Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch

ilustraciones, diagramas, tablas

Autores:
Guzmán Calle, Juan David
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81759
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81759
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Industria del petróleo
Recursos energéticos
Heavy oil
Solvent deasphalting
Nanoparticles
enhanced-Solvent deasphalting
Asphaltenes
Catalytic oxidation
Simplex-centroid mixture design
Crudo pesado
Nanopartículas
Asfaltenos
Oxidación catalítica
Diseño de mezclas simple con centroide
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_bc31d8a6c4b1072e6f8329b4c23af49c
oai_identifier_str oai:repositorio.unal.edu.co:unal/81759
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
dc.title.translated.spa.fl_str_mv Desarrollo de un proceso de desasfaltado con solventes mejorado con nanopartículas (e-SDA) y descomposición catalítica del Pitch
title Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
spellingShingle Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Industria del petróleo
Recursos energéticos
Heavy oil
Solvent deasphalting
Nanoparticles
enhanced-Solvent deasphalting
Asphaltenes
Catalytic oxidation
Simplex-centroid mixture design
Crudo pesado
Nanopartículas
Asfaltenos
Oxidación catalítica
Diseño de mezclas simple con centroide
title_short Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
title_full Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
title_fullStr Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
title_full_unstemmed Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
title_sort Nanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of Pitch
dc.creator.fl_str_mv Guzmán Calle, Juan David
dc.contributor.advisor.none.fl_str_mv Cortés Correa, Farid Bernardo
dc.contributor.author.none.fl_str_mv Guzmán Calle, Juan David
dc.contributor.researchgroup.spa.fl_str_mv Fenómenos de Superficie Michael Polanyi
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Industria del petróleo
Recursos energéticos
Heavy oil
Solvent deasphalting
Nanoparticles
enhanced-Solvent deasphalting
Asphaltenes
Catalytic oxidation
Simplex-centroid mixture design
Crudo pesado
Nanopartículas
Asfaltenos
Oxidación catalítica
Diseño de mezclas simple con centroide
dc.subject.lemb.none.fl_str_mv Industria del petróleo
Recursos energéticos
dc.subject.proposal.eng.fl_str_mv Heavy oil
Solvent deasphalting
Nanoparticles
enhanced-Solvent deasphalting
Asphaltenes
Catalytic oxidation
Simplex-centroid mixture design
dc.subject.proposal.spa.fl_str_mv Crudo pesado
Nanopartículas
Asfaltenos
Oxidación catalítica
Diseño de mezclas simple con centroide
description ilustraciones, diagramas, tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2022-07-29T14:31:36Z
dc.date.available.none.fl_str_mv 2022-07-29T14:31:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81759
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81759
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv L. Capuano, "International energy outlook 2018 (IEO2018)," US Energy Information Administration (EIA): Washington, DC, USA, vol. 2018, p. 21, 2018.
I. O. W. Outlook, "World Energy Outlook Series," Paris, France: International Energy Agency, 2018.
A. Demirbas, A. Bafail, and A.-S. Nizami, "Heavy oil upgrading: Unlocking the future fuel supply," Petroleum Science and Technology, vol. 34, pp. 303-308, 2016.
Z. LIU, H. WANG, G. Blackbourn, F. MA, Z. HE, Z. WEN, et al., "Heavy oils and oil sands: global distribution and resource assessment," Acta Geologica Sinica‐English Edition, vol. 93, pp. 199-212, 2019.
UPME. (2012, 2016/02/22). Escenarios de Oferta y Demanda de Hidrocarburos en Colombia. Available: http://www.upme.gov.co/Docs/Publicaciones/2012/Escenarios_Oferta_Demanda_Hidrocarburos.pdf
Campetrol. (2015, 2016/02/21). Crudos pesados: el reto para Colombia. Available: http://campetrol.org/crudos-pesados-el-reto-para-colombia/
J. G. Speight, Heavy and extra-heavy oil upgrading technologies: Gulf Professional Publishing, 2013.
J. G. Speight, The chemistry and technology of petroleum, Fourth ed.: CRC press, 2006.
A.-Y. Huc, Heavy crude oils: from geology to upgrading: an overview: Editions Technip, 2010.
A. Hinkle and M. Batzle, "Heavy oils: A worldwide overview," The Leading Edge, vol. 25, pp. 742-749, 2006.
R. Martínez-Palou, M. de Lourdes Mosqueira, B. Zapata-Rendón, E. Mar-Juárez, C. Bernal-Huicochea, J. de la Cruz Clavel-López, et al., "Transportation of heavy and extra-heavy crude oil by pipeline: A review," Journal of Petroleum Science and Engineering, vol. 75, pp. 274-282, 2011.
M. Ghanavati, M.-J. Shojaei, and A. Ramazani, "Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: experimental and modeling study," Energy & Fuels, vol. 27, pp. 7217-7232, 2013.
K. Leontaritis, J. Amaefule, and R. Charles, "A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition," SPE Production & Facilities, vol. 9, pp. 157-164, 1994.
E. Y. Sheu and O. C. Mullins, Fundamentals and applications: Springer, 1995.
J. Woods, J. Kung, D. Kingston, L. Kotlyar, B. Sparks, and T. McCracken, "Canadian crudes: A comparative study of SARA fractions from a modified HPLC separation technique," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 151-163, 2008.
K. Akbarzadeh, H. Alboudwarej, W. Y. Svrcek, and H. W. Yarranton, "A generalized regular solution model for asphaltene precipitation from n-alkane diluted heavy oils and bitumens," Fluid Phase Equilibria, vol. 232, pp. 159-170, 2005.
P. Luo and Y. Gu, "Effects of asphaltene content on the heavy oil viscosity at different temperatures," Fuel, vol. 86, pp. 1069-1078, 2007.
I. Hénaut, L. Barré, J. Argillier, F. Brucy, and R. Bouchard, "Rheological and structural properties of heavy crude oils in relation with their asphaltenes content," in SPE International Symposium on Oilfield Chemistry, 2001.
A. H. Kamran Akbarzadeh, Abdel Kharrat, Dan Zhang, Stephan Allenson, Jefferson Creek, Shah Kabir, A. Jamaluddin, Alan G. Marshall, Ryan Rodgers, Oliver C. Mullins, Trond Solbakken, "Asphaltenes—Problematic but Rich in Potential," Oil Field Review, pp. 22-43, 2007.
R. R. Chianelli, M. Siadati, A. Mehta, J. Pople, L. C. Ortega, and L. Y. Chiang, "Self-assembly of asphaltene aggregates: synchrotron, simulation and chemical modeling techniques applied to problems in the structure and reactivity of asphaltenes," in Asphaltenes, Heavy Oils, and Petroleomics, ed: Springer, 2007, pp. 375-400.
E. A. Taborda, V. Alvarado, C. A. Franco, and F. B. Cortés, "Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles," Fuel, vol. 189, pp. 322-333, 2017.
E. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, and F. B. Cortes, "Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions," Fuel, vol. 184, pp. 222-232, 2016.
W. Chuan, L. Guang-Lun, C.-j. YAO, K.-j. SUN, P.-y. Gai, and Y.-b. CAO, "Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst," Journal of Fuel Chemistry and Technology, vol. 38, pp. 684-690, 2010.
S. Chavan, H. Kini, and R. Ghosal, "Process for sulfur reduction from high viscosity petroleum oils," International Journal of Environmental Science and Development, vol. 3, p. 228, 2012.
R. Moore, C. Laureshen, S. Mehta, M. Ursenbach, J. Belgrave, J. Weissman, et al., "A downhole catalytic upgrading process for heavy oil using in situ combustion," Journal of Canadian Petroleum Technology, vol. 38, 1999.
I. Gates, N. Chakrabarty, R. Moore, S. Mehta, E. Zalewski, and P. Pereira, "In situ upgrading of Llancanelo heavy oil using in situ combustion and a downhole catalyst bed," Journal of Canadian Petroleum Technology, vol. 47, 2008.
W. R. Shu, "In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant," ed: Google Patents, 1983.
R. Hashemi, N. N. Nassar, and P. P. Almao, "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, vol. 133, pp. 374-387, 2014.
K. Guo, H. Li, and Z. Yu, "Metallic Nanoparticles for Enhanced Heavy Oil Recovery: Promises and Challenges," Energy Procedia, vol. 75, pp. 2068-2073, 2015.
C. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, and F. B. Cortés, "Adsorption and Subsequent Oxidation of Colombian Asphaltenes onto Nickel and/or Palladium Oxide Supported on Fumed Silica Nanoparticles," Energy & Fuels, vol. 27, pp. 7336-7347, 2013.
C. Franco, L. Cardona, S. Lopera, J. Mejía, and F. Cortés, "Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts," in SPE improved oil recovery conference, 2016.
G. Wichert, N. Okazawa, R. Moore, and J. Belgrave, "In-situ upgrading of heavy oils by low-temperature oxidation in the presence of caustic additives," in SPE International Heavy Oil Symposium, 1995.
L. Wei, J.-H. Zhu, and J.-H. Qi, "Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis," Journal of Fuel Chemistry and Technology, vol. 35, pp. 176-180, 2007.
P. Clark and J. Hyne, "Steam-oil chemical reactions: mechanisms for the aquathermolysis of heavy oils," Aostra J Res, vol. 1, pp. 15-20, 1984.
A. Ambalae, N. Mahinpey, and N. Freitag, "Thermogravimetric studies on pyrolysis and combustion behavior of a heavy oil and its asphaltenes," Energy & fuels, vol. 20, pp. 560-565, 2006.
H. N. Woebcke, S. Narayanan, and A. R. Johnson, "Integrated heavy oil pyrolysis process," ed: Google Patents, 1986.
A. Davletbaev, L. Kovaleva, and T. Babadagli, "Heavy oil production by electromagnetic heating in hydraulically fractured wells," Energy & Fuels, vol. 28, pp. 5737-5744, 2014.
O. A. Alomair and A. S. Almusallam, "Heavy crude oil viscosity reduction and the impact of asphaltene precipitation," Energy & Fuels, vol. 27, pp. 7267-7276, 2013.
J. L. García Zapata and A. de Klerk, "Viscosity changes during mild oxidation of oilsands-derived bitumen: Solvent effects and selectivity," Energy & Fuels, vol. 28, pp. 6242-6248, 2014.
D. Nguyen and V. Balsamo, "Emulsification of heavy oil in aqueous solutions of poly (vinyl alcohol): A method for reducing apparent viscosity of production fluids," Energy & Fuels, vol. 27, pp. 1736-1747, 2013.
I. Md. Saaid, S. Q. A. Mahat, B. Lal, M. I. A. Mutalib, and K. M. Sabil, "Experimental Investigation on the Effectiveness of 1-Butyl-3-methylimidazolium Perchlorate Ionic Liquid as a Reducing Agent for Heavy Oil Upgrading," Industrial & Engineering Chemistry Research, vol. 53, pp. 8279-8284, 2014.
K. Sharma, V. Saxena, A. Kumar, H. Ghildiyal, A. Anuradha, N. Sharma, et al., "Pipeline Transportation of Heavy/Viscous Crude Oil as Water Continuous Emulsion in," SPE India Oil and Gas Conference and Exhibition, 1998.
H. L. Alfonso and Y. D. Drubey, "Propiedades reológicas de emulsiones de petróleo pesado en agua."
J. Colyar, "Has the time for partial upgrading of heavy oil and bitumen arrived?," Petroleum technology quarterly, vol. 14, 2009.
M. Motaghi, P. Saxena, and R. Ravi, "Partial upgrading of heavy oil reserves," Petroleum technology quarterly, vol. 15, 2010.
R. Luhning, A. Anand, T. Blackmore, and D. Lawson, "Pipeline Transportation of Emerging Partially Upgraded Bitumen," Canadian International Petroleum Conference, 2002.
R. Oliemans, G. Ooms, H. Wu, and A. Duijvestijn, "Core-annular oil/water flow: the turbulent-lubricating-film model and measurements in a 5 cm pipe loop," International journal of multiphase flow, vol. 13, pp. 23-31, 1987.
P. Poesio and D. Strazza, "Experiments on Start-Up of an Oil-Water Core Annular Flow Through a Horizontal or Nearly Horizontal Pipe," 13th International Conference on Multiphase Production Technology, 2007.
S. Ghosh, T. Mandal, G. Das, and P. Das, "Review of oil water core annular flow," Renewable and Sustainable Energy Reviews, vol. 13, pp. 1957-1965, 2009.
E. Bobok, D. Magyari, and G. Udvardi, "Heavy oil transport through lubricated pipeline," European Petroleum Conference, 1996.
R. Tao and X. Xu, "Reducing the viscosity of crude oil by pulsed electric or magnetic field," Energy & fuels, vol. 20, pp. 2046-2051, 2006.
J. J. Taber, F. D. Martin, and R. Seright, "EOR screening criteria revisited," in Symposium on improved oil recovery, 1996, pp. 387-415.
J. Taber, F. Martin, and R. Seright, "EOR screening criteria revisited—part 2: applications and impact of oil prices," SPE Reservoir Engineering, vol. 12, pp. 199-206, 1997.
J. J. Taber, F. Martin, and R. Seright, "EOR screening criteria revisited-Part 1: Introduction to screening criteria and enhanced recovery field projects," SPE Reservoir Engineering, vol. 12, pp. 189-198, 1997.
T. Nasr, G. Beaulieu, H. Golbeck, and G. Heck, "Novel Expanding Solvent-SAGD Process" ES-SAGD"," Journal of Canadian Petroleum Technology, vol. 42, 2003.
R. Butler, "SAGD comes of age!," Journal of Canadian Petroleum Technology, vol. 37, 1998.
K. Kisman and K. Yeung, "Numerical study of the SAGD process in the Burnt Lake oil sands lease," in SPE international heavy oil symposium, 1995.
S. Larter, J. Adams, I. Gates, B. Bennett, and H. Huang, "The origin, prediction and impact of oil viscosity heterogeneity on the production characteristics of tar sand and heavy oil reservoirs," Journal of Canadian Petroleum Technology, vol. 47, 2008.
S. Thomas, "Enhanced oil recovery-an overview," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 9-19, 2008.
T. Babadagli, "Evaluation of EOR methods for heavy-oil recovery in naturally fractured reservoirs," Journal of Petroleum Science and Engineering, vol. 37, pp. 25-37, 2003.
M. S. Picha, "Enhanced oil recovery by hot CO2 flooding," in SPE Middle East Oil and Gas Show and Conference, 2007.
M. Islam, B. Erno, and D. Davis, "Hot gas and waterflood equivalence of in situ combustion," Journal of Canadian Petroleum Technology, vol. 31, 1992.
P. L. McGuire, R. Okuno, T. L. Gould, and L. W. Lake, "Ethane-Based EOR: An Innovative and Profitable EOR Opportunity for a Low Price Environment," in SPE Improved Oil Recovery Conference, 2016.
S. Ghedan, "Global laboratory experience of CO2-EOR flooding," in SPE/EAGE Reservoir Characterization & Simulation Conference, 2009.
F. Gozalpour, S. Ren, and B. Tohidi, "CO2 EOR and storage in oil reservoir," Oil & gas science and technology, vol. 60, pp. 537-546, 2005.
G. Oskui, P. Reza, M. A. Jumaa, E. G. Folad, A. Rashed, and S. Patil, "Systematic Approach for Prevention and Remediation of Asphaltene Problems During CO2/Hydrocarbon Injection Project," in The Twenty-first International Offshore and Polar Engineering Conference, 2011.
S. Gharfeh, A. Yen, S. Asomaning, and D. Blumer, "Asphaltene flocculation onset determinations for heavy crude oil and its implications," Petroleum science and technology, vol. 22, pp. 1055-1072, 2004.
R. S. Al-Maamari and J. S. Buckley, "Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production," SPE Reservoir Evaluation & Engineering, vol. 6, pp. 210-214, 2003.
J. M. Lee, S. Shin, S. Ahn, J. H. Chun, K. B. Lee, S. Mun, et al., "Separation of solvent and deasphalted oil for solvent deasphalting process," Fuel Processing Technology, vol. 119, pp. 204-210, 2014.
J. D. Guzmán, C. A. Franco, and F. B. Cortés, "An enhanced-solvent deasphalting process: effect of inclusion of SiO2 nanoparticles in the quality of deasphalted oil," Journal of Nanomaterials, vol. 2017, 2017.
G. Brons and J. M. Yu, "Solvent deasphalting effects on whole cold lake bitumen," Energy & fuels, vol. 9, pp. 641-647, 1995.
E. Buenrostro‐Gonzalez, C. Lira‐Galeana, A. Gil‐Villegas, and J. Wu, "Asphaltene precipitation in crude oils: Theory and experiments," AIChE Journal, vol. 50, pp. 2552-2570, 2004.
D. Hartmann, H. E. Lopes, C. Teixeira, M. C. K. de Oliveira, G. Gonzalez, E. F. Lucas, et al., "Alkanes Induced Asphaltene Precipitation Studies at High Pressure and Temperature in the Presence of Argon," Energy & Fuels, 2016.
S. L. Kokal, J. Najman, S. G. Sayegh, and A. E. George, "Measurement and correlation of asphaltene precipitation from heavy oils by gas injection," Journal of Canadian Petroleum Technology, vol. 31, 1992.
S. H. Ng, "Nonconventional residuum upgrading by solvent deasphalting and fluid catalytic cracking," Energy & fuels, vol. 11, pp. 1127-1136, 1997.
L. M. Arciniegas and T. Babadagli, "Quantitative and visual characterization of asphaltenic components of heavy-oil after solvent interaction at different temperatures and pressures," Fluid Phase Equilibria, vol. 366, pp. 74-87, 2014.
P. Luo, X. Wang, and Y. Gu, "Characterization of asphaltenes precipitated with three light alkanes under different experimental conditions," Fluid Phase Equilibria, vol. 291, pp. 103-110, 2010.
S. Ng, "DEASPHALTING OF NON-CONVENTIONAL RESIDUES."
F. Samedova, A. Kasumova, S. Y. Rashidova, and V. Alieva, "A new method for isolation of asphaltenes from petroleum and its heavy residues," Petroleum Chemistry, vol. 47, pp. 399-401, 2007.
L. Lodi, V. C. Concha, R. Souza, L. Medina, R. Filho, and M. W. Maciel, "An Experimental Study of a Pilot Plant Deasphalting Process in Subcritical and Supercritical Conditions," Petroleum Science and Technology, vol. 32, pp. 2659-2665, 2014.
L. Lodi, V. O. Cárdenas Concha, L. C. Medina, R. Maciel Filho, and M. R. Wolf Maciel, "An Experimental Study of a Pilot Plant Deasphalting Process in CO2 Supercritical," Petroleum Science and Technology, vol. 33, pp. 481-486, 2015.
Z. Liu, G. Yang, Y. Lu, B. Han, and H. Yan, "Phase equilibria of the CO 2–Jiangsu crude oil system and precipitation of heavy components induced by supercritical CO 2," The Journal of supercritical fluids, vol. 16, pp. 27-31, 1999.
H. Edward J. and M. Michael J., "When solvent deasphalting is the most appropriate technology for upgrading residue," presented at the IDTC Conference, London, England, 2006.
F. Cao, D. Jiang, W. Li, P. a. Du, G. Yang, and W. Ying, "Process analysis of the extract unit of vacuum residue through mixed C4 solvent for deasphalting," Chemical Engineering and Processing: Process Intensification, vol. 49, pp. 91-96, 2010.
A. Hirschberg, L. DeJong, B. Schipper, and J. Meijer, "Influence of temperature and pressure on asphaltene flocculation," Society of Petroleum Engineers Journal, vol. 24, pp. 283-293, 1984.
F. Chung, P. Sarathi, and R. Jones, "Modeling of asphaltene and wax precipitation," National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA)1991.
H. Rassamdana, B. Dabir, M. Nematy, M. Farhani, and M. Sahimi, "Asphalt flocculation and deposition: I. The onset of precipitation," AIChE Journal, vol. 42, pp. 10-22, 1996.
D. L. Mitchell and J. G. Speight, "The solubility of asphaltenes in hydrocarbon solvents," Fuel, vol. 52, pp. 149-152, 1973.
J. Long, B.-X. Shen, H. Ling, J.-G. Zhao, and J.-C. Lu, "Improving the Solvent Deasphalting Process by the Co-treating of Residue and Coal," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 35, pp. 1956-1963, 2013.
J. Long, B. Shen, H. Ling, J. Zhao, and J. Lu, "Novel solvent deasphalting process by vacuum residue blending with coal tar," Industrial & Engineering Chemistry Research, vol. 50, pp. 11259-11269, 2011.
M. Ikematsu, I. Honzyo, and K. Sakai, "Process for the solvent deasphalting of asphaltene-containing hydrocarbons," ed: Google Patents, 1985.
O. R. Koseoglu, "Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent," ed: Google Patents, 2009.
O. R. Koseoglu, "Process for upgrading hydrocarbon feedstocks using solid adsorbent and membrane separation of treated product stream," ed: Google Patents, 2012.
OPEC, 2015 World Oil Outlook. Vienna, Austria: OPEC Secretariat, 2015.
H. Alboudwarej, J. J. Felix, S. Taylor, R. Badry, C. Bremner, B. Brough, et al., "La importancia del petróleo pesado," Oilfield review, vol. 18, pp. 38-59, 2006.
IEA, World energy outlook 2012. Paris, France: International Energy Agency, 2012.
J. G. Speight, The desulfurization of heavy oils and residua: CRC Press, 1999.
S. Acevedo, A. Castro, J. G. Negrin, A. Fernández, G. Escobar, V. Piscitelli, et al., "Relations between asphaltene structures and their physical and chemical properties: The rosary-type structure," Energy & fuels, vol. 21, pp. 2165-2175, 2007.
H. Groenzin and O. C. Mullins, "Asphaltene molecular size and structure," The Journal of Physical Chemistry A, vol. 103, pp. 11237-11245, 1999.
O. C. Mullins, "The asphaltenes," Annual Review of Analytical Chemistry, vol. 4, pp. 393-418, 2011.
O. C. Mullins, H. Sabbah, J. l. Eyssautier, A. E. Pomerantz, L. Barré, A. B. Andrews, et al., "Advances in asphaltene science and the Yen–Mullins model," Energy & Fuels, vol. 26, pp. 3986-4003, 2012.
W. H. Richard, "Process of distilling petroleum oil," ed: Google Patents, 1928.
R. R. Rosenbaum, "Process for separating hydrocarbons," ed: Google Patents, 1918.
C. S. Hsu and P. Robinson, Practical advances in petroleum processing vol. 1: Springer Science & Business Media, 2007.
G. Gester Jr, "Solvent Extraction in the Petroleum Industry," ed: ACS Publications, 1951.
G. H. Weber, "Modern Petroleum Processes," in 3rd World Petroleum Congress, 1951.
E. W. Funk, "Behavior of tar sand bitumen with paraffinic solvents and its application to separations for Athabasca tar sands," The Canadian Journal of Chemical Engineering, vol. 57, pp. 333-341, 1979.
L. S. Moreno and T. Babadagli, "Quantitative and visual characterization of asphaltenic components of heavy-oil and bitumen samples after solvent interaction at different temperatures and pressures," in SPE International Symposium on Oilfield Chemistry, 2013.
P. Luo and Y. Gu, "Characterization of a heavy oil–propane system in the presence or absence of asphaltene precipitation," Fluid Phase Equilibria, vol. 277, pp. 1-8, 2009.
N. N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, and P. Pereira-Almao, "Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes," Fuel, vol. 95, pp. 257–262, 2012.
N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 384, pp. 145-149, 2011.
N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Metal Oxide Nanoparticles for Asphaltene Adsorption and Oxidation," Energy & Fuels, vol. 25, pp. 1017-1023, 2011.
N. N. Nassar, "Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies," Energy & Fuels, vol. 24, pp. 4116-4122, 2010.
F. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, and D. B. Riffel, "Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel," Energy & Fuels, vol. 26, pp. 1725-1730, 2012.
C. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.
N. N. Nassar, A. Hassan, and G. Vitale, "Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO 2, ZrO 2, and CeO 2 nanoparticles," Applied Catalysis A: General, vol. 484, pp. 161-171, 2014.
C. A. Franco, M. M. Lozano, S. Acevedo, N. N. Nassar, and F. B. Cortés, "Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms," Energy & Fuels, vol. 30, pp. 264-272, 2015.
ASTM, "D7220-12 Standard Test Method for Sulfur in Automotive, Heating, and Jet Fuels by Monochromatic Energy Dispersive X-ray Fluorescence Spectrometry," ed, 2012.
ASTM, "D1298-12b Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method," ed, 2012.
ASTM, "D7169-11 Standard Test Method for Boiling Point Distribution of Samples with Residues Such as Crude Oils and Atmospheric and Vacuum Residues by High Temperature Gas Chromatography," ed, 2011.
H. A. Barnes, J. F. Hutton, and K. Walters, An introduction to rheology vol. 3: Elsevier, 1989.
M. A. Rao, "Flow and functional models for rheological properties of fluid foods," in Rheology of Fluid, Semisolid, and Solid Foods, ed: Springer, 2014, pp. 27-61.
D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers: John Wiley & Sons, 2010.
J. Murgich, J. Rodríguez, and Y. Aray, "Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins," Energy & Fuels, vol. 10, pp. 68-76, 1996.
S. I. Andersen and J. G. Speight, "Petroleum resins: separation, character, and role in petroleum," Petroleum science and technology, vol. 19, pp. 1-34, 2001.
J. Speight, "Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum," Oil & gas science and technology, vol. 59, pp. 467-477, 2004.
J. J. Adams, "Asphaltene adsorption, a literature review," Energy & Fuels, vol. 28, pp. 2831-2856, 2014.
N. N. Nassar, T. Tatiana Montoya, C. A. Franco, F. B. Cortés, and P. R. Pereira-Almao, "A New Model for Describing the Adsorption of Asphaltenes on Porous Media at a High Pressure and Temperature under Flow Conditions," Energy & Fuels, 2015.
S. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs," Industrial & Engineering Chemistry Research, 2016.
C. A. Franco, N. N. Nassar, T. Montoya, M. A. Ruíz, and F. B. Cortés, "Influence of asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles," Energy & Fuels, vol. 29, pp. 1610-1621, 2015.
R. Zabala, C. Franco, and F. Cortés, "Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test," in SPE Improved Oil Recovery Conference, 2016.
S.-Y. Yang, G. Hirasaki, S. Basu, and R. Vaidya, "Statistical analysis on parameters that affect wetting for the crude oil/brine/mica system," Journal of Petroleum Science and Engineering, vol. 33, pp. 203-215, 2002.
T. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”," Energy & Fuels, vol. 28, pp. 4963-4975, 2014.
N. N. Nassar, T. Montoya, C. A. Franco, F. B. Cortés, and P. Pereira-Almao, "A new model for describing the adsorption of asphaltenes on porous media at a high pressure and temperature under flow conditions," Energy & Fuels, vol. 29, pp. 4210-4221, 2015.
N. N. Nassar, S. Betancur, S. c. Acevedo, C. A. Franco, and F. B. Cortés, "Development of a Population Balance Model to Describe the Influence of Shear and Nanoparticles on the Aggregation and Fragmentation of Asphaltene Aggregates," Industrial & Engineering Chemistry Research, vol. 54, pp. 8201-8211, 2015.
T. Montoya, B. L. Argel, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles," Petroleum Science, pp. 1-11, 2016.
J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.
C. A. Franco, T. Montoya, N. N. Nassar, and F. B. Cortés, "Nioand pdo supported on fumed silica nanoparticles for adsorption and catalytic steam gasification of colombian c7asphaltenes," Handbook on Oil Production Research; Nova Science Publishers: Hauppauge, NY, USA, pp. 101-145, 2014.
C. Franco and C. Franco, "Synthesis and application of supported metallic and multi-metallic oxides nanoparticles for in-situ upgrading and inhibition of formation damage," Universidad Nacional de Colombia-Sede Medellín: Medellín, Antioquia, Colombia, 2015.
N. N. Nassar, C. A. Franco, T. Montoya, F. B. Cortés, and A. Hassan, "Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C7 asphaltenes," Fuel, vol. 156, pp. 110-120, 2015.
T. Montoya, B. L. Argel, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles," Petroleum Science, vol. 13, pp. 561-571, 2016.
C. A. Franco-Ariza, J. D. Guzmán-Calle, and F. B. Cortés-Correa, "Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity," Dyna, vol. 83, pp. 171-179, 2016.
J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.
S. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs," Industrial & Engineering Chemistry Research, vol. 55, pp. 6122-6132, 2016.
F. B. Cortés, T. Montoya, S. Acevedo, N. N. Nassar, and C. A. Franco, "Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration," CT&F-Ciencia, Tecnología y Futuro, vol. 6, pp. 89-106, 2016.
M. Madhi, A. Bemani, A. Daryasafar, and M. R. Khosravi Nikou, "Experimental and modeling studies of the effects of different nanoparticles on asphaltene adsorption," Petroleum Science and Technology, vol. 35, pp. 242-248, 2017.
V. Vargas, J. Castillo, R. Ocampo-Torres, C.-P. Lienemann, and B. Bouyssiere, "Surface modification of SiO2 nanoparticles to increase asphaltene adsorption," Petroleum Science and Technology, vol. 36, pp. 618-624, 2018.
C. Franco, E. Patiño, P. Benjumea, M. A. Ruiz, and F. B. Cortés, "Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina," Fuel, vol. 105, pp. 408-414, 2013.
N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation," Journal of colloid and interface science, vol. 360, pp. 233-238, 2011.
N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles," Energy & Fuels, vol. 25, pp. 3961-3965, 2011.
N. N. Nassar, A. Hassan, and G. Vitale, "Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles," Applied Catalysis A: General, vol. 484, pp. 161-171, 2014.
O. E. Medina, J. Gallego, D. Arias-Madrid, F. B. Cortés, and C. A. Franco, "Optimization of the load of transition metal oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 nanoparticles in catalytic steam decomposition of n-C7 asphaltenes at low temperatures," Nanomaterials, vol. 9, p. 401, 2019.
O. E. Medina, J. Gallego, L. G. Restrepo, F. B. Cortés, and C. A. Franco, "Influence of the Ce4+/Ce3+ Redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasification," Nanomaterials, vol. 9, p. 734, 2019.
T. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”," Energy & Fuels, vol. 28, pp. 4963-4975, 2014.
W. Pang, J.-K. Lee, S.-H. Yoon, I. Mochida, T. Ida, and M. Ushio, "Compositional analysis of deasphalted oils from Arabian crude and their hydrocracked products," Fuel Processing Technology, vol. 91, pp. 1517-1524, 2010.
N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes," Energy & Fuels, vol. 25, pp. 1566-1570, 2011.
M. M. Lozano, C. A. Franco, S. A. Acevedo, N. N. Nassar, and F. B. Cortés, "Effects of resin I on the catalytic oxidation of n-C 7 asphaltenes in the presence of silica-based nanoparticles," RSC advances, vol. 6, pp. 74630-74642, 2016.
B. J. Berne and R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation, 2000.
J. Stetefeld, S. A. McKenna, and T. R. Patel, "Dynamic light scattering: a practical guide and applications in biomedical sciences," Biophysical reviews, vol. 8, pp. 409-427, 2016.
J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications: Academic press, 2013.
S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.
E. IP 469, "Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection," ed: Energy Institute London, 2001.
O. Talu and F. Meunier, "Adsorption of associating molecules in micropores and application to water on carbon," AIChE journal, vol. 42, pp. 809-819, 1996.
N. N. Nassar, S. Betancur, S. c. Acevedo, C. A. Franco, and F. B. Cortés, "Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates," Industrial & Engineering Chemistry Research, vol. 54, pp. 8201-8211, 2015.
D. C. Montgomery, Design and analysis of experiments: John wiley & sons, 2017.
T. Ozawa, "A new method of analyzing thermogravimetric data," Bulletin of the chemical society of Japan, vol. 38, pp. 1881-1886, 1965.
J. H. Flynn and L. A. Wall, "A quick, direct method for the determination of activation energy from thermogravimetric data," Journal of Polymer Science Part B: Polymer Letters, vol. 4, pp. 323-328, 1966.
C. Doyle, "Synthesis and evaluation of thermally stable polymers. II," Polymer evaluation. Appl Polym Sci, vol. 5, pp. 285-292, 1961.
N. N. Nassar, A. Hassan, G. Luna, and P. Pereira-Almao, "Comparative study on thermal cracking of Athabasca bitumen," Journal of thermal analysis and calorimetry, vol. 114, pp. 465-472, 2013.
J. A. Koots and J. G. Speight, "Relation of petroleum resins to asphaltenes," Fuel, vol. 54, pp. 179-184, 1975.
S. Akmaz, O. Iscan, M. Gurkaynak, and M. Yasar, "The structural characterization of saturate, aromatic, resin, and asphaltene fractions of Batiraman crude oil," Petroleum Science and Technology, vol. 29, pp. 160-171, 2011.
M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, et al., "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)," Pure and Applied Chemistry, vol. 87, pp. 1051-1069, 2015.
D. Stratiev, I. Shishkova, T. Tsaneva, M. Mitkova, and D. Yordanov, "Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions," Fuel, vol. 170, pp. 115-129, 2016.
M. Shojaei, M. Ghanavati, and A. R. SA, "Effects of Asphaltene content and Temperature on Viscosity of Iranian Heavy Crude Oil: Experimental Study," 2014.
O. E. Medina, C. Olmos, S. H. Lopera, F. B. Cortés, and C. A. Franco, "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, vol. 12, p. 4671, 2019.
E. Byambajav and Y. Ohtsuka, "Hydrocracking of asphaltene with metal catalysts supported on SBA-15," Applied Catalysis A: General, vol. 252, pp. 193-204, 2003.
H. Purón, J. L. Pinilla, J. Montoya de la Fuente, and M. Millán, "Effect of metal loading in NiMo/Al2O3 catalysts on Maya vacuum residue hydrocracking," Energy & Fuels, vol. 31, pp. 4843-4850, 2017.
G. Cui, J. Wang, H. Fan, X. Sun, Y. Jiang, S. Wang, et al., "Towards understanding the microstructures and hydrocracking performance of sulfided Ni–W catalysts: Effect of metal loading," Fuel processing technology, vol. 92, pp. 2320-2327, 2011.
S. Suganuma and N. Katada, "Innovation of catalytic technology for upgrading of crude oil in petroleum refinery," Fuel Processing Technology, vol. 208, p. 106518, 2020.
J. Ancheyta-Juarez, S. Maity, G. Betancourt-Rivera, G. Centeno-Nolasco, P. Rayo-Mayoral, and M. T. Gómez-Pérez, "Comparison of different Ni-Mo/alumina catalysts on hydrodemetallization of Maya crude oil," Applied Catalysis A: General, vol. 216, pp. 195-208, 2001.
S. T. Oyama, "Novel catalysts for advanced hydroprocessing: transition metal phosphides," Journal of catalysis, vol. 216, pp. 343-352, 2003.
E. Furimsky, "Selection of catalysts and reactors for hydroprocessing," Applied Catalysis A: General, vol. 171, pp. 177-206, 1998.
P. E. Boahene, K. K. Soni, A. K. Dalai, and J. Adjaye, "Hydroprocessing of heavy gas oils using FeW/SBA-15 catalysts: Experimentals, optimization of metals loading, and kinetics study," Catalysis today, vol. 207, pp. 101-111, 2013.
A. Ardiyanti, S. Khromova, R. Venderbosch, V. Yakovlev, and H. Heeres, "Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support," Applied Catalysis B: Environmental, vol. 117, pp. 105-117, 2012.
H. Scheffe, "The simplex‐centroid design for experiments with mixtures," Journal of the Royal Statistical Society: Series B (Methodological), vol. 25, pp. 235-251, 1963.
L. Cardona, D. Arias-Madrid, F. B. Cortés, S. H. Lopera, and C. A. Franco, "Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO-Functionalized SiO2 nanoparticulated catalysts," Catalysts, vol. 8, p. 132, 2018.
R. Chen, Z. Zhang, C. Feng, K. Hu, M. Li, Y. Li, et al., "Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As (V) removal from water solution," Microporous and Mesoporous Materials, vol. 131, pp. 115-121, 2010.
J. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik, et al., "Cu–Ni nanoalloy phase diagram–Prediction and experiment," Calphad, vol. 45, pp. 33-39, 2014.
J. Sopoušek, A. Kryštofová, M. Premović, O. Zobač, S. Polsterová, P. Brož, et al., "Au-Ni nanoparticles: Phase diagram prediction, synthesis, characterization, and thermal stability," Calphad, vol. 58, pp. 25-33, 2017.
N. Dumala, B. Mangalampalli, S. Chinde, S. I. Kumari, M. Mahoob, M. F. Rahman, et al., "Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure," Mutagenesis, vol. 32, pp. 417-427, 2017.
M. Ates, V. Demir, Z. Arslan, M. Camas, and F. Celik, "Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater," Water, Air, & Soil Pollution, vol. 227, p. 70, 2016.
A. Rostek, K. Loza, M. Heggen, and M. Epple, "X-ray powder diffraction to analyse bimetallic core–shell nanoparticles (gold and palladium; 7–8 nm)," RSC advances, vol. 9, pp. 26628-26636, 2019.
M. S. Mazloom, A. Hemmati-Sarapardeh, M. M. Husein, H. S. Behbahani, and S. Zendehboudi, "Application of nanoparticles for asphaltenes adsorption and oxidation: A critical review of challenges and recent progress," Fuel, vol. 279, p. 117763, 2020.
N. N. Nassar, A. Hassan, G. Luna, and P. Pereira-Almao, "Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces," Catalysis today, vol. 207, pp. 127-132, 2013.
N. N. Marei, N. N. Nassar, G. Vitale, A. Hassan, and M. J. P. Zurita, "Effects of the size of NiO nanoparticles on the catalytic oxidation of Quinolin-65 as an asphaltene model compound," Fuel, vol. 207, pp. 423-437, 2017.
J. Zhang, Y. Wang, R. Ma, and D. Wu, "Investigation of alumina-supported Ni and Ni-Pd catalysts by partial oxidation and steam reforming of n-octane," Korean Journal of Chemical Engineering, vol. 20, pp. 288-292, 2003.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 100 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleos
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81759/3/1128275231%20-%202022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81759/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81759/5/1128275231%20-%202022.pdf.jpg
bitstream.checksum.fl_str_mv c90eef83ff896e3b87dc1ade7b20d39e
8153f7789df02f0a4c9e079953658ab2
7fc1f7c0e9f6bf0953fae5ca80658da9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089331483082752
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Correa, Farid Bernardo3b35826f8c2b2379b0289696615550a4600Guzmán Calle, Juan Daviddf739c036fb21e050e8eff504d4006dcFenómenos de Superficie Michael Polanyi2022-07-29T14:31:36Z2022-07-29T14:31:36Z2020https://repositorio.unal.edu.co/handle/unal/81759Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasThe energy landscape and the technical alternatives to supply the growing energy demand have made the oil and gas industry focus on heavy and extra-heavy oils. However, the production, transportation, and refining processes for this kind of hydrocarbon bring significant technological challenges. In this scenario, the enhanced solvent de-asphalting (e-SDA) process was proposed as highly innovative nanotechnology for improving the deasphalted oil (DAO) quality and catalytic conversion of the pitch. There was proven that the presence of nanoparticles generates DAO samples with lower asphaltene and sulfur content, higher °API and distillable fraction, and expected viscosity values than those obtained with the traditional solvent deasphalting process (SDA). The catalytic decomposition of the pitch or residue there was also potentiated by the presence of nanoparticles optimized with this purpose, reducing the temperature at which this process occurs and producing more gases helpful in generating energy or for being used in enhanced oil recovery methods.El panorama energético mundial y diferentes alternativas técnicas existentes para abastecer la creciente demanda de energía han hecho que en la industria del petróleo y el gas se dirija la atención a los crudos pesados y extrapesados. Sin embargo, los procesos de producción, transporte y refinación de este tipo de hidrocarburo presentan importantes desafíos tecnológicos. En este escenario, el proceso de desasfaltado con solventes mejorado con nanotecnología (e-SDA) se propuso como una alternativa altamente innovadora para mejorar la calidad del crudo desasfaltado (DAO) y los procesos de conversión catalítica del pitch. Se comprobó que la presencia de nanopartículas genera DAO con menor contenido de asfaltenos y azufre, mayor ºAPI y fracción destilable, y valores de viscosidad esperados más bajos que los obtenidos con el proceso tradicional de desasfaltado por solventes (SDA). La descomposición catalítica del pitch, o residuo, también fue potenciada por la presencia de nanopartículas optimizadas con este fin, reduciendo la temperatura a la que ocurre este proceso y produciendo una mayor cantidad de gases útiles para generar energía o para ser utilizados en métodos de recuperación mejorada de petróleo. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería de PetróleosMejoramiento en sitio de petróleo pesado y extrapesadoÁrea Curricular de Ingeniería Química e Ingeniería de Petróleos100 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería de PetróleosDepartamento de Procesos y EnergíaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaIndustria del petróleoRecursos energéticosHeavy oilSolvent deasphaltingNanoparticlesenhanced-Solvent deasphaltingAsphaltenesCatalytic oxidationSimplex-centroid mixture designCrudo pesadoNanopartículasAsfaltenosOxidación catalíticaDiseño de mezclas simple con centroideNanoparticles enhanced solvent deasphalting (e-SDA) and catalytic cracking oxidation of PitchDesarrollo de un proceso de desasfaltado con solventes mejorado con nanopartículas (e-SDA) y descomposición catalítica del PitchTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TML. Capuano, "International energy outlook 2018 (IEO2018)," US Energy Information Administration (EIA): Washington, DC, USA, vol. 2018, p. 21, 2018.I. O. W. Outlook, "World Energy Outlook Series," Paris, France: International Energy Agency, 2018.A. Demirbas, A. Bafail, and A.-S. Nizami, "Heavy oil upgrading: Unlocking the future fuel supply," Petroleum Science and Technology, vol. 34, pp. 303-308, 2016.Z. LIU, H. WANG, G. Blackbourn, F. MA, Z. HE, Z. WEN, et al., "Heavy oils and oil sands: global distribution and resource assessment," Acta Geologica Sinica‐English Edition, vol. 93, pp. 199-212, 2019.UPME. (2012, 2016/02/22). Escenarios de Oferta y Demanda de Hidrocarburos en Colombia. Available: http://www.upme.gov.co/Docs/Publicaciones/2012/Escenarios_Oferta_Demanda_Hidrocarburos.pdfCampetrol. (2015, 2016/02/21). Crudos pesados: el reto para Colombia. Available: http://campetrol.org/crudos-pesados-el-reto-para-colombia/J. G. Speight, Heavy and extra-heavy oil upgrading technologies: Gulf Professional Publishing, 2013.J. G. Speight, The chemistry and technology of petroleum, Fourth ed.: CRC press, 2006.A.-Y. Huc, Heavy crude oils: from geology to upgrading: an overview: Editions Technip, 2010.A. Hinkle and M. Batzle, "Heavy oils: A worldwide overview," The Leading Edge, vol. 25, pp. 742-749, 2006.R. Martínez-Palou, M. de Lourdes Mosqueira, B. Zapata-Rendón, E. Mar-Juárez, C. Bernal-Huicochea, J. de la Cruz Clavel-López, et al., "Transportation of heavy and extra-heavy crude oil by pipeline: A review," Journal of Petroleum Science and Engineering, vol. 75, pp. 274-282, 2011.M. Ghanavati, M.-J. Shojaei, and A. Ramazani, "Effects of asphaltene content and temperature on viscosity of Iranian heavy crude oil: experimental and modeling study," Energy & Fuels, vol. 27, pp. 7217-7232, 2013.K. Leontaritis, J. Amaefule, and R. Charles, "A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition," SPE Production & Facilities, vol. 9, pp. 157-164, 1994.E. Y. Sheu and O. C. Mullins, Fundamentals and applications: Springer, 1995.J. Woods, J. Kung, D. Kingston, L. Kotlyar, B. Sparks, and T. McCracken, "Canadian crudes: A comparative study of SARA fractions from a modified HPLC separation technique," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 151-163, 2008.K. Akbarzadeh, H. Alboudwarej, W. Y. Svrcek, and H. W. Yarranton, "A generalized regular solution model for asphaltene precipitation from n-alkane diluted heavy oils and bitumens," Fluid Phase Equilibria, vol. 232, pp. 159-170, 2005.P. Luo and Y. Gu, "Effects of asphaltene content on the heavy oil viscosity at different temperatures," Fuel, vol. 86, pp. 1069-1078, 2007.I. Hénaut, L. Barré, J. Argillier, F. Brucy, and R. Bouchard, "Rheological and structural properties of heavy crude oils in relation with their asphaltenes content," in SPE International Symposium on Oilfield Chemistry, 2001.A. H. Kamran Akbarzadeh, Abdel Kharrat, Dan Zhang, Stephan Allenson, Jefferson Creek, Shah Kabir, A. Jamaluddin, Alan G. Marshall, Ryan Rodgers, Oliver C. Mullins, Trond Solbakken, "Asphaltenes—Problematic but Rich in Potential," Oil Field Review, pp. 22-43, 2007.R. R. Chianelli, M. Siadati, A. Mehta, J. Pople, L. C. Ortega, and L. Y. Chiang, "Self-assembly of asphaltene aggregates: synchrotron, simulation and chemical modeling techniques applied to problems in the structure and reactivity of asphaltenes," in Asphaltenes, Heavy Oils, and Petroleomics, ed: Springer, 2007, pp. 375-400.E. A. Taborda, V. Alvarado, C. A. Franco, and F. B. Cortés, "Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles," Fuel, vol. 189, pp. 322-333, 2017.E. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, and F. B. Cortes, "Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions," Fuel, vol. 184, pp. 222-232, 2016.W. Chuan, L. Guang-Lun, C.-j. YAO, K.-j. SUN, P.-y. Gai, and Y.-b. CAO, "Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst," Journal of Fuel Chemistry and Technology, vol. 38, pp. 684-690, 2010.S. Chavan, H. Kini, and R. Ghosal, "Process for sulfur reduction from high viscosity petroleum oils," International Journal of Environmental Science and Development, vol. 3, p. 228, 2012.R. Moore, C. Laureshen, S. Mehta, M. Ursenbach, J. Belgrave, J. Weissman, et al., "A downhole catalytic upgrading process for heavy oil using in situ combustion," Journal of Canadian Petroleum Technology, vol. 38, 1999.I. Gates, N. Chakrabarty, R. Moore, S. Mehta, E. Zalewski, and P. Pereira, "In situ upgrading of Llancanelo heavy oil using in situ combustion and a downhole catalyst bed," Journal of Canadian Petroleum Technology, vol. 47, 2008.W. R. Shu, "In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant," ed: Google Patents, 1983.R. Hashemi, N. N. Nassar, and P. P. Almao, "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, vol. 133, pp. 374-387, 2014.K. Guo, H. Li, and Z. Yu, "Metallic Nanoparticles for Enhanced Heavy Oil Recovery: Promises and Challenges," Energy Procedia, vol. 75, pp. 2068-2073, 2015.C. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, and F. B. Cortés, "Adsorption and Subsequent Oxidation of Colombian Asphaltenes onto Nickel and/or Palladium Oxide Supported on Fumed Silica Nanoparticles," Energy & Fuels, vol. 27, pp. 7336-7347, 2013.C. Franco, L. Cardona, S. Lopera, J. Mejía, and F. Cortés, "Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts," in SPE improved oil recovery conference, 2016.G. Wichert, N. Okazawa, R. Moore, and J. Belgrave, "In-situ upgrading of heavy oils by low-temperature oxidation in the presence of caustic additives," in SPE International Heavy Oil Symposium, 1995.L. Wei, J.-H. Zhu, and J.-H. Qi, "Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis," Journal of Fuel Chemistry and Technology, vol. 35, pp. 176-180, 2007.P. Clark and J. Hyne, "Steam-oil chemical reactions: mechanisms for the aquathermolysis of heavy oils," Aostra J Res, vol. 1, pp. 15-20, 1984.A. Ambalae, N. Mahinpey, and N. Freitag, "Thermogravimetric studies on pyrolysis and combustion behavior of a heavy oil and its asphaltenes," Energy & fuels, vol. 20, pp. 560-565, 2006.H. N. Woebcke, S. Narayanan, and A. R. Johnson, "Integrated heavy oil pyrolysis process," ed: Google Patents, 1986.A. Davletbaev, L. Kovaleva, and T. Babadagli, "Heavy oil production by electromagnetic heating in hydraulically fractured wells," Energy & Fuels, vol. 28, pp. 5737-5744, 2014.O. A. Alomair and A. S. Almusallam, "Heavy crude oil viscosity reduction and the impact of asphaltene precipitation," Energy & Fuels, vol. 27, pp. 7267-7276, 2013.J. L. García Zapata and A. de Klerk, "Viscosity changes during mild oxidation of oilsands-derived bitumen: Solvent effects and selectivity," Energy & Fuels, vol. 28, pp. 6242-6248, 2014.D. Nguyen and V. Balsamo, "Emulsification of heavy oil in aqueous solutions of poly (vinyl alcohol): A method for reducing apparent viscosity of production fluids," Energy & Fuels, vol. 27, pp. 1736-1747, 2013.I. Md. Saaid, S. Q. A. Mahat, B. Lal, M. I. A. Mutalib, and K. M. Sabil, "Experimental Investigation on the Effectiveness of 1-Butyl-3-methylimidazolium Perchlorate Ionic Liquid as a Reducing Agent for Heavy Oil Upgrading," Industrial & Engineering Chemistry Research, vol. 53, pp. 8279-8284, 2014.K. Sharma, V. Saxena, A. Kumar, H. Ghildiyal, A. Anuradha, N. Sharma, et al., "Pipeline Transportation of Heavy/Viscous Crude Oil as Water Continuous Emulsion in," SPE India Oil and Gas Conference and Exhibition, 1998.H. L. Alfonso and Y. D. Drubey, "Propiedades reológicas de emulsiones de petróleo pesado en agua."J. Colyar, "Has the time for partial upgrading of heavy oil and bitumen arrived?," Petroleum technology quarterly, vol. 14, 2009.M. Motaghi, P. Saxena, and R. Ravi, "Partial upgrading of heavy oil reserves," Petroleum technology quarterly, vol. 15, 2010.R. Luhning, A. Anand, T. Blackmore, and D. Lawson, "Pipeline Transportation of Emerging Partially Upgraded Bitumen," Canadian International Petroleum Conference, 2002.R. Oliemans, G. Ooms, H. Wu, and A. Duijvestijn, "Core-annular oil/water flow: the turbulent-lubricating-film model and measurements in a 5 cm pipe loop," International journal of multiphase flow, vol. 13, pp. 23-31, 1987.P. Poesio and D. Strazza, "Experiments on Start-Up of an Oil-Water Core Annular Flow Through a Horizontal or Nearly Horizontal Pipe," 13th International Conference on Multiphase Production Technology, 2007.S. Ghosh, T. Mandal, G. Das, and P. Das, "Review of oil water core annular flow," Renewable and Sustainable Energy Reviews, vol. 13, pp. 1957-1965, 2009.E. Bobok, D. Magyari, and G. Udvardi, "Heavy oil transport through lubricated pipeline," European Petroleum Conference, 1996.R. Tao and X. Xu, "Reducing the viscosity of crude oil by pulsed electric or magnetic field," Energy & fuels, vol. 20, pp. 2046-2051, 2006.J. J. Taber, F. D. Martin, and R. Seright, "EOR screening criteria revisited," in Symposium on improved oil recovery, 1996, pp. 387-415.J. Taber, F. Martin, and R. Seright, "EOR screening criteria revisited—part 2: applications and impact of oil prices," SPE Reservoir Engineering, vol. 12, pp. 199-206, 1997.J. J. Taber, F. Martin, and R. Seright, "EOR screening criteria revisited-Part 1: Introduction to screening criteria and enhanced recovery field projects," SPE Reservoir Engineering, vol. 12, pp. 189-198, 1997.T. Nasr, G. Beaulieu, H. Golbeck, and G. Heck, "Novel Expanding Solvent-SAGD Process" ES-SAGD"," Journal of Canadian Petroleum Technology, vol. 42, 2003.R. Butler, "SAGD comes of age!," Journal of Canadian Petroleum Technology, vol. 37, 1998.K. Kisman and K. Yeung, "Numerical study of the SAGD process in the Burnt Lake oil sands lease," in SPE international heavy oil symposium, 1995.S. Larter, J. Adams, I. Gates, B. Bennett, and H. Huang, "The origin, prediction and impact of oil viscosity heterogeneity on the production characteristics of tar sand and heavy oil reservoirs," Journal of Canadian Petroleum Technology, vol. 47, 2008.S. Thomas, "Enhanced oil recovery-an overview," Oil & Gas Science and Technology-Revue de l'IFP, vol. 63, pp. 9-19, 2008.T. Babadagli, "Evaluation of EOR methods for heavy-oil recovery in naturally fractured reservoirs," Journal of Petroleum Science and Engineering, vol. 37, pp. 25-37, 2003.M. S. Picha, "Enhanced oil recovery by hot CO2 flooding," in SPE Middle East Oil and Gas Show and Conference, 2007.M. Islam, B. Erno, and D. Davis, "Hot gas and waterflood equivalence of in situ combustion," Journal of Canadian Petroleum Technology, vol. 31, 1992.P. L. McGuire, R. Okuno, T. L. Gould, and L. W. Lake, "Ethane-Based EOR: An Innovative and Profitable EOR Opportunity for a Low Price Environment," in SPE Improved Oil Recovery Conference, 2016.S. Ghedan, "Global laboratory experience of CO2-EOR flooding," in SPE/EAGE Reservoir Characterization & Simulation Conference, 2009.F. Gozalpour, S. Ren, and B. Tohidi, "CO2 EOR and storage in oil reservoir," Oil & gas science and technology, vol. 60, pp. 537-546, 2005.G. Oskui, P. Reza, M. A. Jumaa, E. G. Folad, A. Rashed, and S. Patil, "Systematic Approach for Prevention and Remediation of Asphaltene Problems During CO2/Hydrocarbon Injection Project," in The Twenty-first International Offshore and Polar Engineering Conference, 2011.S. Gharfeh, A. Yen, S. Asomaning, and D. Blumer, "Asphaltene flocculation onset determinations for heavy crude oil and its implications," Petroleum science and technology, vol. 22, pp. 1055-1072, 2004.R. S. Al-Maamari and J. S. Buckley, "Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production," SPE Reservoir Evaluation & Engineering, vol. 6, pp. 210-214, 2003.J. M. Lee, S. Shin, S. Ahn, J. H. Chun, K. B. Lee, S. Mun, et al., "Separation of solvent and deasphalted oil for solvent deasphalting process," Fuel Processing Technology, vol. 119, pp. 204-210, 2014.J. D. Guzmán, C. A. Franco, and F. B. Cortés, "An enhanced-solvent deasphalting process: effect of inclusion of SiO2 nanoparticles in the quality of deasphalted oil," Journal of Nanomaterials, vol. 2017, 2017.G. Brons and J. M. Yu, "Solvent deasphalting effects on whole cold lake bitumen," Energy & fuels, vol. 9, pp. 641-647, 1995.E. Buenrostro‐Gonzalez, C. Lira‐Galeana, A. Gil‐Villegas, and J. Wu, "Asphaltene precipitation in crude oils: Theory and experiments," AIChE Journal, vol. 50, pp. 2552-2570, 2004.D. Hartmann, H. E. Lopes, C. Teixeira, M. C. K. de Oliveira, G. Gonzalez, E. F. Lucas, et al., "Alkanes Induced Asphaltene Precipitation Studies at High Pressure and Temperature in the Presence of Argon," Energy & Fuels, 2016.S. L. Kokal, J. Najman, S. G. Sayegh, and A. E. George, "Measurement and correlation of asphaltene precipitation from heavy oils by gas injection," Journal of Canadian Petroleum Technology, vol. 31, 1992.S. H. Ng, "Nonconventional residuum upgrading by solvent deasphalting and fluid catalytic cracking," Energy & fuels, vol. 11, pp. 1127-1136, 1997.L. M. Arciniegas and T. Babadagli, "Quantitative and visual characterization of asphaltenic components of heavy-oil after solvent interaction at different temperatures and pressures," Fluid Phase Equilibria, vol. 366, pp. 74-87, 2014.P. Luo, X. Wang, and Y. Gu, "Characterization of asphaltenes precipitated with three light alkanes under different experimental conditions," Fluid Phase Equilibria, vol. 291, pp. 103-110, 2010.S. Ng, "DEASPHALTING OF NON-CONVENTIONAL RESIDUES."F. Samedova, A. Kasumova, S. Y. Rashidova, and V. Alieva, "A new method for isolation of asphaltenes from petroleum and its heavy residues," Petroleum Chemistry, vol. 47, pp. 399-401, 2007.L. Lodi, V. C. Concha, R. Souza, L. Medina, R. Filho, and M. W. Maciel, "An Experimental Study of a Pilot Plant Deasphalting Process in Subcritical and Supercritical Conditions," Petroleum Science and Technology, vol. 32, pp. 2659-2665, 2014.L. Lodi, V. O. Cárdenas Concha, L. C. Medina, R. Maciel Filho, and M. R. Wolf Maciel, "An Experimental Study of a Pilot Plant Deasphalting Process in CO2 Supercritical," Petroleum Science and Technology, vol. 33, pp. 481-486, 2015.Z. Liu, G. Yang, Y. Lu, B. Han, and H. Yan, "Phase equilibria of the CO 2–Jiangsu crude oil system and precipitation of heavy components induced by supercritical CO 2," The Journal of supercritical fluids, vol. 16, pp. 27-31, 1999.H. Edward J. and M. Michael J., "When solvent deasphalting is the most appropriate technology for upgrading residue," presented at the IDTC Conference, London, England, 2006.F. Cao, D. Jiang, W. Li, P. a. Du, G. Yang, and W. Ying, "Process analysis of the extract unit of vacuum residue through mixed C4 solvent for deasphalting," Chemical Engineering and Processing: Process Intensification, vol. 49, pp. 91-96, 2010.A. Hirschberg, L. DeJong, B. Schipper, and J. Meijer, "Influence of temperature and pressure on asphaltene flocculation," Society of Petroleum Engineers Journal, vol. 24, pp. 283-293, 1984.F. Chung, P. Sarathi, and R. Jones, "Modeling of asphaltene and wax precipitation," National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA)1991.H. Rassamdana, B. Dabir, M. Nematy, M. Farhani, and M. Sahimi, "Asphalt flocculation and deposition: I. The onset of precipitation," AIChE Journal, vol. 42, pp. 10-22, 1996.D. L. Mitchell and J. G. Speight, "The solubility of asphaltenes in hydrocarbon solvents," Fuel, vol. 52, pp. 149-152, 1973.J. Long, B.-X. Shen, H. Ling, J.-G. Zhao, and J.-C. Lu, "Improving the Solvent Deasphalting Process by the Co-treating of Residue and Coal," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 35, pp. 1956-1963, 2013.J. Long, B. Shen, H. Ling, J. Zhao, and J. Lu, "Novel solvent deasphalting process by vacuum residue blending with coal tar," Industrial & Engineering Chemistry Research, vol. 50, pp. 11259-11269, 2011.M. Ikematsu, I. Honzyo, and K. Sakai, "Process for the solvent deasphalting of asphaltene-containing hydrocarbons," ed: Google Patents, 1985.O. R. Koseoglu, "Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent," ed: Google Patents, 2009.O. R. Koseoglu, "Process for upgrading hydrocarbon feedstocks using solid adsorbent and membrane separation of treated product stream," ed: Google Patents, 2012.OPEC, 2015 World Oil Outlook. Vienna, Austria: OPEC Secretariat, 2015.H. Alboudwarej, J. J. Felix, S. Taylor, R. Badry, C. Bremner, B. Brough, et al., "La importancia del petróleo pesado," Oilfield review, vol. 18, pp. 38-59, 2006.IEA, World energy outlook 2012. Paris, France: International Energy Agency, 2012.J. G. Speight, The desulfurization of heavy oils and residua: CRC Press, 1999.S. Acevedo, A. Castro, J. G. Negrin, A. Fernández, G. Escobar, V. Piscitelli, et al., "Relations between asphaltene structures and their physical and chemical properties: The rosary-type structure," Energy & fuels, vol. 21, pp. 2165-2175, 2007.H. Groenzin and O. C. Mullins, "Asphaltene molecular size and structure," The Journal of Physical Chemistry A, vol. 103, pp. 11237-11245, 1999.O. C. Mullins, "The asphaltenes," Annual Review of Analytical Chemistry, vol. 4, pp. 393-418, 2011.O. C. Mullins, H. Sabbah, J. l. Eyssautier, A. E. Pomerantz, L. Barré, A. B. Andrews, et al., "Advances in asphaltene science and the Yen–Mullins model," Energy & Fuels, vol. 26, pp. 3986-4003, 2012.W. H. Richard, "Process of distilling petroleum oil," ed: Google Patents, 1928.R. R. Rosenbaum, "Process for separating hydrocarbons," ed: Google Patents, 1918.C. S. Hsu and P. Robinson, Practical advances in petroleum processing vol. 1: Springer Science & Business Media, 2007.G. Gester Jr, "Solvent Extraction in the Petroleum Industry," ed: ACS Publications, 1951.G. H. Weber, "Modern Petroleum Processes," in 3rd World Petroleum Congress, 1951.E. W. Funk, "Behavior of tar sand bitumen with paraffinic solvents and its application to separations for Athabasca tar sands," The Canadian Journal of Chemical Engineering, vol. 57, pp. 333-341, 1979.L. S. Moreno and T. Babadagli, "Quantitative and visual characterization of asphaltenic components of heavy-oil and bitumen samples after solvent interaction at different temperatures and pressures," in SPE International Symposium on Oilfield Chemistry, 2013.P. Luo and Y. Gu, "Characterization of a heavy oil–propane system in the presence or absence of asphaltene precipitation," Fluid Phase Equilibria, vol. 277, pp. 1-8, 2009.N. N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, and P. Pereira-Almao, "Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes," Fuel, vol. 95, pp. 257–262, 2012.N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 384, pp. 145-149, 2011.N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Metal Oxide Nanoparticles for Asphaltene Adsorption and Oxidation," Energy & Fuels, vol. 25, pp. 1017-1023, 2011.N. N. Nassar, "Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies," Energy & Fuels, vol. 24, pp. 4116-4122, 2010.F. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, and D. B. Riffel, "Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel," Energy & Fuels, vol. 26, pp. 1725-1730, 2012.C. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.N. N. Nassar, A. Hassan, and G. Vitale, "Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO 2, ZrO 2, and CeO 2 nanoparticles," Applied Catalysis A: General, vol. 484, pp. 161-171, 2014.C. A. Franco, M. M. Lozano, S. Acevedo, N. N. Nassar, and F. B. Cortés, "Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms," Energy & Fuels, vol. 30, pp. 264-272, 2015.ASTM, "D7220-12 Standard Test Method for Sulfur in Automotive, Heating, and Jet Fuels by Monochromatic Energy Dispersive X-ray Fluorescence Spectrometry," ed, 2012.ASTM, "D1298-12b Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method," ed, 2012.ASTM, "D7169-11 Standard Test Method for Boiling Point Distribution of Samples with Residues Such as Crude Oils and Atmospheric and Vacuum Residues by High Temperature Gas Chromatography," ed, 2011.H. A. Barnes, J. F. Hutton, and K. Walters, An introduction to rheology vol. 3: Elsevier, 1989.M. A. Rao, "Flow and functional models for rheological properties of fluid foods," in Rheology of Fluid, Semisolid, and Solid Foods, ed: Springer, 2014, pp. 27-61.D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers: John Wiley & Sons, 2010.J. Murgich, J. Rodríguez, and Y. Aray, "Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins," Energy & Fuels, vol. 10, pp. 68-76, 1996.S. I. Andersen and J. G. Speight, "Petroleum resins: separation, character, and role in petroleum," Petroleum science and technology, vol. 19, pp. 1-34, 2001.J. Speight, "Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum," Oil & gas science and technology, vol. 59, pp. 467-477, 2004.J. J. Adams, "Asphaltene adsorption, a literature review," Energy & Fuels, vol. 28, pp. 2831-2856, 2014.N. N. Nassar, T. Tatiana Montoya, C. A. Franco, F. B. Cortés, and P. R. Pereira-Almao, "A New Model for Describing the Adsorption of Asphaltenes on Porous Media at a High Pressure and Temperature under Flow Conditions," Energy & Fuels, 2015.S. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs," Industrial & Engineering Chemistry Research, 2016.C. A. Franco, N. N. Nassar, T. Montoya, M. A. Ruíz, and F. B. Cortés, "Influence of asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles," Energy & Fuels, vol. 29, pp. 1610-1621, 2015.R. Zabala, C. Franco, and F. Cortés, "Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test," in SPE Improved Oil Recovery Conference, 2016.S.-Y. Yang, G. Hirasaki, S. Basu, and R. Vaidya, "Statistical analysis on parameters that affect wetting for the crude oil/brine/mica system," Journal of Petroleum Science and Engineering, vol. 33, pp. 203-215, 2002.T. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”," Energy & Fuels, vol. 28, pp. 4963-4975, 2014.N. N. Nassar, T. Montoya, C. A. Franco, F. B. Cortés, and P. Pereira-Almao, "A new model for describing the adsorption of asphaltenes on porous media at a high pressure and temperature under flow conditions," Energy & Fuels, vol. 29, pp. 4210-4221, 2015.N. N. Nassar, S. Betancur, S. c. Acevedo, C. A. Franco, and F. B. Cortés, "Development of a Population Balance Model to Describe the Influence of Shear and Nanoparticles on the Aggregation and Fragmentation of Asphaltene Aggregates," Industrial & Engineering Chemistry Research, vol. 54, pp. 8201-8211, 2015.T. Montoya, B. L. Argel, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles," Petroleum Science, pp. 1-11, 2016.J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.C. A. Franco, T. Montoya, N. N. Nassar, and F. B. Cortés, "Nioand pdo supported on fumed silica nanoparticles for adsorption and catalytic steam gasification of colombian c7asphaltenes," Handbook on Oil Production Research; Nova Science Publishers: Hauppauge, NY, USA, pp. 101-145, 2014.C. Franco and C. Franco, "Synthesis and application of supported metallic and multi-metallic oxides nanoparticles for in-situ upgrading and inhibition of formation damage," Universidad Nacional de Colombia-Sede Medellín: Medellín, Antioquia, Colombia, 2015.N. N. Nassar, C. A. Franco, T. Montoya, F. B. Cortés, and A. Hassan, "Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C7 asphaltenes," Fuel, vol. 156, pp. 110-120, 2015.T. Montoya, B. L. Argel, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles," Petroleum Science, vol. 13, pp. 561-571, 2016.C. A. Franco-Ariza, J. D. Guzmán-Calle, and F. B. Cortés-Correa, "Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity," Dyna, vol. 83, pp. 171-179, 2016.J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.S. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, and F. B. Cortés, "Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs," Industrial & Engineering Chemistry Research, vol. 55, pp. 6122-6132, 2016.F. B. Cortés, T. Montoya, S. Acevedo, N. N. Nassar, and C. A. Franco, "Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration," CT&F-Ciencia, Tecnología y Futuro, vol. 6, pp. 89-106, 2016.M. Madhi, A. Bemani, A. Daryasafar, and M. R. Khosravi Nikou, "Experimental and modeling studies of the effects of different nanoparticles on asphaltene adsorption," Petroleum Science and Technology, vol. 35, pp. 242-248, 2017.V. Vargas, J. Castillo, R. Ocampo-Torres, C.-P. Lienemann, and B. Bouyssiere, "Surface modification of SiO2 nanoparticles to increase asphaltene adsorption," Petroleum Science and Technology, vol. 36, pp. 618-624, 2018.C. Franco, E. Patiño, P. Benjumea, M. A. Ruiz, and F. B. Cortés, "Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina," Fuel, vol. 105, pp. 408-414, 2013.N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation," Journal of colloid and interface science, vol. 360, pp. 233-238, 2011.N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles," Energy & Fuels, vol. 25, pp. 3961-3965, 2011.N. N. Nassar, A. Hassan, and G. Vitale, "Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles," Applied Catalysis A: General, vol. 484, pp. 161-171, 2014.O. E. Medina, J. Gallego, D. Arias-Madrid, F. B. Cortés, and C. A. Franco, "Optimization of the load of transition metal oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 nanoparticles in catalytic steam decomposition of n-C7 asphaltenes at low temperatures," Nanomaterials, vol. 9, p. 401, 2019.O. E. Medina, J. Gallego, L. G. Restrepo, F. B. Cortés, and C. A. Franco, "Influence of the Ce4+/Ce3+ Redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasification," Nanomaterials, vol. 9, p. 734, 2019.T. Montoya, D. Coral, C. A. Franco, N. N. Nassar, and F. B. Cortés, "A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”," Energy & Fuels, vol. 28, pp. 4963-4975, 2014.W. Pang, J.-K. Lee, S.-H. Yoon, I. Mochida, T. Ida, and M. Ushio, "Compositional analysis of deasphalted oils from Arabian crude and their hydrocracked products," Fuel Processing Technology, vol. 91, pp. 1517-1524, 2010.N. N. Nassar, A. Hassan, and P. Pereira-Almao, "Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes," Energy & Fuels, vol. 25, pp. 1566-1570, 2011.M. M. Lozano, C. A. Franco, S. A. Acevedo, N. N. Nassar, and F. B. Cortés, "Effects of resin I on the catalytic oxidation of n-C 7 asphaltenes in the presence of silica-based nanoparticles," RSC advances, vol. 6, pp. 74630-74642, 2016.B. J. Berne and R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation, 2000.J. Stetefeld, S. A. McKenna, and T. R. Patel, "Dynamic light scattering: a practical guide and applications in biomedical sciences," Biophysical reviews, vol. 8, pp. 409-427, 2016.J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications: Academic press, 2013.S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.E. IP 469, "Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection," ed: Energy Institute London, 2001.O. Talu and F. Meunier, "Adsorption of associating molecules in micropores and application to water on carbon," AIChE journal, vol. 42, pp. 809-819, 1996.N. N. Nassar, S. Betancur, S. c. Acevedo, C. A. Franco, and F. B. Cortés, "Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates," Industrial & Engineering Chemistry Research, vol. 54, pp. 8201-8211, 2015.D. C. Montgomery, Design and analysis of experiments: John wiley & sons, 2017.T. Ozawa, "A new method of analyzing thermogravimetric data," Bulletin of the chemical society of Japan, vol. 38, pp. 1881-1886, 1965.J. H. Flynn and L. A. Wall, "A quick, direct method for the determination of activation energy from thermogravimetric data," Journal of Polymer Science Part B: Polymer Letters, vol. 4, pp. 323-328, 1966.C. Doyle, "Synthesis and evaluation of thermally stable polymers. II," Polymer evaluation. Appl Polym Sci, vol. 5, pp. 285-292, 1961.N. N. Nassar, A. Hassan, G. Luna, and P. Pereira-Almao, "Comparative study on thermal cracking of Athabasca bitumen," Journal of thermal analysis and calorimetry, vol. 114, pp. 465-472, 2013.J. A. Koots and J. G. Speight, "Relation of petroleum resins to asphaltenes," Fuel, vol. 54, pp. 179-184, 1975.S. Akmaz, O. Iscan, M. Gurkaynak, and M. Yasar, "The structural characterization of saturate, aromatic, resin, and asphaltene fractions of Batiraman crude oil," Petroleum Science and Technology, vol. 29, pp. 160-171, 2011.M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, et al., "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)," Pure and Applied Chemistry, vol. 87, pp. 1051-1069, 2015.D. Stratiev, I. Shishkova, T. Tsaneva, M. Mitkova, and D. Yordanov, "Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions," Fuel, vol. 170, pp. 115-129, 2016.M. Shojaei, M. Ghanavati, and A. R. SA, "Effects of Asphaltene content and Temperature on Viscosity of Iranian Heavy Crude Oil: Experimental Study," 2014.O. E. Medina, C. Olmos, S. H. Lopera, F. B. Cortés, and C. A. Franco, "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, vol. 12, p. 4671, 2019.E. Byambajav and Y. Ohtsuka, "Hydrocracking of asphaltene with metal catalysts supported on SBA-15," Applied Catalysis A: General, vol. 252, pp. 193-204, 2003.H. Purón, J. L. Pinilla, J. Montoya de la Fuente, and M. Millán, "Effect of metal loading in NiMo/Al2O3 catalysts on Maya vacuum residue hydrocracking," Energy & Fuels, vol. 31, pp. 4843-4850, 2017.G. Cui, J. Wang, H. Fan, X. Sun, Y. Jiang, S. Wang, et al., "Towards understanding the microstructures and hydrocracking performance of sulfided Ni–W catalysts: Effect of metal loading," Fuel processing technology, vol. 92, pp. 2320-2327, 2011.S. Suganuma and N. Katada, "Innovation of catalytic technology for upgrading of crude oil in petroleum refinery," Fuel Processing Technology, vol. 208, p. 106518, 2020.J. Ancheyta-Juarez, S. Maity, G. Betancourt-Rivera, G. Centeno-Nolasco, P. Rayo-Mayoral, and M. T. Gómez-Pérez, "Comparison of different Ni-Mo/alumina catalysts on hydrodemetallization of Maya crude oil," Applied Catalysis A: General, vol. 216, pp. 195-208, 2001.S. T. Oyama, "Novel catalysts for advanced hydroprocessing: transition metal phosphides," Journal of catalysis, vol. 216, pp. 343-352, 2003.E. Furimsky, "Selection of catalysts and reactors for hydroprocessing," Applied Catalysis A: General, vol. 171, pp. 177-206, 1998.P. E. Boahene, K. K. Soni, A. K. Dalai, and J. Adjaye, "Hydroprocessing of heavy gas oils using FeW/SBA-15 catalysts: Experimentals, optimization of metals loading, and kinetics study," Catalysis today, vol. 207, pp. 101-111, 2013.A. Ardiyanti, S. Khromova, R. Venderbosch, V. Yakovlev, and H. Heeres, "Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support," Applied Catalysis B: Environmental, vol. 117, pp. 105-117, 2012.H. Scheffe, "The simplex‐centroid design for experiments with mixtures," Journal of the Royal Statistical Society: Series B (Methodological), vol. 25, pp. 235-251, 1963.L. Cardona, D. Arias-Madrid, F. B. Cortés, S. H. Lopera, and C. A. Franco, "Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO-Functionalized SiO2 nanoparticulated catalysts," Catalysts, vol. 8, p. 132, 2018.R. Chen, Z. Zhang, C. Feng, K. Hu, M. Li, Y. Li, et al., "Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As (V) removal from water solution," Microporous and Mesoporous Materials, vol. 131, pp. 115-121, 2010.J. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik, et al., "Cu–Ni nanoalloy phase diagram–Prediction and experiment," Calphad, vol. 45, pp. 33-39, 2014.J. Sopoušek, A. Kryštofová, M. Premović, O. Zobač, S. Polsterová, P. Brož, et al., "Au-Ni nanoparticles: Phase diagram prediction, synthesis, characterization, and thermal stability," Calphad, vol. 58, pp. 25-33, 2017.N. Dumala, B. Mangalampalli, S. Chinde, S. I. Kumari, M. Mahoob, M. F. Rahman, et al., "Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure," Mutagenesis, vol. 32, pp. 417-427, 2017.M. Ates, V. Demir, Z. Arslan, M. Camas, and F. Celik, "Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater," Water, Air, & Soil Pollution, vol. 227, p. 70, 2016.A. Rostek, K. Loza, M. Heggen, and M. Epple, "X-ray powder diffraction to analyse bimetallic core–shell nanoparticles (gold and palladium; 7–8 nm)," RSC advances, vol. 9, pp. 26628-26636, 2019.M. S. Mazloom, A. Hemmati-Sarapardeh, M. M. Husein, H. S. Behbahani, and S. Zendehboudi, "Application of nanoparticles for asphaltenes adsorption and oxidation: A critical review of challenges and recent progress," Fuel, vol. 279, p. 117763, 2020.N. N. Nassar, A. Hassan, G. Luna, and P. Pereira-Almao, "Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces," Catalysis today, vol. 207, pp. 127-132, 2013.N. N. Marei, N. N. Nassar, G. Vitale, A. Hassan, and M. J. P. Zurita, "Effects of the size of NiO nanoparticles on the catalytic oxidation of Quinolin-65 as an asphaltene model compound," Fuel, vol. 207, pp. 423-437, 2017.J. Zhang, Y. Wang, R. Ma, and D. Wu, "Investigation of alumina-supported Ni and Ni-Pd catalysts by partial oxidation and steam reforming of n-octane," Korean Journal of Chemical Engineering, vol. 20, pp. 288-292, 2003.EstudiantesInvestigadoresMaestrosORIGINAL1128275231 - 2022.pdf1128275231 - 2022.pdfTesis de Maestría en Ingeniería - Ingeniería de Petróleosapplication/pdf2969090https://repositorio.unal.edu.co/bitstream/unal/81759/3/1128275231%20-%202022.pdfc90eef83ff896e3b87dc1ade7b20d39eMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81759/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1128275231 - 2022.pdf.jpg1128275231 - 2022.pdf.jpgGenerated Thumbnailimage/jpeg4273https://repositorio.unal.edu.co/bitstream/unal/81759/5/1128275231%20-%202022.pdf.jpg7fc1f7c0e9f6bf0953fae5ca80658da9MD55unal/81759oai:repositorio.unal.edu.co:unal/817592024-08-07 23:10:46.422Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK