Possani LD. Toxins and genes isolated from scorpions of the genus Tityus. Toxicon. 1997 Jun;35(6):821-35. doi: 10.1016/s0041-0101(96)00198-5. PMID: 9241777. Chippaux JP, Goyffon M. Epidemiology of scorpionism: a global appraisal. Acta Trop. 2008 Aug;107(2):71-9. doi: 10.1016/j.actatropica.2008.05.021. Epub 2008 Jun 5. PMID: 18579104. Bucaretchi F, Fernandes LC, Fernandes CB, Branco MM, Prado CC, Vieira RJ, De Capitani EM, Hyslop S. Clinical consequences of Tityus bahiensis and Tityus serrulatus scorpion stings in the region of Campinas, southeastern Brazil. Toxicon. 2014 Oct;89:17-25. doi: 10.1016/j.toxicon.2014.06.022. Epub 2014 Jul 8. PMID: 25011046. Nencioni AL, Lourenço GA, Lebrun I, Florio JC, Dorce VA. Central effects of Tityus serrulatus and Tityus bahiensis scorpion venoms after intraperitoneal injection in rats. Neurosci Lett. 2009 Oct 9;463(3):234-8. doi: 10.1016/j.neulet.2009.08.006. Epub 2009 Aug 5. PMID: 19664683. de Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61. doi: 10.1016/j.toxicon.2014.12.013. Epub 2014 Dec 29. PMID: 25553591. Alvarenga ER, Mendes TM, Magalhaes BF, Siqueira FF, Dantas AE, Barroca TM, et al. Transcriptome analysis of the <i>Tityus serrulatus</i> scorpion venom gland. Open J Genet. 2012;02(04):210–20. Becerril B, Corona M, Coronas FI, Zamudio F, Calderon-Aranda ES, Fletcher PL Jr, Martin BM, Possani LD. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus. Biochem J. 1996 Feb 1;313 ( Pt 3)(Pt 3):753-60. doi: 10.1042/bj3130753. PMID: 8611151; PMCID: PMC1216974. Sameh Sarray, Jose Luis, Mohamed El Ayeb and Naziha Marrakchi (2013). Snake Venom Peptides: Promising Molecules with Anti-Tumor Effects, Bioactive Food Peptides in Health and Disease Blanca Hernández-Ledesma, IntechOpen, DOI: 10.5772/51263. J.R. Almeida, L.M. Resende, R.K. Watanabe, V.C. Carregari, et al. Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents (2017). Curr Med Chem. 2017;24(30):3254-3282. Nagasaka K, Nakagawa H, Satoh F, Hosotani T, Yokoigawa K, Sakai H, et al. A novel cytotoxic protein, Karatoxin, from the dorsal spines of the redfin velvetfish, Hypodytes rubripinnis. Toxin Rev. 2009;28(4):260–5. de Santana Evangelista K, Andrich F, de Rezende FF, Niland S, Cordeiro MN, Horlacher T, et al. Plumieribetin, a fish lectin homologous to mannose-binding B-type lectins, inhibits the collagen-binding α1β1 integrin. J Biol Chem. 2009;284(50):34747–59. Andrich F, Richardson M, Naumann GB, Cordeiro MN, Santos A V., Santos DM, et al. Identification of C-type isolectins in the venom of the scorpionfish Scorpaena plumieri. Toxicon. 2015;95:67–71. Lopes-Ferreira M, Magalhães GS, Fernandez JH, Junqueira-De-Azevedo IDLM, Le HoP, Lima C, et al. Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri. Biochimie. 2011;93(6):971– 80 Ishizuka EK, Ferreira MJ, Grund LZ, Coutinho EMM, Komegae EN, Cassado AA, et al. Role of interplay between IL-4 and IFN-γ in the in regulating M1 macrophage polarization induced by Nattectin. Int Immunopharmacol. 2012;14(4):513–22. Qu Y, Liang S, Ding J, Liu X, Zhang R, Gu X. Proton nuclear magnetic resonance studies on huwentoxin-I from the venom of the spider Selenocosmia huwena: 2. Three-dimensional structure in solution. J Protein Chem. 1997 Aug;16(6):565-74. doi: 10.1023/a:1026314722607. PMID: 9263120. Hans-Christian Siebert; Shan-Yun Lu; Rainer Wechselberger; Karin Born; Thomas Eckert; Songping Liang; Claus-Wilhelm von der Lieth; Jesús Jiménez-Barbero; Roland Schauer; Johannes F.G. Vliegenthart; Thomas Lütteke; Tibor Kožár (2009). A lectin from the Chinese bird-hunting spider binds sialic acids. , 344(12), 1515–1525. doi:10.1016/j.carres.2009.06.002 Sartim Hatakeyama T, Ichise A, Unno H, Goda S, Oda T, Tateno H, Hirabayashi J, Sakai H, Nakagawa H. Carbohydrate recognition by the rhamnose-binding lectin SUL-I with a novel three-domain structure isolated from the venom of globiferous pedicellariae of the flower sea urchin Toxopneustes pileolus. Protein Sci. 2017 Aug;26(8):1574-1583. doi: 10.1002/pro.3185. Epub 2017 May 12. PMID: 28470711; PMCID: PMC5521583. Zobel-Thropp, P. A., Correa, S. M., Garb, J. E., & Binford, G. J. (2014). Spit and venom from scytodes spiders: a diverse and distinct cocktail. Journal of proteome research, 13(2), 817-835. Lino-López GJ, Valdez-Velázquez LL, Corzo G, Romero-Gutiérrez MT, Jiménez- Vargas JM, Rodríguez-Vázquez A, Vazquez-Vuelvas OF, Gonzalez-Carrillo G. Venom gland transcriptome from Heloderma horridum horridum by high-throughput sequencing. Toxicon. 2020 Jun;180:62-78. doi: 10.1016/j.toxicon.2020.04.003. Epub 2020 Apr 10. PMID: 32283106. Fry, B. G., Undheim, E. A., Ali, S. A., Jackson, T. N., Debono, J., Scheib, H., ... & Sunagar, K. (2013). Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Molecular & Cellular Proteomics, 12(7), 1881-1899. Walker, A. A., Mayhew, M. L., Jin, J., Herzig, V., Undheim, E. A., Sombke, A., ... & King, G. F. (2018). The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nature communications, 9(1), 1-10. Gerardo Raul Vasta; Elias Cohen (1984). Sialic acid-binding lectins in the “whip scorpion” (Mastigoproctus giganteus) serum. , 43(3), 0–342. doi:10.1016/0022- 2011(84)90078-8 Ahmed H, Anjaneyulu G, Chatterjee BP. Serological characterization of humoral lectin from Heterometrus granulomanus scorpion hemolymph. Dev Comp Immunol. 1986 Summer;10(3):295-304. doi: 10.1016/0145-305x(86)90020-0. PMID: 3770265 Ahmed H, Chatterjee BP, Kelm S, Schauer R. Purification of a sialic acid-specific lectin from the Indian scorpion Heterometrus granulomanus. Biol Chem Hoppe Seyler. 1986 Jun;367(6):501-6. doi: 10.1515/bchm3.1986.367.1.501. PMID: 3741626. R. Viswambari Devi, M. R. Basilrose & P. D. Mercy (2010) Prospect for lectins in arthropods, Italian Journal of Zoology, 77:3, 254-260, DOI: 10.1080/11250003.2010.492794 Nunes Edos S, de Souza MA, Vaz AF, Santana GM, Gomes FS, Coelho LC, Paiva PM, da Silva RM, Silva-Lucca RA, Oliva ML, Guarnieri MC, Correia MT. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp Biochem Physiol B Biochem Mol Biol. 2011 May;159(1):57-63. doi: 10.1016/j.cbpb.2011.02.001. Epub 2011 Feb 18. PMID: 21334449. Castanheira, L. E., de Oliveira Nunes, D. C., Cardoso, T. M., de Souza Santos, P., Goulart, L. R., Rodrigues, R. S., ... & Rodrigues, V. M. (2013). Biochemical and functional characterization of a C-type lectin (BpLec) from Bothrops pauloensis snake venom. International journal of biological macromolecules, 54, 57-64. Samah, Saoud; Fatah, Chérifi; Jean-Marc, Berjeaud; Safia, Kellou-Taîri; Fatima, Laraba-Djebari (2017). Purification and characterization of Cc-Lec, C-type lactose- binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. International Journal of Biological Macromolecules, 102(), 336–350. doi:10.1016/j.ijbiomac.2017.04.018 de Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61. doi: 10.1016/j.toxicon.2014.12.013. Epub 2014 Dec 29. PMID: 25553591. de Oliveira UC, Nishiyama MY Jr, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One. 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739. PMID: 29561852; PMCID: PMC5862453. Santibáñez-López CE, Cid-Uribe JI, Batista CV, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016;8(12):367. Published 2016 Dec 9. doi:10.3390/toxins8120367 Ma, Y., Zhao, R., He, Y. et al. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics 10, 290 (2009). https://doi.org/10.1186/1471-2164-10-290 Okino N, Kawabata S, Saito T, Hirata M, Takagi T, Iwanaga S;, J Biol Chem. 1995;270:31008-31015.: Purification, (characterization, and cDNA cloning of a 27- kDa lectin (L10) from horseshoe crab hemocytes. PUBMED:8537358 EPMC:8537358 Beisel HG, Kawabata S, Iwanaga S, Huber R, Bode W;, EMBO J. 1999;18:2313-2322.: Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. PUBMED:10228146 EPMC:10228146 Hayes ML, Eytan RI, Hellberg ME;, BMC Evol Biol. 2010;10:150.: High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2). PUBMED:20482872 EPMC:20482872 Ju L, Zhang S, Liang Y, Sun X. Identification, expression and antibacterial activity of a tachylectin-related homolog in amphioxus Branchiostoma belcheri with implications for involvement of the digestive system in acute phase response. Fish Shellfish Immunol. 2009 Feb;26(2):235-42. doi: 10.1016/j.fsi.2008.10.015. Epub 2008 Nov 19. PMID: 19063974. Angthong P, Roytrakul S, Jarayabhand P, Jiravanichpaisal P. Characterization and function of a tachylectin 5-like immune molecule in Penaeus monodon. Dev Comp Immunol. 2017 Nov;76:120-131. doi: 10.1016/j.dci.2017.05.023. Epub 2017 Jun 3. PMID: 28587859. Kawabata S, Iwanaga S. Role of lectins in the innate immunity of horseshoe crab. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):391-400. doi: 10.1016/s0145-305x(99)00019- 1. PMID: 10426430. Kawabata S, Beisel HG, Huber R, Bode W, Gokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S. Role of tachylectins in host defense of the Japanese horseshoe crab Tachypleus tridentatus. Adv Exp Med Biol. 2001;484:195-202. doi: 10.1007/978-1-4615-1291-2_18. PMID: 11418985. de Paula Santos-da-Silva A, Candido DM, Nencioni ALA, Kimura LF, Prezotto-Neto JP, Barbaro KC, Chalkidis HM, Dorce VAC. Some pharmacological effects of Tityus obscurus venom in rats and mice. Toxicon. 2017 Feb;126:51-58. doi: 10.1016/j.toxicon.2016.12.008. Epub 2016 Dec 22. PMID: 28012802. Oukkache, N., Chgoury, F., Lalaoui, M. et al. Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Incl Trop Dis 19, 5 (2013). https://doi.org/10.1186/1678-9199-19-5 Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76-85. doi: 10.1016/0003-2697(85)90442-7. Erratum in: Anal Biochem 1987 May 15;163(1):279. PMID: 3843705. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0. PMID: 5432063. Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368-79. doi: 10.1016/0003-2697(87)90587-2. PMID: 2449095. Hermanson, G.T., Mallia, A.K., Smith, P.K. Immobilized Affinity Ligand Techniques. Academic Press, 1992. 454p. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. doi: 10.1093/nar/gky427. PMID: 29788355; PMCID: PMC6030848. Escobar, E., Tincopa, R., & Ochoa, J. A. (2013). Estudio bioquímico del veneno de Tityus kaderkai (Scorpiones: Buthidae) con notas sobre su distribución y hábitat en el Perú. Revista peruana de biología, 20(2), 151-158. Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis. 2021 Jul 9;27:e20200173. doi: 10.1590/1678- 9199-JVATITD-2020-0173. PMID: 34290759; PMCID: PMC8277192. Nagdalian, A. A., Pushkin, S. V., Povetkin, S., Nikolaevich, K., Egorovna, M., Marinicheva, M. P., & Lopteva, M. S. (2018). Migalomorphic spiders venom: extraction and investigation of biological activity. Entomol Appl Sci Lett, 5(3), 60-70. Tincopa Marca, L. R. Estudio bioquímico del veneno del escorpión Tityus sp.(aff. T. silvestris Pocock).Universidad Mayor de San Marcos, Fcultad de Ciencias Biológicas, 2007.Tesis de Pregrado. Escobar, E., Velásquez, L., & Rivera, C. (2003). Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (Gervais, 1841)(Scorpiones: Buthidae). Revista peruana de biología, 10(2), 209-216. Nasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm PG, et al. (2017). Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes. ACS Chem Biol; 12(5):1288-96 Rougé P, Peumans WJ, Van Damme EJM, Barre A, Singh T, Wu JH, Wu AM. Structure-function relationships of plant lectins that specifically recognize T and Tn antigens. Wu AM (Ed). En The molecular Immunology of complex carbohydrates, 3rd ed. Springer. 2011; 157-70. Kasai, Kenichi (2021). Frontal affinity chromatography: An excellent method of analyzing weak biomolecular interactions based on a unique principle. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865(1), 129761–. doi:10.1016/j.bbagen.2020.129761 Hirabayashi, Jun (2003). (Methods in Enzymology) Recognition of Carbohydrates in Biological Systems, Part A: General Procedures Volume 362 || Frontal Affinity Chromatography as a Tool for Elucidation of Sugar Recognition Properties of Lectins. , (), 353–368. doi:10.1016/S0076-6879(03)01025-5 Tania Cortázar. Estudio del efecto de lectinas vegetales sobre los procesos de migración y proliferación celular en queratinocitos epidérmicos. Tesis de Doctorado en ciencias Bioquímica. Facultad de Ciencias. Universidad Nacional de Colombia. 2019. Almanza M, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognises blood group H determinants. Arch Biochem Biophys. 2004 Sep 15;429(2):180-90. doi: 10.1016/j.abb.2004.06.010. PMID: 15313221. Betancourt, O.H., Hernández, I.C., Huerta, E.I., Labrada, A.R., Ramos, J., & Pargas, A.R. (2009). Evaluación de la toxicidad in vitro del veneno del alacrán Rophalurus junceus a través de un ensayo celular. Rev Cubana Invest Biomed 2009; 28(1) 1-11. Wiezel GA, Rustiguel JK, Morgenstern D, Zoccal KF, Faccioli LH, Nonato MC, Ueberheide B, Arantes EC. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie. 2019 Aug;163:33-49. doi: 10.1016/j.biochi.2019.05.009. Epub 2019 May 10. PMID: 31078582. Almeida, José R.; Mendes, Bruno; Patiño, Ricardo S.P.; Pico, José; Laines, Johanna; Terán, María; Mogollón, Noroska G.S.; Zaruma-Torres, Fausto; Caldeira, Cleópatra A. da S.; da Silva, Saulo L. (2020). Assessing the stability of historical and desiccated snake venoms from a medically important Ecuadorian collection. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 230(), 108702–. doi:10.1016/j.cbpc.2020.108702 Lü, S., Liang, S. & Gu, X. Three-Dimensional Structure of Selenocosmia huwena Lectin-I (SHL-I) from the Venom of the Spider Selenocosmia huwena by 2D-NMR. J Protein Chem 18, 609–617 (1999). https://doi.org/10.1023/A:1020663619657 Wang X, Gao B, Zhu S. Exon Shuffling and Origin of Scorpion Venom Biodiversity. Toxins (Basel). 2016;9(1):10. Published 2016 Dec 26. doi:10.3390/toxins9010010 Tomoyuki KAWACHI, Masahiro MIYASHITA, Yoshiaki NAKAGAWA, Hisashi MIYAGAWA, Isolation and Characterization of an Anti-Insect β-Toxin from the Venom of the Scorpion Isometrus maculatus, Bioscience, Biotechnology, and Biochemistry, Volume 77, Issue 1, 23 January 2013, Pages 205–207, https://doi.org/10.1271/bbb.120697 Álvarez, A. M., Álvarez, M., Perdomo, L., & Rodríguez-Acosta, A. (2021). Clinical cardiac alterations and hemostatic toxicities caused by scorpion (Tityus discrepans) venom and its purified fractions on zebrafish (Danio rerio) larvae. Invest Clin 62(4): 325 - 338, 2021 https://doi.org/10.22209/IC.v62n4a04 Borges, A., Lomonte, B., Angulo, Y., de Patiño, H. A., Pascale, J. M., Otero, R., ... & Caro-Lopez, J. A. (2020). Venom diversity in the Neotropical scorpion genus Tityus: Implications for antivenom design emerging from molecular and immunochemical analyses across endemic areas of scorpionism. Acta Tropica, 204,10536. https://doi.org/10.1016/j.actatropica.2020.105346 10.1016/j.actatropica.2020.105346 Cummings, R. D., Darvill, A. G., Etzler, M. E., & Hahn, M. G. (2017). Glycan- Recognizing Probes as Tools. In Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.048 Jang, H., Lee, D.-H., Kang, H. G., & Lee, S. J. (2020). Concanavalin A targeting N- linked glycans in spike proteins influence viral interactions. Dalton Transactions, 49(39), 13538–13543. https://doi.org/10.1039/D0DT02932G Wilson IBH. Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol. 2002;12(5):569–77. Melgarejo LM, Vega N, Pérez G. Isolation and characterization of novel lectins from Canavalia ensiformis DC and Dioclea grandiflora Mart. ex Benth. seeds. Brazilian J Plant Physiol. 2005;17(3):315–24 Medeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn‐specific lectin from Salvia sclarea seeds. FEBS J. 2000;267(5):1434–40. Dam T.K., Roy, R., Das, S.K., Oscarson, S., Brewer, C.F. (2000). Binding of multivalent carbohydrates to Concanavalin A and Dioclea grandiflora lectin. J Biol Chem, 275:14223 –30 Kawabata S., Shibata T. (2020) Purification and Assays of Tachylectin-5. In: Hirabayashi J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_27 Kawabata SI, Shibata T. Purification and Assays of Tachylectin-2. Methods Mol Biol. 2020;2132:309-316. doi: 10.1007/978-1-0716-0430-4_30. PMID: 32306338. Gokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S, Kawabata S. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10086-91. doi: 10.1073/pnas.96.18.10086. PMID: 10468566; PMCID: PMC17846. Ward, M. J., Ellsworth, S. A., & Rokyta, D. R. (2018). Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon, 142, 14- 29. Rokyta, D. R., & Ward, M. J. (2017). Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon, 128, 23-37. Kairies, N., Beisel, H.-G., Fuentes-Prior, P., Tsuda, R., Muta, T., Iwanaga, S., . . . Kawabata, S.-i. (2001). The 2.0-Å crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proceedings of the National Academy of Sciences, 98(24), 13519-13524. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82950/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82950/2/1037633361.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82950/3/1037633361.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c4e02bcc2e361083575d3b6590605a44 266a51eb1a563173d00ea7d8acb26508 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089349062459392 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vega Castro, Nohora Angélica1bac60b0381f939db8d6c334f123ddc1Pemberthy López, Daniela01ce8ea69f4139bc1fd9e92f390c669Grupo de Investigación en Proteinas Grip2023-01-16T19:45:49Z2023-01-16T19:45:49Z2022https://repositorio.unal.edu.co/handle/unal/82950Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLas lectinas son glicoproteínas de origen no inmune, que reconocen carbohidratos con diferentes afinidades, por lo tanto, tienen un amplio espectro de estudio y aplicación, en diferentes campos como el médico, por ejemplo, en terapias antirretrovirales y antitumorales. Paralelamente, son de gran importancia en el estudio de formación de complejos lectina–carbohidrato, así como las interacciones proteína carbohidrato, que conducen a diferentes respuestas biológicas. Se encuentran en todos los organismos desde virus hasta humanos, aunque han sido muy bien estudiadas en animales y plantas superiores. Su alta distribución en los diferentes reinos muestra su importancia en los procesos celulares, que se dan por interacciones célula–célula, hospedero–patógeno, y planta–simbionte, entre otras. En el caso de los artrópodos, las funciones fisiológicas de las lectinas aún no están establecidas, sin embargo, hay evidencia de su importancia en la respuesta inmune, metamorfosis, diferenciación, muda, entre otras. Con respecto al estudio de las lectinas en venenos, es muy poco lo que se menciona en las revisiones y en términos generales es muy escaso. Los estudios se han limitado en su mayoría a las lectinas del veneno de serpientes (85.9%) y en menor proporción peces (5,6%), arañas y escorpiones (2,8%). Puesto que, a partir de la glándula de escorpión, se ha registrado solamente una secuencia hipotética para la lectina de Tityus obscurus (TyobL), obtenida mediante estudios de transcriptómica. Además, la única lectina estudiada a partir del veneno es la de Buthus occitanus, especie del sur de Vietnam, que se caracteriza por reconocer residuos de Fuc>> D-Glc > L-Rham= D-xyl, y solo se conoce su análisis de aminoácidos y peso molecular de subunidades. Por consiguiente y teniendo en cuenta que no existen estudios enfocados en lectinas presentes en veneno de escorpión, y que además no se conoce la secuencia ni la estructura terciaria, con el desarrollo de este trabajo se detectaron nuevas lectinas (TymaLs), a partir del veneno de Tityus macrochirus, una especie endémica del departamento de Cundinamarca, las cuales se caracterizaron por ser glicoproteínas de alto peso molecular (>100 kDa), reconocer residuos de lactosa y/o azúcares acetilados, y estar compuestos por monómeros de pesos moleculares ~ 15 kDa. Para complementar el conocimiento acerca de estas lectinas, se llevaron a cabo estudios de predicción estructural con la secuencia (nt) propuesta para la lectina de T.obscurus (TyobL), los resultados obtenidos por SWISS MODEL muestran que es una lectina tipo taquilectina (TL), similar a la isolectina 5a de Tachypleus tridentatus purificada de la hemolinfa del cangrejo (Texto tomado de la fuente).Lectins are proteins of no immune origin belonging to a diverse animal or plant origin group and are characterized by irreversibly binding a given monosaccharide or oligosaccharide. These properties have made them essential molecules in studying carbohydrate structure and function. Studying glycans’ function and how they can regulate biological processes is one of the most rapidly growing fields in biochemistry and molecular biology; this ranges from coagulation to viral and bacterial infection processes acting on different types of cells. Lectins have been clues in the knowledge in this area which will lead to developing new alternatives in treating diseases. Advances in proteomics have also generated growing interest in understanding how glycans participate in the multiple interactions at the cellular level where glycoproteins play a particular role. The most well-known interactions leading to biological responses are protein-protein or protein-carbohydrate ones, while eventual carbohydrate-carbohydrate interactions have not been considered relevant to date; experimental evidence has been presented which has implicated them in biological processes including cellular traffic, host-pathogen interactions, embryogenesis, spermatogenesis, fertilization, nervous system development, and angiogenesis. Many studies related to Arthropods´ lectins are carried out although physiological functions have not been established yet, there is evidence about the role immune system, metamorphosis, and differentiation, among others. However, regarding venom lectins, scarce information is found in the bibliography. Mainly studies have been mostly snakes (85.9%) and, to a lesser extent, fish (5.6%), spiders, and scorpions 82.8%). Only one hypothetical sequence has been registered for Tityus obscurus lectin (TyobL) obtained in transcriptomics studies. Additionally, only one lectin from Buthus occitanus venom was isolated and characterized for recognizing Fuc>> D-Glc > L-Rham= D-xyl residues, aminoacidic and carbohydrate analysis and molecular weight were studied too. Thus, limited structural information is available about its primary and tertiary structure. Likewise, their sequence in nucleotides or amino acid is generally unknown preventing their production in recombinant form. Considering that no studies are focusing on the detection, isolation, and biochemical characterization of lectins from scorpion venom, in this work, an endemic specie from the department of Cundinamarca, Tityus macrochirus (TymaLs) were studied to detect and isolate new lectins (TymacLs), which had specificity towards lactose residues (β-D-Gal (1-4)-β-D-GlcNAc–O-R) and acetylated carbohydrates. These lectins are glycoproteins with molecular weight higher (>100 kDa), and 15 kDa for monomers forms. To deepen the knowledge of these lectins, we chose the sequence from T. obscurus, for carrying out structural prediction studies. These results obtained by SWISS-MODEL showed that it is a tachylectin-like lectin (TL), from Tachypleus tridentatus crab hemolymph.MaestríaMagíster en Ciencias - BioquímicaEstudios de Lectinas en venenos animalesxv, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaVENENO DE INSECTOSLECTINASInsect venomLectinsLectinasVenenoEscorpiónAglutinaciónCaracterización bioqímicaCarbohidratosTityus macrochirusTityus obscurusTaquilectinasGlicoproteínasVenomLectinCarbohydratesGlycoproteinScorpionsAgglutinationBiochemical characterizationTachylectinsTityus macrochirusTityus obscurusEstudio de las lectinas presentes en el veneno del escorpión Tityus macrochirusStudy of the lectins present in the venom of the scorpion Tityus macrochirusTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLahiani A, Yavin E, Lazarovici P. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) (Internet). 2017 Mar 16 (cited 2022 Feb 26);9(3). Available from: https://pubmed.ncbi.nlm.nih.gov/28300784/Zhang Y. Why do we study animal toxins? Dong wu xue yan jiu = Zool Res. 2015 Jul 18;36(4):183–222.Gómez JP, Quintana JC, Arbeláez P, Fernández J, Silva JF, Barona J, et al. Tityus asthenes scorpion stings: epidemiological, clinical and toxicological aspects. Biomedica (Internet). 2010 (cited 2020 Oct 16);30(1):126–39. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/160Irina Vetter; Jasmine L. Davis; Lachlan D. Rash; Raveendra Anangi; Mehdi Mobli; Paul F. Alewood; Richard J. Lewis; Glenn F. King (2011). Venomics: a new paradigm for natural products-based drug discovery. , 40(1), 15–28. doi:10.1007/s00726-010- 0516-4Guerrero-Vargas JA, Mourão CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na +-channel scorpion toxins. PLoS One. 2012 Feb 15;7(2).Ward, Micaiah J.; Ellsworth, Schyler A.; Nystrom, Gunnar S. (2018). A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon, 151(), 137–155. doi:10.1016/j.toxicon.2018.07.007Harvey AL. Toxins and drug discovery. Toxicon. 2014 Dec 15;92:193-200. doi: 10.1016/j.toxicon.2014.10.020. Epub 2014 Oct 29. PMID: 25448391.Bhavya J, Francois NN, More VS, More SS. Scorpion Toxin Polyptides as Therapeutic Agents: An Overview. Protein Pept Lett. 2016;23(9):848-59. doi: 10.2174/0929866523666160630184635. PMID: 27397476.Ghosh, Arijit; Roy, Rini; Nandi, Monoswini; Mukhopadhyay, Ashis (2018). Scorpion Venom–Toxins that Aid in Drug Development: A Review. International Journal of Peptide Research and Therapeutics, (), –. doi:10.1007/s10989-018-9721-xGómez Rave, Lyz Jenny; Muñoz Bravo, Adriana Ximena; Sierra Castrillo, Jhoalmis; Román Marín, Laura Melisa; Corredor Pereira, Carlos (2019). Scorpion Venom: New Promise in the Treatment of Cancer. Acta Biológica Colombiana, 24(2), 213–223. doi:10.15446/abc.v24n2.71512José Beltrán-Vidal;Edson Carcamo-Noriega;Nina Pastor;Fernando Zamudio- Zuñiga;Jimmy Alexander Guerrero-Vargas;Santiago Castaño;Lourival Domingos Possani;Rita Restano-Cassulini; (2021). Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel .Toxins,13,407. doi:10.3390/toxins13060407Gopalakrishnakone, P.; Possani, Lourival D.; F. Schwartz, Elisabeth; Rodríguez de la Vega, Ricardo C. (2015). Scorpion Venoms || Scorpionism and Dangerous Species of Colombia Colombia. , 10.1007/978-94-007-6404-0(Chapter 22), 245–272. doi:10.1007/978-94-007-6404-0_22Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett (Internet). 2009 Jun 5 (cited 2022 Feb 25);583(11):1736– 43. Available from: www.reptile-database.orgCasewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013 Apr 1;28(4):219–29.Teixeira C, Moreira V, Gutiérrez JM. Venoms. Inflamm - From Mol Cell Mech to Clin (Internet). 2017 Oct 31 (cited 2022 Feb 25);99–128. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9783527692156.ch5Tsaneva, M., de Schutter, K., Verstraeten, B., & Van Damme, E. J. M. (2019). Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020437Sharon, N., & Lis, H. (2007). Lectins: Second edition. Springer. ISBN: 978-1-4020- 6605-4. 454 p.Konozy E, Osman M, Dirar A. Plant lectins as potent Anti-coronaviruses, Anti- inflammatory, antinociceptive and antiulcer agents. Saudi J Biol Sci. 2022 Jun;29(6):103301. doi: 10.1016/j.sjbs.2022.103301. Epub 2022 Apr 22. PMID: 35475119; PMCID: PMC9026953.N. A. Hoang; B. B. Berezin; V. M. Lakhtin; I. A. Yamskov (2001). Isolation and Partial Characterization of Lectin from the Venom of Vietnamese Scorpion Buthus occitanussp.. , 37(5), 534–537. doi:10.1023/a:1010266628552Rincón-Cortés, C. A., Reyes-Montaño, E. A., & Vega-Castro, N. A. (2017). Partial purification of peptides presents in the Tityus macrochirus (Buthidae) scorpion venom and preliminary assessment of their cytotoxicity. Biomedica: revista del Instituto Nacional de Salud, 37(2), 238-249.Rincón C (2017). Identificación, aislamiento y caracterización bioquímica de péptido (s) con actividad citotóxica, presente (s) en el veneno del escorpión Tityus macrochirus (BUTHIDAE). Tesis doctoral en Ciencias Bioquímica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Química. Bogotá, Colombia.Clara A Rincón-Cortés, Timoteo Olamendi-Portugal, Edson N Cárcamo-Noriega, Edmundo González-Santillán, Fernando Zamudio, Edgar A Reyes-Montaño, Nohora A Vega-Castro., Lourival Domingos Possani. Structural and functional characterization of toxic peptides purified from the venom of the Colombian scorpion Tityus macrochirus. Toxicon 169 (2019) 5–11Gabius HJ. Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften. 2000; 87 (3):108-21.Ghazarian H., Idoni B., Oppenheimer S. A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics”. Acta histochem. 2011; 113:236–47.Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease— mucin-type O-glycans in cancer. Adv. Cancer Res. 2015; 126:53–135.André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. Lectins: Getting Familiar with Translators of the Sugar Code. Molecules. 2015; 20: 1788-1823Mislovicová D, Gemeiner P, Kozarova A, Kozár T. Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia. 2009; 64 (1):1-19. DOI: 10.2478/s11756-009-0029-3Fohona S. Coulibaly, Bi-Botti C. Youan. Current status of lectin-based cancer diagnosis and therapy. AIMS Molecular Science, 2017, 4(1): 1-27. doi: 10.3934/molsci.2017.1.1Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004; 95 (5):377-84.Syed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmaki U. Role of lectin microarrays in cancer diagnosis. Proteomics. 2016; 16(8):1257-65.Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cáncer. Breast Cancer Res. 2010; 12:204.Cipolla L, Peri F, Airoldi C. Glycoconjugates in Cancer Therapy. Anti-Cancer Agents Med. Chem. 2008; 8(1):92-121.Springer GF. Immunoreactive T and Tn epitopes en cancer diagnosis, prognosis and immunotherapy. J. Mol. Med. (Berl). 1997; 75 (8):594-602.Kanev MO, Bakar E. Glycoconjugates in cancer. J. Health Sci. KOU. 2016; 2 (1):1- 5.Kaptan, E., Sancar-Bas, S., Sancakli, A., Bektas, S., & Bolkent, S. (2018). The effect of plant lectins on the survival and malignant behaviors of thyroid cancer cells. Journal of Cellular Biochemistry, 119(7), 6274–6287. doi:10.1002/jcb.26875Sancakli A, Kaptan E. Lectin Treatment Affects Malignant Characteristics of TPC-1 Papillary Thyroid Cancer Cells. Eur J Biol 2019; 78(1): 51-57. 10.26650/EurJBiol.2019.0006Hirabayashi, J., Tateno, H., Shikanai, T., Aoki-Kinoshita, K. F., & Narimatsu, H. (2015). The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules, 20(1), 951-973.Kent Gartner; Kurt Stocker; Danny C. Williams (1980). Thrombolectin: A lectin isolated from Bothrops atrox venom. , 117(1-2), 0–16. doi:10.1016/0014- 5793(80)80902-1Walker, J. R., Nagar, B., Young, N. M., Hirama, T., & Rini, J. M. (2004). X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochemistry, 43(13), 3783-3792.Sartim, Marco A.; Sampaio, Suely V. (2015). Snake venom galactoside-binding lectins: a structural and functional overview. Journal of Venomous Animals and Toxins including Tropical Diseases, 21(1), 35–. doi:10.1186/s40409-015-0038-3Sharon, N., & Lis, H. (2003). Lectins. Springer Science & Business Media.Baruffi, M. D., Morani, E. d. S. C., Roncoletta, M., del Cistia Andrade, C., & Rodrigues, L. C. (2017). Methods for increasing the embryo implantation rate in mammals. In: Google Patents.Cui, B., Li, L., Zeng, Q., Lin, F., Yin, L., Liao, L., . . . Wang, J. (2017). A novel lectin from Artocarpus lingnanensis induces proliferation and Th1/Th2 cytokine secretion through CD45 signaling pathway in human T lymphocytes. Journal of natural medicines, 71(2), 409-421.Gabius, H. J. (1997). Animal lectins. European Journal of Biochemistry, 243(3), 543- 576.Mitchell, C. A., Ramessar, K., & O'Keefe, B. R. (2017). Antiviral lectins: Selective inhibitors of viral entry. Antiviral research.Ponraj, T., Paulpandi, M., Vivek, R., Vimala, K., & Kannan, S. (2017). Protein regulation and Apoptotic induction in human breast carcinoma cells (MCF-7) through lectin from G. beauts. International journal of biological macromolecules, 95, 1235- 1245.Singh, R. S., Walia, A. K., Khattar, J. S., Singh, D. P., & Kennedy, J. F. (2017). Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475-496.Varki, A., & Lowe, J. B. (2009). Biological roles of glycans.Mayer, S., Raulf, M.-K., & Lepenies, B. (2017). C-type lectins: their network and roles in pathogen recognition and immunity. Histochemistry and cell biology, 1-15.Wesener, D. A., Dugan, A., & Kiessling, L. L. (2017). Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology, 44, 168-178.R. Viswambari Devi, M. R. Basilrose & P. D. Mercy (2010) Prospect for lectins in arthropods, Italian Journal of Zoology, 77:3, 254-260, DOI: 10.1080/11250003.2010.492794Bertozzi CR, Sasisekharan R. Glycomics. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds). Essentials of Glycobiology. Second Edition. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press; 2009.Hart G, Copeland R. Glycomics hits the big time. Cell. 2010;143:672-676.Bhutia SK, Panda PK, Sinha N, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Saha S, Patra S, Mishra SR, Behera BP, Patil S, Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol Res. 2019 Jun;144:8-18. doi: 10.1016/j.phrs.2019.04.001. Epub 2019 Apr 3. PMID: 30951812.Giacometti, J. (2015). Plant lectins in cancer prevention and treatment. Medicina Fluminensis: Medicina Fluminensis, 51(2), 0-0Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., . . . Trinchieri, G. (1989). Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. Journal of Experimental Medicine, 170(3), 827-845.Fanayan, S., Hincapie, M., & Hancock, W. S. (2012). Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis, 33(12), 1746-1754.Zeng, Q., Lin, F., Zeng, L., Deng, Y., & Li, L. (2019). Purification and characterization of a novel immunomodulatory lectin from Artocarpus hypargyreus Hance. International immunopharmacology, 71, 285-294.Wijetunge, Sashini S.; Wen, Jianchuan; Yeh, Chih-Ko; Sun, Yuyu (2018). Lectin- Conjugated Liposomes as Biocompatible, Bioadhesive Drug Carriers for the Management of Oral Ulcerative Lesions. ACS Applied Bio Materials, (), acsabm.8b00425–. doi:10.1021/acsabm.8b00425Müller SK, Wilhelm I, Schubert T, Zittlau K, Imberty A, Madl J, Eierhoff T, Thuenauer R, Römer W. Gb3-binding lectins as potential carriers for transcellular drug delivery. Expert Opin Drug Deliv. 2017 Feb;14(2):141-153. doi: 10.1080/17425247.2017.1266327. Epub 2016 Dec 16. PMID: 27935765.Å Urga S, Nanut MP, Kos J, Sabotič J. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget. 2017 Apr 18;8(16):26896-26910. doi: 10.18632/oncotarget.15849. PMID: 28460472; PMCID: PMC5432305.Micucci, H. A., & Camps, E. Lectinas: Obtención, estructura química, propiedades y aplicaciones diagnósticas y farmacológicas. Acta Farmacéutica Bonaerense, 6. Acta Farm. Bonaerense 6 (1): 35-54 (1987)Sharon, N., & Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53R-62R.Kilpatrick, D. C. (2002). Animal lectins: a historical introduction and overview. Biochimica et Biophysica Acta (BBA)-General Subjects, 1572(2), 187-197.Swaminathan, G. J., Leonidas, D. D., Savage, M. P., Ackerman, S. J., & Acharya, K. R. (1999). Selective recognition of mannose by the human eosinophil Charcot- Leyden crystal protein (galectin-10): a crystallographic study at 1.8 Å resolution. Biochemistry, 38(42), 13837-13843Kaltner, H., & Gabius, H.-J. (2001). Animal lectins: from initial description to elaborated structural and functional classification. The Molecular Immunology of Complex Carbohydrates—2, 79-94Zanetta, J. P. (1998). Structure and functions of lectins in the central and peripheral nervous system. Cells Tissues Organs, 161(1-4), 180-195.Toscano, M. A., Ilarregui, J. M., Bianco, G. A., Campagna, L., Croci, D. O., Salatino, M., & Rabinovich, G. A. (2007). Dissecting the pathophysiologic role of endogenous lectins: glycan-binding proteins with cytokine-like activity? Cytokine & growth factor reviews, 18(1-2), 57-71.Chen, P., De Schutter, K., Van Damme, E. J. M., & Smagghe, G. (2021). Can Plant Lectins Help to Elucidate Insect Lectin-Mediated Immune Response? Insects, 12(6), 497.Pees, B., Yang, W., Zárate-Potes, A., Schulenburg, H., & Dierking, K. (2016). High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. Journal of innate immunity, 8(2), 129-142.Xia, X., You, M., Rao, X.-J., & Yu, X.-Q. (2018). Insect C-type lectins in innate immunity. Developmental & Comparative Immunology, 83, 70-79.Cao, X.-T., Pan, X.-Y., Sun, M., Liu, Y., & Lan, J.-F. (2021). Hepatopancreas-Specific Lectin Participates in the Antibacterial Immune Response by Regulating the Expression of Antibacterial Proteins. Frontiers in Immunology, 12, 2331.Wang, L., Huang, M., Zhang, H., & Song, L. (2011). The immune role of C-type lectins in molluscs. Invertebrate Survival Journal, 8(2), 241-246.Hanington, P. C., Forys, M. A., Dragoo, J. W., Zhang, S.-M., Adema, C. M., & Loker, E. S. (2010). Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection. Proceedings of the National Academy of Sciences, 107(49), 21087-21092.Li, T., Wu, L., Jin, M., Ma, F., Huang, X., & Ren, Q. (2017). Function of two ficolin-like proteins in innate immune defense of the oriental river prawn, Macrobrachium nipponense. Fish & shellfish immunology, 68, 488-499.Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs. 2021 Apr 27;19(5):246. doi: 10.3390/md19050246. PMID: 33925365; PMCID: PMC8146879.Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–8.Selvaraj C, Abhirami R, Vijayakumar R, Alfaiz FA, Singh SK. Immunological insights of selectins in human disease mechanism. Adv Protein Chem Struct Biol. 2022;129:163–88.Gupta, G. S. (2012). Lectins: an overview. In Animal Lectins: Form, Function and Clinical Applications (pp. 3-25). Springer.Bonnardel, F., Kumar, A., Wimmerova, M., Lahmann, M., Perez, S., Varrot, A., . . . Imberty, A. (2019). Architecture and evolution of blade assembly in β-propeller lectins. Structure, 27(5), 764-775.Bonnardel, F., Mariethoz, J., Pérez, S., Imberty, A., & Lisacek, F. (2021). LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 49(D1), D1548- D1554.Bonnardel, F., Perez, S., Lisacek, F., & Imberty, A. (2020). Structural database for lectins and the UniLectin web platform. In Lectin Purification and Analysis (pp. 1-14). Springer.Fujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Lectins, 579-606.Kumar, K. K., Chandra, K. L. P., Sumanthi, J., Reddy, G. S., Shekar, P. C., & Reddy, B. V. R. (2012). Biological role of lectins: A review. Journal of orofacial sciences, 4(1), 20.Lannoo, N., & Van Damme, E. J. M. (2010). Nucleocytoplasmic plant lectins. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800(2), 190-201.Cruz, P. H., Campos, E. P., Martínez, L. M., Ortiz, B., & Martínez, G. (2005). Las lectinas vegetales como modelo de estudio de las interacciones proteína- carbohidrato. Revista de Educación Bioquímica, 24(1), 21-27.Van Damme, E. J. M., Lannoo, N., & Peumans, W. J. (2008). Plant lectins. Advances in botanical research, 48, 107-209Nasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm PG, et al. (2017). Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes. ACS Chem Biol; 12(5):1288-96Shirai, T., Matsui, Y., Shionyu-Mitsuyama, C., Yamane, T., Kamiya, H., Ishii, C., . . . Muramoto, K. (2002). Crystal structure of a conger eel galectin (Congerin II) at 1.45 Å resolution: Implication for the accelerated evolution of a new ligand-binding site following gene duplication. Journal of molecular biology, 321(5), 879-889.Nonaka, Y., Ogawa, T., Yoshida, H., Shoji, H., Nishi, N., Kamitori, S., & Nakamura, T. (2015). Crystal structure of a Xenopus laevis skin proto-type galectin, close to but distinct from galectin-1. Glycobiology, 25(7), 792-803.Bianchet, M. A., Odom, E. W., Vasta, G. R., & Amzel, L. M. (2010). Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis). Journal of molecular biology, 401(2), 239-252.Zelensky, A. N., & Gready, J. E. (2005). The C‐type lectin‐like domain superfamily. The FEBS journal, 272(24), 6179-6217.The Biophilia Hypothesis, Stephen R. Kellert and Edward O. Wilson. 1993. Island Press, Washington, DC. 484 pages. ISBN: 1-55963-148-1. http://dx.doi.org/101177/027046769501500125 (Internet).Crespi Abril, A. C., & Rubilar Panasiuk, C. T. (2018). Etica e invertebrados: análisis de los casos de los cefalópodos y equinodermos. https://ri.conicet.gov.ar/handle/11336/95031D. Chapman. Numbers of Living Species in Australia and the World - DAWE (Internet). Australian Biodiversity Information Services, Toowoomba, Australia. 2009 (cited 2022 Apr 27). Available from: https://www.awe.gov.au/science- research/abrs/publications/other/numbers-living-species/executive-summaryMoreno, A. G., Outerelo, R., Ruiz, E., Aguirre, J. I., Almodóvar, A., Alonso, J. A., & Cano, J. (2011). Prácticas de Zoología. Estudio y diversidad de los Moluscos. Disección de mejillón. REDUCA (Biología), 4(2). - http://revistareduca.es/index.php/biologia/article/view/837Nevalainen TJ, Quinn RJ, Hooper JNA. Phospholipase A2 in porifera. Comp Biochem Physiol Part B Biochem Mol Biol. 2004 Mar 1;137(3):413–20.Becerra AJJ. Evolução do veneno em cnidários. 2021. https://repositorio.usp.br/item/003048273Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel). 2015;7(6):2251-2271. Published 2015 Jun 18. doi:10.3390/toxins7062251Arroyo-Vega, C., & Lechuga-Granados, A. (2021). Equinodermos de Isla La Roqueta de Acapulco, Guerrero, México. Revista de Biología Tropical, 69(Suppl. 1), 265-271.Ghyoot, M., Dubois, P., & Jangoux, M. (2004). The venom apparatus of the globiferous pedicellariae of the toxopneustid Sphaerechinus granularis (Echinodermata, Echinoida): Fine structure and mechanism of venom discharge. Zoomorphology, 114, 73-82.Moluscos | DIGITAL.CSIC (Internet). (cited 2022 Feb 26). Available from: https://digital.csic.es/handle/10261/100133Liu F, Li Y, Yu H, Zhang L, Hu J, Bao Z, Wang S. MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca. Nucleic Acids Res. 2021 Jan 8;49(D1):D988-D997. doi: 10.1093/nar/gkaa918. Erratum in: Nucleic Acids Res. 2021 Jan 8;49(D1):D1556. PMID: 33219670; PMCID: PMC7779068.Buczek O, Bulaj G, Olivera BM. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci. 2005 Dec;62(24):3067–79.Aguilar MB, Luna-Ramírez KS, Echeverría D, Falcón A, Olivera BM, Heimer de la Cotera EP, et al. Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the venom of Conus spurius with activity in mice and mollusks. Peptides. 2008 Feb 1;29(2):186–95.Schierwater B (Bernd), DeSalle R. Invertebrate zoology : a tree of life approach.Francke OF. Biodiversity of Arthropoda (Chelicerata: Arachnida ex Acari) in Mexico. Rev Mex Biodivers. 2014;85(SUPPL.).Lourenço WR. The coevolution between telson morphology and venom glands in scorpions (Arachnida). J Venom Anim Toxins Incl Trop Dis. 2020;26:e20200128. Published 2020 Oct 9. doi:10.1590/1678-9199-JVATITD-2020-0128Polis GA. The Biology of scorpions. Stanford Calif.: Stanford University Press; 1990. 587 p.van der Meijden A, Kleinteich T. A biomechanical view on stinger diversity in scorpions. J Anat. 2017 Apr 1;230(4):497–509.Caracterización de péptidos antimicrobianos derivados de SPC13 presente en el veneno de Scolopendra polymorpha (Internet). (cited 2022 Feb 26). Available from: http://riaa.uaem.mx/handle/20.500.12055/1765Frazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs. 2012 Aug;10(8):1812-51. doi: 10.3390/md10081812. Epub 2012 Aug 22. PMID: 23015776; PMCID: PMC3447340.Six DA, Dennis EA. The expanding superfamily of phospholipase A2 enzymes: Classification and characterization. Biochim Biophys Acta - Mol Cell Biol Lipids. 2000 Oct 31;1488(1–2):1–19.Efecto toxicológico y proteómica del veneno de la víbora de cascabel de la Isla Coronado Sur (Crotalus helleri caliginis), Baja California, México. ttp://hdl.handle.net/11317/2212Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005 Jun 15;45(8):969-85. doi: 10.1016/j.toxicon.2005.02.012. Epub 2005 Apr 9. PMID: 15922769.Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol. 2005 May;88(1):91-142. doi: 10.1016/j.pbiomolbio.2004.01.009. PMID: 15561302.Fedorov S, Dyshlovoy S, Monastyrnaya M, Shubina L, Leychenko E, Kozlovskaya E, Jin JO, Kwak JY, Bode AM, Dong Z, Stonik V. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon. 2010 Apr 1;55(4):811-7. doi: 10.1016/j.toxicon.2009.11.016. Epub 2009 Nov 26. PMID: 19944712; PMCID: PMC2823821.Lucía García-Ortega; Jorge Alegre-Cebollada; Sara García-Linares; Marta Bruix; Álvaro Martínez-del-Pozo; José G. Gavilanes (2011). The behavior of sea anemone actinoporins at the water–membrane interface. , 1808(9), 0–2288. doi:10.1016/j.bbamem.2011.05.012Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010 May;235(1):35- 54. doi: 10.1111/j.0105-2896.2010.00896.x. PMID: 20536554Castañeda O, Harvey AL. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels. Toxicon. 2009 Dec 15;54(8):1119-24. doi: 10.1016/j.toxicon.2009.02.032. Epub 2009 Mar 6. PMID: 19269305.Chi V, Pennington MW, Norton RS, et al. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012;59(4):529- 546. doi:10.1016/j.toxicon.2011.07.016.Béchohra L, Laraba-Djebari F, Hammoudi-Triki D. Cytotoxic activity of Androctonus australis hector venom and its toxic fractions on human lung cancer cell line. J Venom Anim Toxins Incl Trop Dis. 2016 Oct 22;22:29. doi: 10.1186/s40409-016-0085-4. PMID: 27790250; PMCID: PMC5075196.Ghavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ, Gibson SB, Booy EP, Naderi-Manesh H, Los M. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med. 2008 Jun;12(3):1005-22. doi: 10.1111/j.1582- 4934.2008.00129.x. PMID: 18494941; PMCID: PMC4401144.Reyes-Vega DF, Bermúdez JF, Buitrago-Toro K, Jiménez-Salazar S, Zamora-Suárez A. Aspectos epidemiológicos, clínicos y paraclínicos del accidente escorpiónico en el Hospital Universitario de Neiva, Colombia. Iatreia (Internet). 18 de noviembre de 2020 (citado 30 de mayo de 2022);34(4):295-306. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/342223Borges, A., Graham, M. R., Cândido, D. M., & Pardal, P. (2021). Amazonian scorpions and scorpionism: integrating toxinological, clinical, and phylogenetic data to combat a human health crisis in the world's most diverse rainfores. The journal of venomous animals and toxins including tropical diseases, 27, e20210028. https://doi.org/10.1590/1678-9199-JVATITD-2021-0028Humboldt-Paputsachis, Ciro, Fernandez, Gil Patrick. Morphological and morphometric analysis of Tityus (Tityus) sorataensis Kraepelin 1911 (Escorpionida: Buthidae) the two Andean mesothermic valleys, Quime and Cheje, La Paz-Bolivia. J. Selva Andina Res. Soc. (online). 2021, vol.12, n.1, pp.3-20. ISSN 2072-9294.Mendoza-Tobar LL, Meza-Cabrera IA, Sepúlveda-Arias JC, Guerrero-Vargas JA. Comparison of the Scorpionism Caused by Centruroidesmargaritatus, Tityuspachyurus and Tityus n. sp. aff. metuendus Scorpion Venoms in Colombia. Toxins (Basel). 2021 Oct 25;13(11):757. doi: 10.3390/toxins13110757. PMID: 34822541; PMCID: PMC8625436.Schwab, A., J. Reinhardt, S. W. Schneider, B. Gassner and B. Schuricht (1999). "K(+) channel-dependent migration of fibroblasts and human melanoma cells." Cell Physiol Biochem 9(3): 126-132.Escobar, E.; Velásquez, L.; Rivera, C. Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (Gervais, 1841) (Scorpiones: Buthidae). 2003. Rev. Perú. Biol. 10(2): 217-220Kawachi, T.; Miyashita, M.; Nakagawa, Y.; Miyagawa, H. Isolation and Characterization of Anti-Isect β-Toxin from venom the Scorpion Isometrus maculatus. Biosci. Biotechnol. 2013. Biochem. 77(1): 205-507.Lopez-Giraldo, Andrea Estefania; Olamendi-Portugal, Timoteo; Riaño-Umbarila, Lidia; Becerril, Baltazar; Possani, Lourival D.; Delepierre, Muriel; del Rio Portilla, Federico (2020). The three-dimensional structure of the toxic peptide Cl13 from the scorpion Centruroides limpidus. Toxicon, 184(), 158–166. doi:10.1016/j.toxicon.2020.06.011Schwab, A., J. Reinhardt, S. W. Schneider, B. Gassner and B. Schuricht (1999). "K(+) channel-dependent migration of fibroblasts and human melanoma cells." Cell Physiol Biochem 9(3): 126-132.Das Gupta, S., B. Halder, A. Gomes and A. Gomes (2013). "Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells." Life Sci 93(7): 271-276Mackessy S. Handbook of Venoms and Toxins of Reptiles. Mackessy S, editor. Boca Raton, Fl: CRC Press; 2010Beltrán-Vidal J, Carcamo-Noriega E, Pastor N, Zamudio-Zuñiga F, Guerrero-Vargas JA, Castaño S, Possani LD, Restano-Cassulini R. Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel. Toxins (Basel). 2021 Jun 8;13(6):407. doi: 10.3390/toxins13060407. PMID: 34201318; PMCID: PMC8273696Santibáñez-López CE, Cid-Uribe JI, Batista CV, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016 Dec 9;8(12):367. doi: 10.3390/toxins8120367. PMID: 27941686; PMCID: PMC5198561.Romero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel). 2018;10(9):359. Published 2018 Sep 5. doi:10.3390/toxins10090359Almeida DD, Scortecci KC, Kobashi LS, Agnez-Lima LF, Medeiros SR, Silva-Junior AA, Junqueira-de-Azevedo Ide L, Fernandes-Pedrosa Mde F. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics. 2012 Aug 1;13:362. doi: 10.1186/1471-2164-13-362. PMID: 22853446; PMCID: PMC3444934.Rendón-Anaya, M., Camargos, T. S., & Ortiz, E. (2015). Scorpion venom gland transcriptomics. Scorpion Venoms, 531-545.Barona J, Otero R, Núñez V. Aspectos toxinológicos e inmunoquímicos del veneno del escorpión Tityus pachyurus Pocock de Colombia: capacidad neutralizante de antivenenos producidos en Latinoamérica (Toxicological and immunological aspects of scorpion venom (Tytius pachyurus): neutralizing capacity of antivenoms produced in Latin America). Biomedica. 2004 Mar;24(1):42-9. Spanish. PMID: 15239600Barona J, Batista CVF, Zamudio FZ, Gomez-Lagunas F, Wanke E, Otero R, et al. Proteomic analysis of the venom and characterization of toxins specific for Na+- and K+-channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta - Proteins Proteomics. 2006;1764(1):76–84Lourenço WR, Leguin E-A. The true identity of Scorpio (Atreus) obscurus Gervais, 1843 (Scorpiones, Buthidae). Euscorpius. 2008;2008(75):1–9.de Oliveira UC, Nishiyama MY Jr, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de- Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One. 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739. PMID: 29561852; PMCID: PMC5862453.Almeida FM, Pimenta AM, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, Diniz CR, De Lima ME. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon. 2002 Jul;40(7):1041-5. doi: 10.1016/s0041- 0101(02)00084-3. PMID: 12076659.Fletcher PL Jr, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. J Biol Chem. 2010 Mar 5;285(10):7405-16. doi: 10.1074/jbc.M109.028365. Epub 2009 Dec 21. PMID: 20026600; PMCID: PMC2844189.Pimenta AM, Stöcklin R, Favreau P, Bougis PE, Martin-Eauclaire MF. Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Commun Mass Spectrom. 2001;15(17):1562-72. doi: 10.1002/rcm.415. PMID: 11713783.Becerril B, Marangoni S, Possani LD. Toxins and genes isolated from scorpions of the genus Tityus. Toxicon. 1997 Jun;35(6):821-35. doi: 10.1016/s0041-0101(96)00198-5. PMID: 9241777.Chippaux JP, Goyffon M. Epidemiology of scorpionism: a global appraisal. Acta Trop. 2008 Aug;107(2):71-9. doi: 10.1016/j.actatropica.2008.05.021. Epub 2008 Jun 5. PMID: 18579104.Bucaretchi F, Fernandes LC, Fernandes CB, Branco MM, Prado CC, Vieira RJ, De Capitani EM, Hyslop S. Clinical consequences of Tityus bahiensis and Tityus serrulatus scorpion stings in the region of Campinas, southeastern Brazil. Toxicon. 2014 Oct;89:17-25. doi: 10.1016/j.toxicon.2014.06.022. Epub 2014 Jul 8. PMID: 25011046.Nencioni AL, Lourenço GA, Lebrun I, Florio JC, Dorce VA. Central effects of Tityus serrulatus and Tityus bahiensis scorpion venoms after intraperitoneal injection in rats. Neurosci Lett. 2009 Oct 9;463(3):234-8. doi: 10.1016/j.neulet.2009.08.006. Epub 2009 Aug 5. PMID: 19664683.de Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61. doi: 10.1016/j.toxicon.2014.12.013. Epub 2014 Dec 29. PMID: 25553591.Alvarenga ER, Mendes TM, Magalhaes BF, Siqueira FF, Dantas AE, Barroca TM, et al. Transcriptome analysis of the <i>Tityus serrulatus</i> scorpion venom gland. Open J Genet. 2012;02(04):210–20.Becerril B, Corona M, Coronas FI, Zamudio F, Calderon-Aranda ES, Fletcher PL Jr, Martin BM, Possani LD. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus. Biochem J. 1996 Feb 1;313 ( Pt 3)(Pt 3):753-60. doi: 10.1042/bj3130753. PMID: 8611151; PMCID: PMC1216974.Sameh Sarray, Jose Luis, Mohamed El Ayeb and Naziha Marrakchi (2013). Snake Venom Peptides: Promising Molecules with Anti-Tumor Effects, Bioactive Food Peptides in Health and Disease Blanca Hernández-Ledesma, IntechOpen, DOI: 10.5772/51263.J.R. Almeida, L.M. Resende, R.K. Watanabe, V.C. Carregari, et al. Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents (2017). Curr Med Chem. 2017;24(30):3254-3282.Nagasaka K, Nakagawa H, Satoh F, Hosotani T, Yokoigawa K, Sakai H, et al. A novel cytotoxic protein, Karatoxin, from the dorsal spines of the redfin velvetfish, Hypodytes rubripinnis. Toxin Rev. 2009;28(4):260–5.de Santana Evangelista K, Andrich F, de Rezende FF, Niland S, Cordeiro MN, Horlacher T, et al. Plumieribetin, a fish lectin homologous to mannose-binding B-type lectins, inhibits the collagen-binding α1β1 integrin. J Biol Chem. 2009;284(50):34747–59.Andrich F, Richardson M, Naumann GB, Cordeiro MN, Santos A V., Santos DM, et al. Identification of C-type isolectins in the venom of the scorpionfish Scorpaena plumieri. Toxicon. 2015;95:67–71.Lopes-Ferreira M, Magalhães GS, Fernandez JH, Junqueira-De-Azevedo IDLM, Le HoP, Lima C, et al. Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri. Biochimie. 2011;93(6):971– 80Ishizuka EK, Ferreira MJ, Grund LZ, Coutinho EMM, Komegae EN, Cassado AA, et al. Role of interplay between IL-4 and IFN-γ in the in regulating M1 macrophage polarization induced by Nattectin. Int Immunopharmacol. 2012;14(4):513–22.Qu Y, Liang S, Ding J, Liu X, Zhang R, Gu X. Proton nuclear magnetic resonance studies on huwentoxin-I from the venom of the spider Selenocosmia huwena: 2. Three-dimensional structure in solution. J Protein Chem. 1997 Aug;16(6):565-74. doi: 10.1023/a:1026314722607. PMID: 9263120.Hans-Christian Siebert; Shan-Yun Lu; Rainer Wechselberger; Karin Born; Thomas Eckert; Songping Liang; Claus-Wilhelm von der Lieth; Jesús Jiménez-Barbero; Roland Schauer; Johannes F.G. Vliegenthart; Thomas Lütteke; Tibor Kožár (2009). A lectin from the Chinese bird-hunting spider binds sialic acids. , 344(12), 1515–1525. doi:10.1016/j.carres.2009.06.002 SartimHatakeyama T, Ichise A, Unno H, Goda S, Oda T, Tateno H, Hirabayashi J, Sakai H, Nakagawa H. Carbohydrate recognition by the rhamnose-binding lectin SUL-I with a novel three-domain structure isolated from the venom of globiferous pedicellariae of the flower sea urchin Toxopneustes pileolus. Protein Sci. 2017 Aug;26(8):1574-1583. doi: 10.1002/pro.3185. Epub 2017 May 12. PMID: 28470711; PMCID: PMC5521583.Zobel-Thropp, P. A., Correa, S. M., Garb, J. E., & Binford, G. J. (2014). Spit and venom from scytodes spiders: a diverse and distinct cocktail. Journal of proteome research, 13(2), 817-835.Lino-López GJ, Valdez-Velázquez LL, Corzo G, Romero-Gutiérrez MT, Jiménez- Vargas JM, Rodríguez-Vázquez A, Vazquez-Vuelvas OF, Gonzalez-Carrillo G. Venom gland transcriptome from Heloderma horridum horridum by high-throughput sequencing. Toxicon. 2020 Jun;180:62-78. doi: 10.1016/j.toxicon.2020.04.003. Epub 2020 Apr 10. PMID: 32283106.Fry, B. G., Undheim, E. A., Ali, S. A., Jackson, T. N., Debono, J., Scheib, H., ... & Sunagar, K. (2013). Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Molecular & Cellular Proteomics, 12(7), 1881-1899.Walker, A. A., Mayhew, M. L., Jin, J., Herzig, V., Undheim, E. A., Sombke, A., ... & King, G. F. (2018). The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nature communications, 9(1), 1-10.Gerardo Raul Vasta; Elias Cohen (1984). Sialic acid-binding lectins in the “whip scorpion” (Mastigoproctus giganteus) serum. , 43(3), 0–342. doi:10.1016/0022- 2011(84)90078-8Ahmed H, Anjaneyulu G, Chatterjee BP. Serological characterization of humoral lectin from Heterometrus granulomanus scorpion hemolymph. Dev Comp Immunol. 1986 Summer;10(3):295-304. doi: 10.1016/0145-305x(86)90020-0. PMID: 3770265Ahmed H, Chatterjee BP, Kelm S, Schauer R. Purification of a sialic acid-specific lectin from the Indian scorpion Heterometrus granulomanus. Biol Chem Hoppe Seyler. 1986 Jun;367(6):501-6. doi: 10.1515/bchm3.1986.367.1.501. PMID: 3741626.R. Viswambari Devi, M. R. Basilrose & P. D. Mercy (2010) Prospect for lectins in arthropods, Italian Journal of Zoology, 77:3, 254-260, DOI: 10.1080/11250003.2010.492794Nunes Edos S, de Souza MA, Vaz AF, Santana GM, Gomes FS, Coelho LC, Paiva PM, da Silva RM, Silva-Lucca RA, Oliva ML, Guarnieri MC, Correia MT. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp Biochem Physiol B Biochem Mol Biol. 2011 May;159(1):57-63. doi: 10.1016/j.cbpb.2011.02.001. Epub 2011 Feb 18. PMID: 21334449.Castanheira, L. E., de Oliveira Nunes, D. C., Cardoso, T. M., de Souza Santos, P., Goulart, L. R., Rodrigues, R. S., ... & Rodrigues, V. M. (2013). Biochemical and functional characterization of a C-type lectin (BpLec) from Bothrops pauloensis snake venom. International journal of biological macromolecules, 54, 57-64.Samah, Saoud; Fatah, Chérifi; Jean-Marc, Berjeaud; Safia, Kellou-Taîri; Fatima, Laraba-Djebari (2017). Purification and characterization of Cc-Lec, C-type lactose- binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. International Journal of Biological Macromolecules, 102(), 336–350. doi:10.1016/j.ijbiomac.2017.04.018de Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61. doi: 10.1016/j.toxicon.2014.12.013. Epub 2014 Dec 29. PMID: 25553591.de Oliveira UC, Nishiyama MY Jr, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One. 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739. PMID: 29561852; PMCID: PMC5862453.Santibáñez-López CE, Cid-Uribe JI, Batista CV, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016;8(12):367. Published 2016 Dec 9. doi:10.3390/toxins8120367Ma, Y., Zhao, R., He, Y. et al. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics 10, 290 (2009). https://doi.org/10.1186/1471-2164-10-290Okino N, Kawabata S, Saito T, Hirata M, Takagi T, Iwanaga S;, J Biol Chem. 1995;270:31008-31015.: Purification, (characterization, and cDNA cloning of a 27- kDa lectin (L10) from horseshoe crab hemocytes. PUBMED:8537358 EPMC:8537358Beisel HG, Kawabata S, Iwanaga S, Huber R, Bode W;, EMBO J. 1999;18:2313-2322.: Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. PUBMED:10228146 EPMC:10228146Hayes ML, Eytan RI, Hellberg ME;, BMC Evol Biol. 2010;10:150.: High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2). PUBMED:20482872 EPMC:20482872Ju L, Zhang S, Liang Y, Sun X. Identification, expression and antibacterial activity of a tachylectin-related homolog in amphioxus Branchiostoma belcheri with implications for involvement of the digestive system in acute phase response. Fish Shellfish Immunol. 2009 Feb;26(2):235-42. doi: 10.1016/j.fsi.2008.10.015. Epub 2008 Nov 19. PMID: 19063974.Angthong P, Roytrakul S, Jarayabhand P, Jiravanichpaisal P. Characterization and function of a tachylectin 5-like immune molecule in Penaeus monodon. Dev Comp Immunol. 2017 Nov;76:120-131. doi: 10.1016/j.dci.2017.05.023. Epub 2017 Jun 3. PMID: 28587859.Kawabata S, Iwanaga S. Role of lectins in the innate immunity of horseshoe crab. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):391-400. doi: 10.1016/s0145-305x(99)00019- 1. PMID: 10426430.Kawabata S, Beisel HG, Huber R, Bode W, Gokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S. Role of tachylectins in host defense of the Japanese horseshoe crab Tachypleus tridentatus. Adv Exp Med Biol. 2001;484:195-202. doi: 10.1007/978-1-4615-1291-2_18. PMID: 11418985.de Paula Santos-da-Silva A, Candido DM, Nencioni ALA, Kimura LF, Prezotto-Neto JP, Barbaro KC, Chalkidis HM, Dorce VAC. Some pharmacological effects of Tityus obscurus venom in rats and mice. Toxicon. 2017 Feb;126:51-58. doi: 10.1016/j.toxicon.2016.12.008. Epub 2016 Dec 22. PMID: 28012802.Oukkache, N., Chgoury, F., Lalaoui, M. et al. Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Incl Trop Dis 19, 5 (2013). https://doi.org/10.1186/1678-9199-19-5Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76-85. doi: 10.1016/0003-2697(85)90442-7. Erratum in: Anal Biochem 1987 May 15;163(1):279. PMID: 3843705.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0. PMID: 5432063.Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368-79. doi: 10.1016/0003-2697(87)90587-2. PMID: 2449095.Hermanson, G.T., Mallia, A.K., Smith, P.K. Immobilized Affinity Ligand Techniques. Academic Press, 1992. 454p.Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. doi: 10.1093/nar/gky427. PMID: 29788355; PMCID: PMC6030848.Escobar, E., Tincopa, R., & Ochoa, J. A. (2013). Estudio bioquímico del veneno de Tityus kaderkai (Scorpiones: Buthidae) con notas sobre su distribución y hábitat en el Perú. Revista peruana de biología, 20(2), 151-158.Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis. 2021 Jul 9;27:e20200173. doi: 10.1590/1678- 9199-JVATITD-2020-0173. PMID: 34290759; PMCID: PMC8277192.Nagdalian, A. A., Pushkin, S. V., Povetkin, S., Nikolaevich, K., Egorovna, M., Marinicheva, M. P., & Lopteva, M. S. (2018). Migalomorphic spiders venom: extraction and investigation of biological activity. Entomol Appl Sci Lett, 5(3), 60-70.Tincopa Marca, L. R. Estudio bioquímico del veneno del escorpión Tityus sp.(aff. T. silvestris Pocock).Universidad Mayor de San Marcos, Fcultad de Ciencias Biológicas, 2007.Tesis de Pregrado.Escobar, E., Velásquez, L., & Rivera, C. (2003). Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (Gervais, 1841)(Scorpiones: Buthidae). Revista peruana de biología, 10(2), 209-216.Nasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm PG, et al. (2017). Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes. ACS Chem Biol; 12(5):1288-96Rougé P, Peumans WJ, Van Damme EJM, Barre A, Singh T, Wu JH, Wu AM. Structure-function relationships of plant lectins that specifically recognize T and Tn antigens. Wu AM (Ed). En The molecular Immunology of complex carbohydrates, 3rd ed. Springer. 2011; 157-70.Kasai, Kenichi (2021). Frontal affinity chromatography: An excellent method of analyzing weak biomolecular interactions based on a unique principle. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865(1), 129761–. doi:10.1016/j.bbagen.2020.129761Hirabayashi, Jun (2003). (Methods in Enzymology) Recognition of Carbohydrates in Biological Systems, Part A: General Procedures Volume 362 || Frontal Affinity Chromatography as a Tool for Elucidation of Sugar Recognition Properties of Lectins. , (), 353–368. doi:10.1016/S0076-6879(03)01025-5Tania Cortázar. Estudio del efecto de lectinas vegetales sobre los procesos de migración y proliferación celular en queratinocitos epidérmicos. Tesis de Doctorado en ciencias Bioquímica. Facultad de Ciencias. Universidad Nacional de Colombia. 2019.Almanza M, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognises blood group H determinants. Arch Biochem Biophys. 2004 Sep 15;429(2):180-90. doi: 10.1016/j.abb.2004.06.010. PMID: 15313221.Betancourt, O.H., Hernández, I.C., Huerta, E.I., Labrada, A.R., Ramos, J., & Pargas, A.R. (2009). Evaluación de la toxicidad in vitro del veneno del alacrán Rophalurus junceus a través de un ensayo celular. Rev Cubana Invest Biomed 2009; 28(1) 1-11.Wiezel GA, Rustiguel JK, Morgenstern D, Zoccal KF, Faccioli LH, Nonato MC, Ueberheide B, Arantes EC. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie. 2019 Aug;163:33-49. doi: 10.1016/j.biochi.2019.05.009. Epub 2019 May 10. PMID: 31078582.Almeida, José R.; Mendes, Bruno; Patiño, Ricardo S.P.; Pico, José; Laines, Johanna; Terán, María; Mogollón, Noroska G.S.; Zaruma-Torres, Fausto; Caldeira, Cleópatra A. da S.; da Silva, Saulo L. (2020). Assessing the stability of historical and desiccated snake venoms from a medically important Ecuadorian collection. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 230(), 108702–. doi:10.1016/j.cbpc.2020.108702Lü, S., Liang, S. & Gu, X. Three-Dimensional Structure of Selenocosmia huwena Lectin-I (SHL-I) from the Venom of the Spider Selenocosmia huwena by 2D-NMR. J Protein Chem 18, 609–617 (1999). https://doi.org/10.1023/A:1020663619657Wang X, Gao B, Zhu S. Exon Shuffling and Origin of Scorpion Venom Biodiversity. Toxins (Basel). 2016;9(1):10. Published 2016 Dec 26. doi:10.3390/toxins9010010Tomoyuki KAWACHI, Masahiro MIYASHITA, Yoshiaki NAKAGAWA, Hisashi MIYAGAWA, Isolation and Characterization of an Anti-Insect β-Toxin from the Venom of the Scorpion Isometrus maculatus, Bioscience, Biotechnology, and Biochemistry, Volume 77, Issue 1, 23 January 2013, Pages 205–207, https://doi.org/10.1271/bbb.120697Álvarez, A. M., Álvarez, M., Perdomo, L., & Rodríguez-Acosta, A. (2021). Clinical cardiac alterations and hemostatic toxicities caused by scorpion (Tityus discrepans) venom and its purified fractions on zebrafish (Danio rerio) larvae. Invest Clin 62(4): 325 - 338, 2021 https://doi.org/10.22209/IC.v62n4a04Borges, A., Lomonte, B., Angulo, Y., de Patiño, H. A., Pascale, J. M., Otero, R., ... & Caro-Lopez, J. A. (2020). Venom diversity in the Neotropical scorpion genus Tityus: Implications for antivenom design emerging from molecular and immunochemical analyses across endemic areas of scorpionism. Acta Tropica, 204,10536. https://doi.org/10.1016/j.actatropica.2020.105346 10.1016/j.actatropica.2020.105346Cummings, R. D., Darvill, A. G., Etzler, M. E., & Hahn, M. G. (2017). Glycan- Recognizing Probes as Tools. In Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.048Jang, H., Lee, D.-H., Kang, H. G., & Lee, S. J. (2020). Concanavalin A targeting N- linked glycans in spike proteins influence viral interactions. Dalton Transactions, 49(39), 13538–13543. https://doi.org/10.1039/D0DT02932GWilson IBH. Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol. 2002;12(5):569–77.Melgarejo LM, Vega N, Pérez G. Isolation and characterization of novel lectins from Canavalia ensiformis DC and Dioclea grandiflora Mart. ex Benth. seeds. Brazilian J Plant Physiol. 2005;17(3):315–24Medeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn‐specific lectin from Salvia sclarea seeds. FEBS J. 2000;267(5):1434–40.Dam T.K., Roy, R., Das, S.K., Oscarson, S., Brewer, C.F. (2000). Binding of multivalent carbohydrates to Concanavalin A and Dioclea grandiflora lectin. J Biol Chem, 275:14223 –30Kawabata S., Shibata T. (2020) Purification and Assays of Tachylectin-5. In: Hirabayashi J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_27Kawabata SI, Shibata T. Purification and Assays of Tachylectin-2. Methods Mol Biol. 2020;2132:309-316. doi: 10.1007/978-1-0716-0430-4_30. PMID: 32306338.Gokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S, Kawabata S. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10086-91. doi: 10.1073/pnas.96.18.10086. PMID: 10468566; PMCID: PMC17846.Ward, M. J., Ellsworth, S. A., & Rokyta, D. R. (2018). Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon, 142, 14- 29.Rokyta, D. R., & Ward, M. J. (2017). Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon, 128, 23-37.Kairies, N., Beisel, H.-G., Fuentes-Prior, P., Tsuda, R., Muta, T., Iwanaga, S., . . . Kawabata, S.-i. (2001). The 2.0-Å crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proceedings of the National Academy of Sciences, 98(24), 13519-13524.BibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82950/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1037633361.2022.pdf1037633361.2022.pdfTesis de maestría en lectinas en el veneno de escorpiónapplication/pdf4770965https://repositorio.unal.edu.co/bitstream/unal/82950/2/1037633361.2022.pdfc4e02bcc2e361083575d3b6590605a44MD52THUMBNAIL1037633361.2022.pdf.jpg1037633361.2022.pdf.jpgGenerated Thumbnailimage/jpeg6122https://repositorio.unal.edu.co/bitstream/unal/82950/3/1037633361.2022.pdf.jpg266a51eb1a563173d00ea7d8acb26508MD53unal/82950oai:repositorio.unal.edu.co:unal/829502023-08-13 23:04:03.457Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |