Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras

ilustraciones, diagramas, fotografías, tablas

Autores:
Pira Ruíz, Jenny Magaly
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/87059
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/87059
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios
710 - Planificación del área y arquitectura del paisaje::717 - Estructuras en arquitectura paisajística
HORMIGON ARMADO
DISIPACION ENERGETICA
FLEXION (METALISTERIA)
Reinforced concrete
Energy dissipation
Bending
SFRC
Fiber method
Inelastic behavior
Steel fibers
Flexure
Método de Fibras
Fibras de acero
Flexión
Comportamiento inelástico
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_bcac8ebe2e1579487c591dd268a09273
oai_identifier_str oai:repositorio.unal.edu.co:unal/87059
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
dc.title.translated.eng.fl_str_mv Steel short fiber reinforced concrete elements subjected to flexure : application of the fiber method
title Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
spellingShingle Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios
710 - Planificación del área y arquitectura del paisaje::717 - Estructuras en arquitectura paisajística
HORMIGON ARMADO
DISIPACION ENERGETICA
FLEXION (METALISTERIA)
Reinforced concrete
Energy dissipation
Bending
SFRC
Fiber method
Inelastic behavior
Steel fibers
Flexure
Método de Fibras
Fibras de acero
Flexión
Comportamiento inelástico
title_short Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
title_full Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
title_fullStr Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
title_full_unstemmed Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
title_sort Evaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibras
dc.creator.fl_str_mv Pira Ruíz, Jenny Magaly
dc.contributor.advisor.spa.fl_str_mv Lizarazo Marriaga, Juan Manuel
Luna Tamayo, Patricia
dc.contributor.author.spa.fl_str_mv Pira Ruíz, Jenny Magaly
dc.contributor.researchgroup.spa.fl_str_mv Análisis, Diseño y Materiales Gies
dc.contributor.orcid.spa.fl_str_mv Pira Ruíz, Jenny Magaly [0000000347211043]
dc.contributor.googlescholar.spa.fl_str_mv JENNY PIRA, [J. Pira]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios
710 - Planificación del área y arquitectura del paisaje::717 - Estructuras en arquitectura paisajística
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios
710 - Planificación del área y arquitectura del paisaje::717 - Estructuras en arquitectura paisajística
HORMIGON ARMADO
DISIPACION ENERGETICA
FLEXION (METALISTERIA)
Reinforced concrete
Energy dissipation
Bending
SFRC
Fiber method
Inelastic behavior
Steel fibers
Flexure
Método de Fibras
Fibras de acero
Flexión
Comportamiento inelástico
dc.subject.lemb.spa.fl_str_mv HORMIGON ARMADO
DISIPACION ENERGETICA
FLEXION (METALISTERIA)
dc.subject.lemb.eng.fl_str_mv Reinforced concrete
Energy dissipation
Bending
dc.subject.proposal.eng.fl_str_mv SFRC
Fiber method
Inelastic behavior
Steel fibers
Flexure
dc.subject.proposal.spa.fl_str_mv Método de Fibras
Fibras de acero
Flexión
Comportamiento inelástico
description ilustraciones, diagramas, fotografías, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-10-25T13:06:30Z
dc.date.available.none.fl_str_mv 2024-10-25T13:06:30Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/87059
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/87059
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbass, W., Iqbal Khan, M., & Mourad, S. (n.d.). Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. https://doi.org/10.1016/j.conbuildmat.2018.02.164
Abrishambaf, A., Barros, J., & Cunha, V. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66.
ACI. (1993). Committee 544.3 R-93 Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete. American Concrete Institute.
ACI. (1996). Committee 544.4 R-88 Design considerations for steel fiber reinforced concrete. American Concrete Institute.
ACI. (2008). Committe 318 Building code and commentary, Report ACI 318-08/ 318R-08. American Concrete Institute.
ACI. (2009). Committee 544.1 R-96 State-of-the-Art Report on Fiber Reinforced Concrete. American Concrete Institute.
AFGC-SETRA. (2002). Ultra High Performance Fibre Reinforced Concretes, Interim recomnnedations. AFGC Publication.
AIS. (2010). NSR-10 Reglamento Colombiano de Construcción Sismoresistente.
Akkaya, Y., Shah, S. P., & Ankenman, B. (2001). Effect of fiber dispersion on multiple cracking of cement composites. Journal of Engineering Mechanics, 127(4), 311–316.
Amin, A., Foster, S. J., & Muttoni, A. (2015). Derivation of the σ-w relationship for SFRC from prism bending tests. Structural Concrete, 16(1), 93–105. https://doi.org/10.1002/suco.201400018
Appa Rao, G., & Sreenivasa Rao, A. (2009). Toughness indices of steel fiber reinforced concrete under mode II loading. Materials and Structures, Volume 42, Springer, pp 1173-1184.
ASTM. (2011). A820/A820M-11 Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. ASTM.
Badell -Zaragoza -18 De Mayo, R. (n.d.). PAVIMENTOS ARMADOS CON FIBRAS METALICAS.
Barros, J. A., & Cruz, J. S. (2001). Fracture energy of steel fiber-reinforced concrete. Mechanics of Composite Materials and Structures, 8(1), 29–45.
Barros, J. A., Cunha, A. F., Ribeiro, A. F., & Antunes, J. A. (2005). Post-cracking behaviour of steel fibre reinforced concrete. Materials and Structures, 38, 47–56.
Barros, J. A. O., & Figueiras, J. A. (1997). FLEXURAL BEHAVIOR OF SFRC: TESTING AND MODELING. Journal of Structural Engineering, 11(4).
Bazant, Z., & Planas, J. (1998). Fracture and size effect in concrete and other quaisbrittle materials. CRC Press.
Bentur, A., & Mindness, S. (1990). Fibre reinforced cementitious composites. Elsevier Applied Science.
Binici, B. (2005a). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 27(7), 1040–1051. https://doi.org/10.1016/j.engstruct.2005.03.002
Blanco, S. (2006). Contribuciones al análisis del fallo material en tres dimensiones usando la aproximación de discontinuidades fuertes. Tesis Doctoral, Universidad Politécnica de Cataluña
Bordelon, A., & Roesler, J. (2012). Distribution of fiber-reinforcement in thin concrete overlays. Proceedings Form the 10th International Conference in Concrete Pavements, 545–564.
Buitrago, H. (2022). Programa didáctico de análisis no lineal de secciones transversales en elementos estructurales a flexión y fuerza axial. Universidad Nacional De Colombia.
Caicedo, M. A. (2010a). Modelación numérica con elementos finitos del concreto reforzado con fibras cortas mediante un modelo constitutivo de Daño-plasticidad. Facultad de Ingeniería, Universidad Nacional de Colombia.
Camões, A., & Ferreira, R. M. (2010). Technological evolution of concrete: from ancient times to ultra high-performance concrete. In Cruz (Ed.), Structures and Architecture. Taylor & Francis Group.
Car, E. (2000). Modelo constitutivo continuo para el estudio del comportamiento mecánico de materiales compuestos. Universidad Politécnica de Cataluña.
CEN. (2006). EN 14889-1:2006 Fibres for concrete. Steel fibres - Definitions, specifications and conformity. British Standards Institution .
Chadwell, C. B., & Imbsen, R. A. (2004). XTRACT: A Tool for Axial Force-Ultimate Curvature Interactions.
Chanvillard, G., & Aitcint, P.-C. (1996). Pull-out behavior of corrugated steel fibers, qualitative and statistical analysis. Cement Based Materials, 4, 28–41.
CNR. (2006). CNR-DT 204/2006: Guide for the Design and Construction of Fiber-Reinforced Concrete Structures. Italian National Research Council.
Colombo, M., Conforti, A., di Prisco, M., Leporace-Guimil, B., Plizzari, G., & Zani, G. (2023). The basis for ductility evaluation in SFRC structures in MC2020: An investigation on slabs and shallow beams. Structural Concrete, 24(4), 4406–4423. https://doi.org/10.1002/suco.202300114
Cortés, G. A. (2020). Importancia de la ingeniería civil en el ODS No. 9 Industria, Innovación e Infraestructura [Pregrado]. Universidad Militar Nueva Granada.
Cunha, V. M. C. F., Barros, J. A. O., & Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Computers & Structures, 94–95, 22–33. https://doi.org/http://dx.doi.org/10.1016/j.compstruc.2011.12.005
De Borst, R. (2002a). Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Engineering Fracture Mechanics, 96–112.
De Borst, R., Remmers, J., Needleman, A., & Abellan, M. A. (2004). Discrete vs smeared crack models for concrete fracture: bridging the gap. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 583–607.
Di Prisco, M., Colombo, M., & Dozio, D. (2013a). Fibre-reinforced concrete in fib Model Code 2010: Principles, models and test validation. Structural Concrete, 14(4), 342–361. https://doi.org/10.1002/suco.201300021
El-Abbasy, A. A. (2023). Tensile, flexural, impact strength, and fracture properties of ultra-high-performance fiber-reinforced concrete – A comprehensive review. In Construction and Building Materials (Vol. 408). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2023.133621
Fang, Q., & Zhang, J. (2013). Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading. Construction and Building Materials, 44, 118–132. https://doi.org/10.1016/j.conbuildmat.2013.02.067
Gribniak, V., & Sokolov, A. (2023). Standardized RC beam tests for modeling the fiber bridging effect in SFRC. https://doi.org/10.1016/j.conbuildmat.2023.130652
Guevara González, R. D. (2014). Capability Analysis for Profiles [Tesis de Doctorado, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/51332
Guevara, R. D., & Vargas, J. A. (2013). Process capability analysis for nonlinear profiles using depth functions. Quality and Rebiality Engineering International.
Harries, K. A., & Kharel, G. (2003). Experimental investigation of the behavior of variably confined concrete. Cement and Concrete Research, 33(6), 873–880. https://doi.org/10.1016/S0008-8846(02)01086-4
Hassan, A. M. T., Jones, S. W., & Mahmud, G. H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). https://doi.org/10.1016/j.conbuildmat.2012.04.030
ICONTEC. (2001). NTC 3459. Concretos. Agua para la elaboración de concretos. Instituto Colombiano de Normas Técnicas y Certificación.
ICONTEC. (2010). NTC 673. Concretos. Ensayo de Resistencia a la Compresión de Especímenes Cilíndricos de Concreto. ICONTEC.
Jansson, A. (2011). Effects of Steel Fibres on Cracking in Reinforced Concrete. CHALMERS UNIVERSITY OF TECHNOLOGY.
Jansson, A., Gylltoft, K., & Logfren, I. (2008a). Design methods for fibre-reinforced concrete: a state of the art review. Chalmers tekniska högskola .
Junaid Munir, M., Minhaj, S., Kazmi, S., Wu, Y.-F., Patnaikuni, I., Zhou, Y., & Xing, F. (2020). Stress strain performance of steel spiral confined recycled aggregate concrete. https://doi.org/10.1016/j.cemconcomp.2020.103535
Kaba, S. A., & Mahin, S. A. (1984). REFINED MODELLING OF REINFORCED CONCRETE COLUMNS FOR SEISMIC ANALYSIS NATIONAL TECHNICAL INFORMATION SERVICE.
Kabele, P. (2007). Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites. Engineering Fracture Mechanics, 194–209.
Khan, M. I., & Abbas, Y. M. (2023). Significance of fiber characteristics on the mechanical properties of steel fiber-reinforced high-strength concrete at different water-cement ratios. https://doi.org/10.1016/j.conbuildmat.2023.133742
Kooiman, A. G. (2000). Modelling steel fibre reinforced concrete for structural design. Optima Grafische Communicatie.
Kosmatka, S. H., & Wilson, M. L. (2016). Design and Control of Concrete Mixtures (16th ed.). Porland Cement Association.
Kumar, M. V., Jaideep, C., Siddaramaiah, Y. M., & Muthukannan, M. (2022). Structural performance of hybrid fibres incorporated Re-Cycled aggregate RC slab Selection and peer-review under responsibility of the scientific committee of the Second Global Confer-ence on Recent Advances in Sustainable Materials 2022. https://doi.org/10.1016/j.matpr.2022.11.055
Kumar, M. V., Raj, S. J., Rajesh Kumar, K., Gurumoorthy, N., & Ganesh, A. C. (n.d.). Flexural and shear performance of HFRC beams. https://doi.org/10.1016/j.matpr.2020.11.370
Lamus, F. A. (2015). Modelo numérico del comportamiento inelástico del concreto reforzado con fibras cortas de acero . In Engeeniering School: Vol. Ph.D. Thes.
Lantsoght, E. O. L. (2023). Theoretical model of shear capacity of steel fiber reinforced concrete beams. https://doi.org/10.1016/j.engstruct.2023.115722
Laranjeira, F. (2010). Design-oriented constitutive model for steel fiber reinforced concrete. Departament d’Enginyeria de la Construcció, Universitat Politécnica de Catalunya.
Lee, S.-C., Oh, J.-H., & Cho, J.-Y. (2016). Fiber efficiency in SFRC members subjected to uniaxial tension. https://doi.org/10.1016/j.conbuildmat.2016.03.076
Li, V. C. (1992). Post-crack scaling relations for fiber reinforced cementitious composites. ASCE Journal of Materials in Civil Engineering 4, 41–57.
Lizarazo, J., & López, L. (2011). Effect of sedimentary and metamorphic aggregate on static modulus of elasticity of high-strength concrete. DYNA, 78(170), 235–242.
Lofgren, I. (2005a). Fibre-reinforced Concrete for Industrial Construction. Department of Civil and Environmental Engineering, Chalmers University of Technology.
Luccioni, B., López, D., & Oller, S. (2002). Modelo para materiales compuestos con deslizamiento de fibras. In Análisis y cálculo de estructuras de materiales compuestos (pp. 411–431). CIMNE.
Martinelli, P., Colombo, M., de la Fuente, A., Cavalaro, S., Pujadas, P., & di Prisco, M. (2021). Characterization tests for predicting the mechanical performance of SFRC floors: design considerations. Materials and Structures/Materiaux et Constructions, 54(1). https://doi.org/10.1617/s11527-020-01598-2
Meda, A., Minelli, F., & Plizzari, G. A. (2012). Flexural behaviour of RC beams in fibre reinforced concrete. https://doi.org/10.1016/j.compositesb.2012.06.003
Naaman, A. (2003). Engineered steel fiber with optimal properties for reinforcement of cement composites. Journal of Advanced Concrete Technology, 241–252.
Naaman, A. E. (2007). High performance fiber reinforced cement composites. In: Caijun, Mo, Y.L. (Eds.), High Performance Construction Materials - Science and Applications. World Scientific Publishing Co. Pte. Ltd., pp 91-153 (Chapter 3).
Oliveira de Barros, J. A. (1995). Comportamento do betão reforçado com fibras, Análise experimental e simulação numérica. Faculdade de Engenharia, Universidade do Porto .
Oliver, J. (1996). Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part II: Numerical Simulation. International Journal for Numerical Methods in Engineering, 39, 3601–3623.
Oliver, J., Huespe, A. E., & Sánchez, P. J. (2006). A comparative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Computer Methods in Applied Mechanics and Engineering, 195, 4732–4752.
Oller, S., Oñate, E., Miquel, J., & Botello, S. (1996). A plastic damage constitutive model for composite materials. International Journal of Solid and Structures, 2501–2518.
Pira, J. M. (2014). Estudio del comportamiento de la interfaz fibra-matriz bajo carga de Pull-Out con fibras cortas de acero y concretos de uso normal. Programa de Ingeniería Civil, Universidad de La Salle.
Planas, J., Elices, M., Guinea, G., Gómez, F., Cendón, D., & Arbilla, I. (2003a). Generalizations and specifications of cohesive crack models. Engineering Fracture Mechanics, 1759–1776.
RILEM. (2002). TC 162 - TDF: Test and design methods for steel fibre reinforced concrete: Bending test recommendation final. (Vol. 35). Materials and Structures .
Rodriguez, F., & Prado, D. (1984). Hormigón con la incorporación de fibras. Revista de Obras Públicas, pp 779 a 796.
Ruiz, G., de la Rosa, Á., Poveda, E., Zanon, R., Schäfer, M., & Wolf, S. (2023). Compressive Behaviour of Steel-Fibre Reinforced Concrete in Annex L of New Eurocode 2. Hormigon y Acero, 74(299–300), 187–198. https://doi.org/10.33586/hya.2022.3092
Runesson, K., Ottosen, N., & Peric, D. (1991). Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain . International Journal of Plasticity, 7, 99–121.
Samaniego, E. (2002). Contributions to the continuum modelling of strong discontinuities in two dimensional solids. Doctoral Thesis, Technical University of Catalonia .
Serna, P., Llano-Torre, A., Martí-Vargas, J. R., & Navarro-Gregori Editors, J. (2021). RILEM Bookseries Fibre Reinforced Concrete: Improvements and Innovations II X RILEM-fib International Symposium on Fibre Reinforced Concrete (BEFIB) 2021. http://www.springer.com/series/8781
Simó, J., & Ju, J. (1987). Strain and stress based continuum damge models. I formulation. International Journal of Solid and Structures, 821–840.
Singh, H. (2017). Steel Fiber Reinforced Concrete. Springer Singapore. https://doi.org/10.1007/978-981-10-2507-5
Soe, T. N. (2010a). Fracture processes in steel fibre reinforced concrete. School of Civil and Environmental Engineering, The University of New South Wales.
Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
Stähli, P., & van Mier, J. (2007). Manufacturing, fibre anisotropy and fracture of fibre concrete. Engineering Fracture Mechanics, 74, 223–242.
Steiger, R. (1995). The history of concrete - Part 2: From Portland cement to structural concrete. Concrete Journal, The Aberdeen Group.
Sun, Y., & Genton, M. G. (2011). Functional Boxplots. Journal of Computational and Graphical Statistics, 20(2), 316–334.
Tiberti, G., Minelli, F., & Plizzari, G. (2014). Cracking behavior in reinforced concrete members with steel fibers: A comprehensive experimental study. https://doi.org/10.1016/j.cemconres.2014.10.011
Torrijos, M. C., Barragan, B. E., & Zerbino, R. L. (2010). Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes. Construction and Buildinf Materials, 24, 1078–1085.
Trindade, Y. T., Bitencourt, L. A. G., & Manzoli, O. L. (2020). Design of SFRC members aided by a multiscale model: Part II-Predicting the behavior of RC-SFRC beams. https://doi.org/10.1016/j.compstruct.2020.112079
Vandewalle, L., Heirman, G., & Van Rickstal, F. (2008). Fibre orientation in self-compacting fibre reinforced concrete. RILEM International Symposium on Fibre Reinforced Concrete, 719–728.
Vandewalle, L., Nemegeer, D., Balázs, G., Barr, B., Barros, J., Bartos, P., Banthia, N., Brandt, A., Criswell, M., Denarie, F., Prisco, M., Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P., Hausler, V., Katsaragakis, F., Kooiman, A., Kovler, K., & Wubs, A. (2002). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete - Design of steel fibre reinforced concrete using the sigma-w method: principles and applications. Materials and Structures, 35, 262–278.
Vasiliev, V., & Morozov, E. (2001). Mechanics and analysis of composite materials. Elsevierd.
Vu, D. T., Terrade, B., Marchand, P., Bouteille, S., & Toutlemonde, F. (2023). Constitutive model for steel fiber reinforced concrete under shear and tension accounting for fiber orientation effect. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2023.2219309
Walraven, J. C. (2009). High performance fiber reinforced concrete: progress in knowledge and design codes. Materials and Structures, 42, 1247–1260.
Wang, Y., Jin, H., Demartino, C., Chen, W., & Yu, Y. (2022). Mechanical properties of SFRC: Database construction and model prediction. https://doi.org/10.1016/j.cscm.2022.e01484
Wang, Z., Bi, J., He, R., Zhao, Y., Huo, L., & Duan, Y. (2021). A meso-mechanical model for post-cracking tensile constitutive behavior of steel fiber reinforced concrete. https://doi.org/10.1016/j.conbuildmat.2021.123625
Wu, H., Lin, X., Zhou, A., & Zhang, Y. X. (2023). A temperature dependent constitutive model for hybrid fibre reinforced concrete. Construction and Building Materials, 365, 130109. https://doi.org/10.1016/J.CONBUILDMAT.2022.130109
Xiangyong, N., Bin, Z., Yizhu, L., & Yonghui, H. (2023). Predicted compressive stress-strain model for high-strength stirrup confined concrete. https://doi.org/10.1016/j.istruc.2023.04.039
Yan, A., Wu, K., & Zhang, X. (2002). A quantitative stud on the surface crack pattern of concrete with high content of steel fiber. Cement and Concrete Research, 32, 1371–1375.
Yang, L., Lin, X., Li, H., & Gravina, R. J. (2019). A new constitutive model for steel fibre reinforced concrete subjected to dynamic loads. Composite Structures, 221. https://doi.org/10.1016/j.compstruct.2019.04.021
Yi, S.-T., Yang, E.-I., & Choi, J.-C. (2006). Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design, 236, 115–127.
Yu, R. C., Cifuentes, H., Rivero, I., Ruiz, G., & Zhang, X. (2016). Dynamic fracture behaviour in fibre-reinforced cementitious composites. Journal of the Mechanics and Physics of Solids. https://doi.org/http://dx.doi.org/10.1016/j.jmps.2015.12.025
Zhang, S., Zhang, C., Liao, L., Wang, C., & Zhao, R. (2020). Investigation into the effect of fibre distribution on the post-cracking tensile strength of SFRC through physical experimentation and numerical simulation. https://doi.org/10.1016/j.conbuildmat.2020.118433
Zhang, W., Zhang, S., Wei, J., & Huang, Y. (2024). Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study. Structures, 60. https://doi.org/10.1016/j.istruc.2023.105823
Zheng, Y., Lv, X., Hu, S., Zhuo, J., Wan, C., & Liu, J. (2024). Mechanical properties and durability of steel fiber reinforced concrete: A review. In Journal of Building Engineering (Vol. 82). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2023.108025
Zile, E., & Zile, O. (2013). Effect of the fiber geometry on the pullout response fo mechanically deformed steel fibers. Cement and Concrete Research, 44, 18–24.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 153 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/87059/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/87059/2/Tesis-JPIRA.pdf
https://repositorio.unal.edu.co/bitstream/unal/87059/3/Tesis-JPIRA.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
17989e186f0e52604ea5be1ed20de81c
239b9561c9a71428cec76c36bee03f32
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089603743744000
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lizarazo Marriaga, Juan Manuel5773f81a6037772a79e67aad79a143d9600Luna Tamayo, Patriciaeb0a0c55c0a8abe56c9ad14ce44b590e600Pira Ruíz, Jenny Magaly1e8d53099388f99785569de1929db66eAnálisis, Diseño y Materiales GiesPira Ruíz, Jenny Magaly [0000000347211043]JENNY PIRA, [J. Pira]2024-10-25T13:06:30Z2024-10-25T13:06:30Z2022https://repositorio.unal.edu.co/handle/unal/87059Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasEn este estudio se evalúa el comportamiento inelástico del concreto reforzado con fibras cortas de acero bajo condiciones de flexión, con el objetivo de entender su comportamiento y capacidad de disipación de energía. Se desarrolló un modelo constitutivo para simular la respuesta mecánica inelástica del material bajo cargas axiales, complementado por un análisis de momento-curvatura utilizando un enfoque de discretización por capas en secciones transversales. La metodología incluyó una validación experimental de los modelos teóricos mediante ensayos en elementos de concreto sometidos a flexión pura, permitiendo la comparación directa entre los resultados teóricos y experimentales. Los hallazgos indican que el método de fibras mejora significativamente la capacidad de modelar el comportamiento no lineal del concreto reforzado con fibras, ofreciendo predicciones más precisas en comparación con los métodos convencionales. Se observó un incremento notable en la ductilidad y en la absorción de energía del material, atribuido a la inclusión de las fibras de acero. Estos resultados resaltan la importancia de considerar las propiedades mecánicas y geométricas de las fibras en el diseño de mezclas de concreto reforzado para optimizar su rendimiento estructural (Texto tomado de la fuente).This study evaluates the inelastic behavior of concrete reinforced with short steel fibers under bending conditions, to understand its strength and energy dissipation capacity. A constitutive model was developed to simulate the inelastic mechanical response of the material under axial loads, complemented by a moment-curvature analysis using a layered discretization approach in crosssections. The methodology included an experimental validation of the theoretical models employing tests on concrete elements subjected to pure bending, allowing direct comparison between theoretical and empirical results. The findings indicate that the fiber method significantly improves the ability to model the nonlinear behavior of fiber-reinforced concrete, providing more accurate predictions than conventional methods. A noticeable increase in the ductility and energy absorption of the material was observed, attributed to the inclusion of steel fibers. These results underline the importance of considering the mechanical and geometrical properties of fibers in the design of reinforced concrete mixtures to optimize their structural performance.MaestríaMagister en Ingeniería - EstructurasPara establecer un modelo constitutivo representativo para el comportamiento del concreto sometido a fuerza axial se toma como parámetro de referencia los resultados experimentales obtenidos de ensayos de cilindros sometidos a compresión y muestras de tracción de concreto reforzado con fibras cortas de acero. Para cumplir con el primer objetivo de esta tesis, se seleccionó un modelo constitutivo del comportamiento mecánico inelástico a carga axial del SFRC a partir de la revisión de la literatura. Este modelo fue ajustado y validado usando los resultados experimentales obtenidos de los ensayos realizados en el laboratorio. El enfoque metodológico asegura que el modelo seleccionado refleje de manera precisa la tendencia observada en los datos experimentales, proporcionando una representación del comportamiento mecánico del SFRC bajo cargas axiales como lo recomienda Casaburo et al. (2019). En el contexto de la investigación científica, los verbos que se eligen para definir los objetivos deben reflejar con precisión las acciones que se llevarán a cabo. A continuación, se detalla cómo "definir" puede ser sinónimo de "seleccionar", "adoptar", "adaptar" y "ajustar" en este contexto: Definir: Establecer claramente el carácter, los límites o la estructura de algo. Seleccionar: Elegir entre varias opciones la que mejor se ajusta a ciertos criterios. Al "definir" un modelo constitutivo, se está estableciendo cuál de los modelos existentes se va a utilizar, es decir, se está "seleccionando" el más adecuado basado en los resultados experimentales y las condiciones del estudio. Adoptar: Aceptar y comenzar a usar un modelo, método o idea previamente existente. Al definir un modelo también puede implicar "adoptar" un modelo ya existente y validado en la literatura, asegurando que cumple con los requisitos de la investigación. Adaptar: Modificar algo para que se ajuste a nuevas condiciones o requerimientos. Muchas veces, definir un modelo para un contexto específico implica "adaptar" un modelo existente para que se ajuste mejor a las condiciones experimentales y a las características del material estudiado. Ajustar: Cambiar ligeramente algo para mejorar su funcionamiento o adecuación a un propósito específico El proceso de definición incluye "ajustar" parámetros del modelo para que refleje con precisión los resultados observados en los experimentos. Este enfoque está respaldado tanto por la taxonomía de Bloom como por las prácticas de investigación científica, asegurando que los objetivos de la investigación sean claros, alcanzables y específicos. En estudios como los de Kerlinger, F. N. (1986) Foundations of Behavioral Research enfatiza la importancia de definir conceptos y modelos de manera que se adapten a los datos empíricos. Creswell, J. W. (2014) Research Design: Qualitative, Quantitative, and Mixed Methods Approaches discute la necesidad de seleccionar y adaptar marcos teóricos existentes para guiar la investigación. Yin, R. K. (2017) Case Study Research and Applications: Design and Methods concluye la importancia de ajustar marcos teóricos para que se alineen con los hallazgos empíricos específicos. Se empleó el Método de Fibras para el análisis del comportamiento no lineal del concreto, enfocándose en calcular la resistencia y ductilidad a flexión en elementos reforzados con fibras. Este método muestra la influencia significativa de las fibras de acero en las propiedades mecánicas del concreto y cómo estas afectan la capacidad del material para soportar cargas de flexión. Se ingresan los modelos de material no lineales definidos en la etapa anterior para cada mezcla. Luego, la sección transversal se divide en capas o fibras, y se asignan modelos de material a cada una de ellas. Se aplica una carga y se selecciona un método analítico, ya sea el control de desplazamiento o el control de fuerza. En términos generales, los resultados obtenidos mediante la aplicación de este método incluyen la relación entre el momento y la curvatura de la sección transversal del elemento estructural, así como el seguimiento de la deformación, el esfuerzo y el estado del material para cada una de las fibras. Este trabajo incluyó la evaluación del comportamiento mecánico a flexión de una mezcla de concreto reforzado con fibras y refuerzo convencional con barras de acero, utilizando ensayos en vigas de sección rectangular. Esto permitió validar la metodología desarrollada con los datos experimentales. La validación demostró que el método propuesto es capaz de reflejar fielmente los fenómenos mecánicos y el comportamiento no lineal que se observa en situaciones reales. Durante el desarrollo de la investigación, se abordaron los retos y las posibilidades que implica estudiar el comportamiento no lineal de materiales alternativos al concreto tradicional, como los que incluyen barras de acero, en el contexto de la ingeniería estructural, que abarcó desde la definición de propiedades hasta la implementación de técnicas simples, para aportar al diseño y análisis de estructuras reforzadas con fibras de acero, extendiendo así el potencial de uso de estos materialesAnálisis estructural153 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - EstructurasFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civil690 - Construcción de edificios710 - Planificación del área y arquitectura del paisaje::717 - Estructuras en arquitectura paisajísticaHORMIGON ARMADODISIPACION ENERGETICAFLEXION (METALISTERIA)Reinforced concreteEnergy dissipationBendingSFRCFiber methodInelastic behaviorSteel fibersFlexureMétodo de FibrasFibras de aceroFlexiónComportamiento inelásticoEvaluación del comportamiento inelástico en elementos de concreto reforzado con fibras cortas de acero sometidos a flexión: aplicación del método de fibrasSteel short fiber reinforced concrete elements subjected to flexure : application of the fiber methodTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbass, W., Iqbal Khan, M., & Mourad, S. (n.d.). Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. https://doi.org/10.1016/j.conbuildmat.2018.02.164Abrishambaf, A., Barros, J., & Cunha, V. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66.ACI. (1993). Committee 544.3 R-93 Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete. American Concrete Institute.ACI. (1996). Committee 544.4 R-88 Design considerations for steel fiber reinforced concrete. American Concrete Institute.ACI. (2008). Committe 318 Building code and commentary, Report ACI 318-08/ 318R-08. American Concrete Institute.ACI. (2009). Committee 544.1 R-96 State-of-the-Art Report on Fiber Reinforced Concrete. American Concrete Institute.AFGC-SETRA. (2002). Ultra High Performance Fibre Reinforced Concretes, Interim recomnnedations. AFGC Publication.AIS. (2010). NSR-10 Reglamento Colombiano de Construcción Sismoresistente.Akkaya, Y., Shah, S. P., & Ankenman, B. (2001). Effect of fiber dispersion on multiple cracking of cement composites. Journal of Engineering Mechanics, 127(4), 311–316.Amin, A., Foster, S. J., & Muttoni, A. (2015). Derivation of the σ-w relationship for SFRC from prism bending tests. Structural Concrete, 16(1), 93–105. https://doi.org/10.1002/suco.201400018Appa Rao, G., & Sreenivasa Rao, A. (2009). Toughness indices of steel fiber reinforced concrete under mode II loading. Materials and Structures, Volume 42, Springer, pp 1173-1184.ASTM. (2011). A820/A820M-11 Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. ASTM.Badell -Zaragoza -18 De Mayo, R. (n.d.). PAVIMENTOS ARMADOS CON FIBRAS METALICAS.Barros, J. A., & Cruz, J. S. (2001). Fracture energy of steel fiber-reinforced concrete. Mechanics of Composite Materials and Structures, 8(1), 29–45.Barros, J. A., Cunha, A. F., Ribeiro, A. F., & Antunes, J. A. (2005). Post-cracking behaviour of steel fibre reinforced concrete. Materials and Structures, 38, 47–56.Barros, J. A. O., & Figueiras, J. A. (1997). FLEXURAL BEHAVIOR OF SFRC: TESTING AND MODELING. Journal of Structural Engineering, 11(4).Bazant, Z., & Planas, J. (1998). Fracture and size effect in concrete and other quaisbrittle materials. CRC Press.Bentur, A., & Mindness, S. (1990). Fibre reinforced cementitious composites. Elsevier Applied Science.Binici, B. (2005a). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 27(7), 1040–1051. https://doi.org/10.1016/j.engstruct.2005.03.002Blanco, S. (2006). Contribuciones al análisis del fallo material en tres dimensiones usando la aproximación de discontinuidades fuertes. Tesis Doctoral, Universidad Politécnica de CataluñaBordelon, A., & Roesler, J. (2012). Distribution of fiber-reinforcement in thin concrete overlays. Proceedings Form the 10th International Conference in Concrete Pavements, 545–564.Buitrago, H. (2022). Programa didáctico de análisis no lineal de secciones transversales en elementos estructurales a flexión y fuerza axial. Universidad Nacional De Colombia.Caicedo, M. A. (2010a). Modelación numérica con elementos finitos del concreto reforzado con fibras cortas mediante un modelo constitutivo de Daño-plasticidad. Facultad de Ingeniería, Universidad Nacional de Colombia.Camões, A., & Ferreira, R. M. (2010). Technological evolution of concrete: from ancient times to ultra high-performance concrete. In Cruz (Ed.), Structures and Architecture. Taylor & Francis Group.Car, E. (2000). Modelo constitutivo continuo para el estudio del comportamiento mecánico de materiales compuestos. Universidad Politécnica de Cataluña.CEN. (2006). EN 14889-1:2006 Fibres for concrete. Steel fibres - Definitions, specifications and conformity. British Standards Institution .Chadwell, C. B., & Imbsen, R. A. (2004). XTRACT: A Tool for Axial Force-Ultimate Curvature Interactions.Chanvillard, G., & Aitcint, P.-C. (1996). Pull-out behavior of corrugated steel fibers, qualitative and statistical analysis. Cement Based Materials, 4, 28–41.CNR. (2006). CNR-DT 204/2006: Guide for the Design and Construction of Fiber-Reinforced Concrete Structures. Italian National Research Council.Colombo, M., Conforti, A., di Prisco, M., Leporace-Guimil, B., Plizzari, G., & Zani, G. (2023). The basis for ductility evaluation in SFRC structures in MC2020: An investigation on slabs and shallow beams. Structural Concrete, 24(4), 4406–4423. https://doi.org/10.1002/suco.202300114Cortés, G. A. (2020). Importancia de la ingeniería civil en el ODS No. 9 Industria, Innovación e Infraestructura [Pregrado]. Universidad Militar Nueva Granada.Cunha, V. M. C. F., Barros, J. A. O., & Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Computers & Structures, 94–95, 22–33. https://doi.org/http://dx.doi.org/10.1016/j.compstruc.2011.12.005De Borst, R. (2002a). Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Engineering Fracture Mechanics, 96–112.De Borst, R., Remmers, J., Needleman, A., & Abellan, M. A. (2004). Discrete vs smeared crack models for concrete fracture: bridging the gap. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 583–607.Di Prisco, M., Colombo, M., & Dozio, D. (2013a). Fibre-reinforced concrete in fib Model Code 2010: Principles, models and test validation. Structural Concrete, 14(4), 342–361. https://doi.org/10.1002/suco.201300021El-Abbasy, A. A. (2023). Tensile, flexural, impact strength, and fracture properties of ultra-high-performance fiber-reinforced concrete – A comprehensive review. In Construction and Building Materials (Vol. 408). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2023.133621Fang, Q., & Zhang, J. (2013). Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading. Construction and Building Materials, 44, 118–132. https://doi.org/10.1016/j.conbuildmat.2013.02.067Gribniak, V., & Sokolov, A. (2023). Standardized RC beam tests for modeling the fiber bridging effect in SFRC. https://doi.org/10.1016/j.conbuildmat.2023.130652Guevara González, R. D. (2014). Capability Analysis for Profiles [Tesis de Doctorado, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/51332Guevara, R. D., & Vargas, J. A. (2013). Process capability analysis for nonlinear profiles using depth functions. Quality and Rebiality Engineering International.Harries, K. A., & Kharel, G. (2003). Experimental investigation of the behavior of variably confined concrete. Cement and Concrete Research, 33(6), 873–880. https://doi.org/10.1016/S0008-8846(02)01086-4Hassan, A. M. T., Jones, S. W., & Mahmud, G. H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). https://doi.org/10.1016/j.conbuildmat.2012.04.030ICONTEC. (2001). NTC 3459. Concretos. Agua para la elaboración de concretos. Instituto Colombiano de Normas Técnicas y Certificación.ICONTEC. (2010). NTC 673. Concretos. Ensayo de Resistencia a la Compresión de Especímenes Cilíndricos de Concreto. ICONTEC.Jansson, A. (2011). Effects of Steel Fibres on Cracking in Reinforced Concrete. CHALMERS UNIVERSITY OF TECHNOLOGY.Jansson, A., Gylltoft, K., & Logfren, I. (2008a). Design methods for fibre-reinforced concrete: a state of the art review. Chalmers tekniska högskola .Junaid Munir, M., Minhaj, S., Kazmi, S., Wu, Y.-F., Patnaikuni, I., Zhou, Y., & Xing, F. (2020). Stress strain performance of steel spiral confined recycled aggregate concrete. https://doi.org/10.1016/j.cemconcomp.2020.103535Kaba, S. A., & Mahin, S. A. (1984). REFINED MODELLING OF REINFORCED CONCRETE COLUMNS FOR SEISMIC ANALYSIS NATIONAL TECHNICAL INFORMATION SERVICE.Kabele, P. (2007). Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites. Engineering Fracture Mechanics, 194–209.Khan, M. I., & Abbas, Y. M. (2023). Significance of fiber characteristics on the mechanical properties of steel fiber-reinforced high-strength concrete at different water-cement ratios. https://doi.org/10.1016/j.conbuildmat.2023.133742Kooiman, A. G. (2000). Modelling steel fibre reinforced concrete for structural design. Optima Grafische Communicatie.Kosmatka, S. H., & Wilson, M. L. (2016). Design and Control of Concrete Mixtures (16th ed.). Porland Cement Association.Kumar, M. V., Jaideep, C., Siddaramaiah, Y. M., & Muthukannan, M. (2022). Structural performance of hybrid fibres incorporated Re-Cycled aggregate RC slab Selection and peer-review under responsibility of the scientific committee of the Second Global Confer-ence on Recent Advances in Sustainable Materials 2022. https://doi.org/10.1016/j.matpr.2022.11.055Kumar, M. V., Raj, S. J., Rajesh Kumar, K., Gurumoorthy, N., & Ganesh, A. C. (n.d.). Flexural and shear performance of HFRC beams. https://doi.org/10.1016/j.matpr.2020.11.370Lamus, F. A. (2015). Modelo numérico del comportamiento inelástico del concreto reforzado con fibras cortas de acero . In Engeeniering School: Vol. Ph.D. Thes.Lantsoght, E. O. L. (2023). Theoretical model of shear capacity of steel fiber reinforced concrete beams. https://doi.org/10.1016/j.engstruct.2023.115722Laranjeira, F. (2010). Design-oriented constitutive model for steel fiber reinforced concrete. Departament d’Enginyeria de la Construcció, Universitat Politécnica de Catalunya.Lee, S.-C., Oh, J.-H., & Cho, J.-Y. (2016). Fiber efficiency in SFRC members subjected to uniaxial tension. https://doi.org/10.1016/j.conbuildmat.2016.03.076Li, V. C. (1992). Post-crack scaling relations for fiber reinforced cementitious composites. ASCE Journal of Materials in Civil Engineering 4, 41–57.Lizarazo, J., & López, L. (2011). Effect of sedimentary and metamorphic aggregate on static modulus of elasticity of high-strength concrete. DYNA, 78(170), 235–242.Lofgren, I. (2005a). Fibre-reinforced Concrete for Industrial Construction. Department of Civil and Environmental Engineering, Chalmers University of Technology.Luccioni, B., López, D., & Oller, S. (2002). Modelo para materiales compuestos con deslizamiento de fibras. In Análisis y cálculo de estructuras de materiales compuestos (pp. 411–431). CIMNE.Martinelli, P., Colombo, M., de la Fuente, A., Cavalaro, S., Pujadas, P., & di Prisco, M. (2021). Characterization tests for predicting the mechanical performance of SFRC floors: design considerations. Materials and Structures/Materiaux et Constructions, 54(1). https://doi.org/10.1617/s11527-020-01598-2Meda, A., Minelli, F., & Plizzari, G. A. (2012). Flexural behaviour of RC beams in fibre reinforced concrete. https://doi.org/10.1016/j.compositesb.2012.06.003Naaman, A. (2003). Engineered steel fiber with optimal properties for reinforcement of cement composites. Journal of Advanced Concrete Technology, 241–252.Naaman, A. E. (2007). High performance fiber reinforced cement composites. In: Caijun, Mo, Y.L. (Eds.), High Performance Construction Materials - Science and Applications. World Scientific Publishing Co. Pte. Ltd., pp 91-153 (Chapter 3).Oliveira de Barros, J. A. (1995). Comportamento do betão reforçado com fibras, Análise experimental e simulação numérica. Faculdade de Engenharia, Universidade do Porto .Oliver, J. (1996). Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part II: Numerical Simulation. International Journal for Numerical Methods in Engineering, 39, 3601–3623.Oliver, J., Huespe, A. E., & Sánchez, P. J. (2006). A comparative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Computer Methods in Applied Mechanics and Engineering, 195, 4732–4752.Oller, S., Oñate, E., Miquel, J., & Botello, S. (1996). A plastic damage constitutive model for composite materials. International Journal of Solid and Structures, 2501–2518.Pira, J. M. (2014). Estudio del comportamiento de la interfaz fibra-matriz bajo carga de Pull-Out con fibras cortas de acero y concretos de uso normal. Programa de Ingeniería Civil, Universidad de La Salle.Planas, J., Elices, M., Guinea, G., Gómez, F., Cendón, D., & Arbilla, I. (2003a). Generalizations and specifications of cohesive crack models. Engineering Fracture Mechanics, 1759–1776.RILEM. (2002). TC 162 - TDF: Test and design methods for steel fibre reinforced concrete: Bending test recommendation final. (Vol. 35). Materials and Structures .Rodriguez, F., & Prado, D. (1984). Hormigón con la incorporación de fibras. Revista de Obras Públicas, pp 779 a 796.Ruiz, G., de la Rosa, Á., Poveda, E., Zanon, R., Schäfer, M., & Wolf, S. (2023). Compressive Behaviour of Steel-Fibre Reinforced Concrete in Annex L of New Eurocode 2. Hormigon y Acero, 74(299–300), 187–198. https://doi.org/10.33586/hya.2022.3092Runesson, K., Ottosen, N., & Peric, D. (1991). Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain . International Journal of Plasticity, 7, 99–121.Samaniego, E. (2002). Contributions to the continuum modelling of strong discontinuities in two dimensional solids. Doctoral Thesis, Technical University of Catalonia .Serna, P., Llano-Torre, A., Martí-Vargas, J. R., & Navarro-Gregori Editors, J. (2021). RILEM Bookseries Fibre Reinforced Concrete: Improvements and Innovations II X RILEM-fib International Symposium on Fibre Reinforced Concrete (BEFIB) 2021. http://www.springer.com/series/8781Simó, J., & Ju, J. (1987). Strain and stress based continuum damge models. I formulation. International Journal of Solid and Structures, 821–840.Singh, H. (2017). Steel Fiber Reinforced Concrete. Springer Singapore. https://doi.org/10.1007/978-981-10-2507-5Soe, T. N. (2010a). Fracture processes in steel fibre reinforced concrete. School of Civil and Environmental Engineering, The University of New South Wales.Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027Stähli, P., & van Mier, J. (2007). Manufacturing, fibre anisotropy and fracture of fibre concrete. Engineering Fracture Mechanics, 74, 223–242.Steiger, R. (1995). The history of concrete - Part 2: From Portland cement to structural concrete. Concrete Journal, The Aberdeen Group.Sun, Y., & Genton, M. G. (2011). Functional Boxplots. Journal of Computational and Graphical Statistics, 20(2), 316–334.Tiberti, G., Minelli, F., & Plizzari, G. (2014). Cracking behavior in reinforced concrete members with steel fibers: A comprehensive experimental study. https://doi.org/10.1016/j.cemconres.2014.10.011Torrijos, M. C., Barragan, B. E., & Zerbino, R. L. (2010). Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes. Construction and Buildinf Materials, 24, 1078–1085.Trindade, Y. T., Bitencourt, L. A. G., & Manzoli, O. L. (2020). Design of SFRC members aided by a multiscale model: Part II-Predicting the behavior of RC-SFRC beams. https://doi.org/10.1016/j.compstruct.2020.112079Vandewalle, L., Heirman, G., & Van Rickstal, F. (2008). Fibre orientation in self-compacting fibre reinforced concrete. RILEM International Symposium on Fibre Reinforced Concrete, 719–728.Vandewalle, L., Nemegeer, D., Balázs, G., Barr, B., Barros, J., Bartos, P., Banthia, N., Brandt, A., Criswell, M., Denarie, F., Prisco, M., Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P., Hausler, V., Katsaragakis, F., Kooiman, A., Kovler, K., & Wubs, A. (2002). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete - Design of steel fibre reinforced concrete using the sigma-w method: principles and applications. Materials and Structures, 35, 262–278.Vasiliev, V., & Morozov, E. (2001). Mechanics and analysis of composite materials. Elsevierd.Vu, D. T., Terrade, B., Marchand, P., Bouteille, S., & Toutlemonde, F. (2023). Constitutive model for steel fiber reinforced concrete under shear and tension accounting for fiber orientation effect. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2023.2219309Walraven, J. C. (2009). High performance fiber reinforced concrete: progress in knowledge and design codes. Materials and Structures, 42, 1247–1260.Wang, Y., Jin, H., Demartino, C., Chen, W., & Yu, Y. (2022). Mechanical properties of SFRC: Database construction and model prediction. https://doi.org/10.1016/j.cscm.2022.e01484Wang, Z., Bi, J., He, R., Zhao, Y., Huo, L., & Duan, Y. (2021). A meso-mechanical model for post-cracking tensile constitutive behavior of steel fiber reinforced concrete. https://doi.org/10.1016/j.conbuildmat.2021.123625Wu, H., Lin, X., Zhou, A., & Zhang, Y. X. (2023). A temperature dependent constitutive model for hybrid fibre reinforced concrete. Construction and Building Materials, 365, 130109. https://doi.org/10.1016/J.CONBUILDMAT.2022.130109Xiangyong, N., Bin, Z., Yizhu, L., & Yonghui, H. (2023). Predicted compressive stress-strain model for high-strength stirrup confined concrete. https://doi.org/10.1016/j.istruc.2023.04.039Yan, A., Wu, K., & Zhang, X. (2002). A quantitative stud on the surface crack pattern of concrete with high content of steel fiber. Cement and Concrete Research, 32, 1371–1375.Yang, L., Lin, X., Li, H., & Gravina, R. J. (2019). A new constitutive model for steel fibre reinforced concrete subjected to dynamic loads. Composite Structures, 221. https://doi.org/10.1016/j.compstruct.2019.04.021Yi, S.-T., Yang, E.-I., & Choi, J.-C. (2006). Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design, 236, 115–127.Yu, R. C., Cifuentes, H., Rivero, I., Ruiz, G., & Zhang, X. (2016). Dynamic fracture behaviour in fibre-reinforced cementitious composites. Journal of the Mechanics and Physics of Solids. https://doi.org/http://dx.doi.org/10.1016/j.jmps.2015.12.025Zhang, S., Zhang, C., Liao, L., Wang, C., & Zhao, R. (2020). Investigation into the effect of fibre distribution on the post-cracking tensile strength of SFRC through physical experimentation and numerical simulation. https://doi.org/10.1016/j.conbuildmat.2020.118433Zhang, W., Zhang, S., Wei, J., & Huang, Y. (2024). Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study. Structures, 60. https://doi.org/10.1016/j.istruc.2023.105823Zheng, Y., Lv, X., Hu, S., Zhuo, J., Wan, C., & Liu, J. (2024). Mechanical properties and durability of steel fiber reinforced concrete: A review. In Journal of Building Engineering (Vol. 82). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2023.108025Zile, E., & Zile, O. (2013). Effect of the fiber geometry on the pullout response fo mechanically deformed steel fibers. Cement and Concrete Research, 44, 18–24.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/87059/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis-JPIRA.pdfTesis-JPIRA.pdfTesis de Maestría - Ingenieria Estructuralapplication/pdf4843792https://repositorio.unal.edu.co/bitstream/unal/87059/2/Tesis-JPIRA.pdf17989e186f0e52604ea5be1ed20de81cMD52THUMBNAILTesis-JPIRA.pdf.jpgTesis-JPIRA.pdf.jpgGenerated Thumbnailimage/jpeg4869https://repositorio.unal.edu.co/bitstream/unal/87059/3/Tesis-JPIRA.pdf.jpg239b9561c9a71428cec76c36bee03f32MD53unal/87059oai:repositorio.unal.edu.co:unal/870592024-10-25 23:25:21.935Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=