Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental
Ilustraciones, mapas
- Autores:
-
Molina Salazar, David Leonardo
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/87060
- Palabra clave:
- 620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra::552 - Petrología
Petrología
Ondas sismicas
Análisis espectral
Análisis de Fourier
HSVR
SSR
Matriz de Covarianza
Polarización de Ondas Sísmicas
H/V Spectral Ratio (HSVR)
Standard Spectral Ratio (SSR)
Covariance Matrix
Seismic Wave Polarization
análisis de covarianza
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_bcf03ce9fac9922d3f85ad8f65c99812 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/87060 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental |
dc.title.translated.eng.fl_str_mv |
Exploration of the Seismic Effect Associated with Wave Polarization in the Instrumented Slopes of Valle de Aburrá, Utilizing Spectral Analysis of Seismic Events and Ambient Noise |
title |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental |
spellingShingle |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental 620 - Ingeniería y operaciones afines 550 - Ciencias de la tierra::552 - Petrología Petrología Ondas sismicas Análisis espectral Análisis de Fourier HSVR SSR Matriz de Covarianza Polarización de Ondas Sísmicas H/V Spectral Ratio (HSVR) Standard Spectral Ratio (SSR) Covariance Matrix Seismic Wave Polarization análisis de covarianza |
title_short |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental |
title_full |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental |
title_fullStr |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental |
title_full_unstemmed |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental |
title_sort |
Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental |
dc.creator.fl_str_mv |
Molina Salazar, David Leonardo |
dc.contributor.advisor.none.fl_str_mv |
Monsalve Mejía, Gaspar |
dc.contributor.author.none.fl_str_mv |
Molina Salazar, David Leonardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Estudios en Geología y Geofísica Egeo Grupo de Investigación en Geotecnia Gigun |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841272 |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines 550 - Ciencias de la tierra::552 - Petrología |
topic |
620 - Ingeniería y operaciones afines 550 - Ciencias de la tierra::552 - Petrología Petrología Ondas sismicas Análisis espectral Análisis de Fourier HSVR SSR Matriz de Covarianza Polarización de Ondas Sísmicas H/V Spectral Ratio (HSVR) Standard Spectral Ratio (SSR) Covariance Matrix Seismic Wave Polarization análisis de covarianza |
dc.subject.lemb.none.fl_str_mv |
Petrología Ondas sismicas Análisis espectral Análisis de Fourier |
dc.subject.proposal.none.fl_str_mv |
HSVR SSR |
dc.subject.proposal.spa.fl_str_mv |
Matriz de Covarianza Polarización de Ondas Sísmicas |
dc.subject.proposal.eng.fl_str_mv |
H/V Spectral Ratio (HSVR) Standard Spectral Ratio (SSR) Covariance Matrix Seismic Wave Polarization |
dc.subject.wikidata.none.fl_str_mv |
análisis de covarianza |
description |
Ilustraciones, mapas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-25T13:26:12Z |
dc.date.available.none.fl_str_mv |
2024-10-25T13:26:12Z |
dc.date.issued.none.fl_str_mv |
2024-10-25 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/87060 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/87060 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Amato, A., Azzara, R., Chiarabba, C., Cimini, G. B., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courboulex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, D., & Ripepe, M. (1998). The 1997 Umbria‐Marche, Italy, Earthquake Sequence: A first look at the main shocks and aftershocks. Geophysical Research Letters, 25(15), 2861–2864. https://doi.org/10.1029/98GL51842 Anderson, S., & Nehorai, A. (1996). Analysis of a polarized seismic wave model. IEEE Transactions on Signal Processing, 44(2), 379–386. https://doi.org/10.1109/78.485933 Área Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO. Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437 Área Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO. Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437 Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 Bingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895 Bingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895 Bloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley & Sons. Bulletin of the Seismological Society of America, 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521 Burjanek, J., Fäh, D., Pischiutta, M., Rovelli, A., & Calderoni, G. (2014). Site effects at sites with pronounced topography: overview & recommendations. Carpenter, N. S., Wang, Z., Woolery, E. W., & Rong, M. (2018). Estimating Site Response with Recordings from Deep Boreholes and HVSR: Examples from the Mississippi Embayment of the Central United States. Bulletin of the Seismological Society of America, 108(3A), 1199–1209. https://doi.org/10.1785/0120170156 Caserta, A., Bellucci, F., Cultrera, G., Donati, S., Marra, F., Mele, G., Palombo, B., & Rovelli, A. (2000). Study of site effects in the area of Nocera Umbra (Central Italy) during the 1997 Umbria-Marche seismic sequence. Journal of Seismology, 4, 555– 565. Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling, G. C., Nelson, D. E., Rader, C. M., & Welch, P. D. (1967). What is the fast Fourier transform? Proceedings of the IEEE, 55(10), 1664–1674. https://doi.org/10.1109/PROC.1967.5957 De Medellín, M. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín. Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012). Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G., & Rigano, R. (2009). Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2009JB006393 Earle, P. S., & Shearer, P. M. (1994). Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 84(2), 366–376. https://doi.org/10.1785/BSSA0840020366 Hafez, A. G., Khan, M. T. A., & Kohda, T. (2010). Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digital Signal Processing, 20(3), 715–723. https://doi.org/10.1016/j.dsp.2009.10.002 Hafez, A. G., Khan, T. A., & Kohda, T. (2009). Earthquake onset detection using spectro- ratio on multi-threshold time–frequency sub-band. Digital Signal Processing, 19(1), 118–126. https://doi.org/10.1016/j.dsp.2008.08.003 Hoz Lozano, E. C. de la. (2018). Subspace Detection de la Microsismicidad en el Mar de Mármara. Jurkevics, A. (1988). Polarization analysis of three-component array data. Bulletin of the Seismological Society of America, 78(5), 1725–1743. Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/BSSA0880010228 La Rocca, M. (2004). Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano, Italy. Bulletin of the Seismological Society of America, 94(5), 1850–1867. https://doi.org/10.1785/012003238 Merchant, F. A., Shah, S. K., & Castleman, K. R. (2023). Object Measurement. In Microscope Image Processing (pp. 153–175). Elsevier. https://doi.org/10.1016/B978- 0-12-821049-9.00017-4 Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1). Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, 2656, 1–8. Pischiutta, M. (2010). The polarization of horizontal ground motion: an analysis of possible causes. Pischiutta, M., Salvini, F., Fletcher, J., Rovelli, A., & Ben-Zion, Y. (2012). Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophysical Journal International, 188(3), 1255–1272. https://doi.org/10.1111/j.1365-246X.2011.05319.x Posada, G., Monsalve, G., Hoyos, C. D., Pérez-Hincapié, A. M., & Trujillo-Cadavid, J. C. (2022). Ground accelerations and empirical site classification through H/V response spectral ratio (HVRSR) using historical records from the strong motion network of the Aburrá Valley, Colombia. Soil Dynamics and Earthquake Engineering, 152, 107063. https://doi.org/10.1016/j.soildyn.2021.107063 Predominant-Period Site Classification for Response Spectra Prediction Equations in Italy. Bulletin of the Seismological Society of America, 102(2), 680–695. https://doi.org/10.1785/0120110084 Rigano, R., Cara, F., Lombardo, G., & Rovelli, A. (2008). Evidence for ground motion polarization on fault zones of Mount Etna volcano. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2007JB005574 SIATA. (2023). Generalidades de la Información Red Acelerográfica del Valle de Aburrá. SIMPAD, & Minas, U. N. de C. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín. Spudich, P., Hellweg, M., & Lee, W. H. K. (1996). Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bulletin of the Seismological Society of America, 86(1B), S193–S208. https://doi.org/10.1785/BSSA08601BS193 Trifunac, M. D. (1994). Fourier amplitude spectra of strong motion acceleration: Extension to high and low frequencies. Earthquake Engineering & Structural Dynamics, 23(4), 389–411. https://doi.org/10.1002/eqe.4290230404 Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901 Yazdi, M., Motamed, R., & Anderson, J. G. (2022). A New Set of Automated Methodologies for Estimating Site Fundamental Frequency and Its Uncertainty Using Horizontal-to-Vertical Spectral Ratio Curves. Seismological Research Letters, 93(3), 1721–1736. https://doi.org/10.1785/0220210078 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recursos en línea (125 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Geotecnia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/87060/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/87060/3/1090520236.pdf https://repositorio.unal.edu.co/bitstream/unal/87060/4/1090520236.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 54c2269a6ae4dcf5f09a9698a250fb77 96b9ddd9323f5d42d4df091910a06dd7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089390727626752 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Monsalve Mejía, Gaspar24932fa3561948cfb9d8ea2e55e6c7a8Molina Salazar, David Leonardob5fa8014fa45aa09387659c256cdb165Grupo de Estudios en Geología y Geofísica EgeoGrupo de Investigación en Geotecnia Gigunhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00018412722024-10-25T13:26:12Z2024-10-25T13:26:12Z2024-10-25https://repositorio.unal.edu.co/handle/unal/87060Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, mapasEste estudio aborda cómo la litología, la pendiente y la rigidez del suelo influyen en la polarización de las ondas sísmicas en el Valle de Aburrá. A través de un análisis que combina registros sísmicos, análisis espectrales y matrices de covarianza, se ha logrado una cuantificación de la amplificación sísmica en laderas y una correlación detallada entre las frecuencias de vibración natural del suelo y las características topográficas. El estudio revela que la litología y la pendiente del terreno son factores decisivos en la polarización sísmica, con una tendencia de alineación con la pendiente en laderas pronunciadas y una influencia significativa de la geología subyacente en pendientes más suaves. Además, la rigidez del suelo emerge como un elemento clave, modificando la polarización de las ondas en función de las características topográficas. La investigación aporta a la comprensión teórica de la interacción entre geología, topografía y respuesta sísmica, abriendo caminos para modelos predictivos en ingeniería sísmica y mitigación de riesgos. Los hallazgos subrayan la importancia de considerar de manera integrada la configuración topográfica y la rigidez del suelo para una evaluación precisa de la respuesta sísmica. Este trabajo no solo contribuye al conocimiento en geotecnia y sismología, sino que también proporciona herramientas prácticas para mejorar la prevención y mitigación de desastres naturales, destacando la necesidad de incorporar estos conocimientos en la práctica profesional y la formulación de políticas públicas. (Texto tomado de la fuente)This study addresses how lithology, slope, and soil rigidity influence the polarization of seismic waves in the Valle de Aburrá. Through exhaustive analysis combining seismic records, spectral analyses, and covariance matrices, precise quantification of seismic amplification in slopes and detailed correlation between the natural vibration frequencies of the soil and topographical characteristics have been achieved. The study reveals that lithology and terrain slope are decisive factors in seismic wave polarization, showing a tendency to align with the slope in steep terrains and significant influence from the underlying geology in gentler slopes. Furthermore, soil rigidity emerges as a key element, altering wave polarization depending on topographical features. The research contributes to the theoretical understanding of the interaction between geology, topography, and seismic response, paving the way for predictive models in seismic engineering and risk mitigation. The findings underscore the importance of integrating topographical configuration and soil rigidity for an accurate assessment of seismic response. This work not only contributes to the knowledge in geotechnics and seismology but also provides practical tools for improving the prevention and mitigation of natural disasters, highlighting the need to incorporate this knowledge into professional practice and public policy formulation.MaestríaMagíster en Ingeniería - GeotecniaIngeniería SísmicaIngeniería GeofísicaÁrea Curricular de Ingeniería Civil1 recursos en línea (125 páginas)application/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - GeotecniaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines550 - Ciencias de la tierra::552 - PetrologíaPetrologíaOndas sismicasAnálisis espectralAnálisis de FourierHSVRSSRMatriz de CovarianzaPolarización de Ondas SísmicasH/V Spectral Ratio (HSVR)Standard Spectral Ratio (SSR)Covariance MatrixSeismic Wave Polarizationanálisis de covarianzaExploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambientalExploration of the Seismic Effect Associated with Wave Polarization in the Instrumented Slopes of Valle de Aburrá, Utilizing Spectral Analysis of Seismic Events and Ambient NoiseTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAllen, R. V. (1978). Automatic earthquake recognition and timing from single traces.Amato, A., Azzara, R., Chiarabba, C., Cimini, G. B., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courboulex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, D., & Ripepe, M. (1998). The 1997 Umbria‐Marche, Italy, Earthquake Sequence: A first look at the main shocks and aftershocks. Geophysical Research Letters, 25(15), 2861–2864. https://doi.org/10.1029/98GL51842Anderson, S., & Nehorai, A. (1996). Analysis of a polarized seismic wave model. IEEE Transactions on Signal Processing, 44(2), 379–386. https://doi.org/10.1109/78.485933Área Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO.Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437Área Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO.Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530Bingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895Bingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895Bloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley & Sons.Bulletin of the Seismological Society of America, 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521Burjanek, J., Fäh, D., Pischiutta, M., Rovelli, A., & Calderoni, G. (2014). Site effects at sites with pronounced topography: overview & recommendations.Carpenter, N. S., Wang, Z., Woolery, E. W., & Rong, M. (2018). Estimating Site Response with Recordings from Deep Boreholes and HVSR: Examples from the Mississippi Embayment of the Central United States. Bulletin of the Seismological Society of America, 108(3A), 1199–1209. https://doi.org/10.1785/0120170156Caserta, A., Bellucci, F., Cultrera, G., Donati, S., Marra, F., Mele, G., Palombo, B., & Rovelli, A. (2000). Study of site effects in the area of Nocera Umbra (Central Italy) during the 1997 Umbria-Marche seismic sequence. Journal of Seismology, 4, 555– 565.Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling, G. C., Nelson, D. E., Rader, C. M., & Welch, P. D. (1967). What is the fast Fourier transform? Proceedings of the IEEE, 55(10), 1664–1674. https://doi.org/10.1109/PROC.1967.5957De Medellín, M. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín.Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012).Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G., & Rigano, R. (2009). Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2009JB006393Earle, P. S., & Shearer, P. M. (1994). Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 84(2), 366–376. https://doi.org/10.1785/BSSA0840020366Hafez, A. G., Khan, M. T. A., & Kohda, T. (2010). Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digital Signal Processing, 20(3), 715–723. https://doi.org/10.1016/j.dsp.2009.10.002Hafez, A. G., Khan, T. A., & Kohda, T. (2009). Earthquake onset detection using spectro- ratio on multi-threshold time–frequency sub-band. Digital Signal Processing, 19(1), 118–126. https://doi.org/10.1016/j.dsp.2008.08.003Hoz Lozano, E. C. de la. (2018). Subspace Detection de la Microsismicidad en el Mar de Mármara.Jurkevics, A. (1988). Polarization analysis of three-component array data. Bulletin of the Seismological Society of America, 78(5), 1725–1743.Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/BSSA0880010228La Rocca, M. (2004). Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano, Italy. Bulletin of the Seismological Society of America, 94(5), 1850–1867. https://doi.org/10.1785/012003238Merchant, F. A., Shah, S. K., & Castleman, K. R. (2023). Object Measurement. In Microscope Image Processing (pp. 153–175). Elsevier. https://doi.org/10.1016/B978- 0-12-821049-9.00017-4Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, 2656, 1–8.Pischiutta, M. (2010). The polarization of horizontal ground motion: an analysis of possible causes.Pischiutta, M., Salvini, F., Fletcher, J., Rovelli, A., & Ben-Zion, Y. (2012). Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophysical Journal International, 188(3), 1255–1272. https://doi.org/10.1111/j.1365-246X.2011.05319.xPosada, G., Monsalve, G., Hoyos, C. D., Pérez-Hincapié, A. M., & Trujillo-Cadavid, J. C. (2022). Ground accelerations and empirical site classification through H/V response spectral ratio (HVRSR) using historical records from the strong motion network of the Aburrá Valley, Colombia. Soil Dynamics and Earthquake Engineering, 152, 107063. https://doi.org/10.1016/j.soildyn.2021.107063Predominant-Period Site Classification for Response Spectra Prediction Equations in Italy. Bulletin of the Seismological Society of America, 102(2), 680–695. https://doi.org/10.1785/0120110084Rigano, R., Cara, F., Lombardo, G., & Rovelli, A. (2008). Evidence for ground motion polarization on fault zones of Mount Etna volcano. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2007JB005574SIATA. (2023). Generalidades de la Información Red Acelerográfica del Valle de Aburrá.SIMPAD, & Minas, U. N. de C. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín.Spudich, P., Hellweg, M., & Lee, W. H. K. (1996). Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bulletin of the Seismological Society of America, 86(1B), S193–S208. https://doi.org/10.1785/BSSA08601BS193Trifunac, M. D. (1994). Fourier amplitude spectra of strong motion acceleration: Extension to high and low frequencies. Earthquake Engineering & Structural Dynamics, 23(4), 389–411. https://doi.org/10.1002/eqe.4290230404Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901Yazdi, M., Motamed, R., & Anderson, J. G. (2022). A New Set of Automated Methodologies for Estimating Site Fundamental Frequency and Its Uncertainty Using Horizontal-to-Vertical Spectral Ratio Curves. Seismological Research Letters, 93(3), 1721–1736. https://doi.org/10.1785/0220210078InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/87060/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1090520236.pdf1090520236.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf3011813https://repositorio.unal.edu.co/bitstream/unal/87060/3/1090520236.pdf54c2269a6ae4dcf5f09a9698a250fb77MD53THUMBNAIL1090520236.pdf.jpg1090520236.pdf.jpgGenerated Thumbnailimage/jpeg5703https://repositorio.unal.edu.co/bitstream/unal/87060/4/1090520236.pdf.jpg96b9ddd9323f5d42d4df091910a06dd7MD54unal/87060oai:repositorio.unal.edu.co:unal/870602024-10-26 00:09:06.619Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |