Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19

ilustraciones

Autores:
Burbano Gutiérrez, Juan Felipe
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80841
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80841
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::616 - Enfermedades
Infecciones por Coronavirus
Coronavirus Infections
Anemia
Anemia Hemolítica Autoinmune
Anemia, Hemolytic, Autoimmune
COVID-19
SARS-CoV-2
Anemia
Anemia hemolítica autoinmune
Prueba antiglobulínica directa
Autoimmune hemolytic anemia
Direct antiglobulin test
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_bbef065415634b3e3034d16355e2f2f1
oai_identifier_str oai:repositorio.unal.edu.co:unal/80841
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
dc.title.translated.eng.fl_str_mv Prevalence of anemia and positive direct antiglobulin test (DAT) in hospitalized patients with COVID-19
title Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
spellingShingle Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
610 - Medicina y salud::616 - Enfermedades
Infecciones por Coronavirus
Coronavirus Infections
Anemia
Anemia Hemolítica Autoinmune
Anemia, Hemolytic, Autoimmune
COVID-19
SARS-CoV-2
Anemia
Anemia hemolítica autoinmune
Prueba antiglobulínica directa
Autoimmune hemolytic anemia
Direct antiglobulin test
title_short Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
title_full Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
title_fullStr Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
title_full_unstemmed Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
title_sort Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
dc.creator.fl_str_mv Burbano Gutiérrez, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Grajales Buitrago, Marco Antonio
Camacho Rodríguez, Bernardo Armando
Angarita de Botero, María del Pilar
Sánchez Pedraza, Ricardo
dc.contributor.author.none.fl_str_mv Burbano Gutiérrez, Juan Felipe
dc.contributor.researcher.none.fl_str_mv Amador Rodríguez, Mónica Patricia
Gaviria García, Paula Andrea
Grass Guáqueta, Jeser Santiago
Deantonio Paéz, Danna Valentina
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::616 - Enfermedades
topic 610 - Medicina y salud::616 - Enfermedades
Infecciones por Coronavirus
Coronavirus Infections
Anemia
Anemia Hemolítica Autoinmune
Anemia, Hemolytic, Autoimmune
COVID-19
SARS-CoV-2
Anemia
Anemia hemolítica autoinmune
Prueba antiglobulínica directa
Autoimmune hemolytic anemia
Direct antiglobulin test
dc.subject.other.none.fl_str_mv Infecciones por Coronavirus
Coronavirus Infections
Anemia
Anemia Hemolítica Autoinmune
Anemia, Hemolytic, Autoimmune
dc.subject.proposal.spa.fl_str_mv COVID-19
SARS-CoV-2
Anemia
Anemia hemolítica autoinmune
Prueba antiglobulínica directa
dc.subject.proposal.eng.fl_str_mv Autoimmune hemolytic anemia
Direct antiglobulin test
description ilustraciones
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-02-01T19:45:25Z
dc.date.available.none.fl_str_mv 2022-02-01T19:45:25Z
dc.type.spa.fl_str_mv Trabajo de grado - Especialidad Médica
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80841
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80841
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv 1. Organización Mundial de la Salud. WHO Coronavirus Disease (COVID-19) Dashboard. Published 2020. Accessed August 30, 2021. https://covid19.who.int/
2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
3. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127(January):104362. doi:10.1016/j.jcv.2020.104362
4. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med. 2020;382(18):e43. doi:10.1056/NEJMc2010472
5. Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191
6. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575
7. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794
8. Berzuini A, Bianco C, Paccapelo C, et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-768. doi:10.1182/blood.2020006695
9. Hendrickson JE, Tormey CA. COVID-19 and the Coombs test. Blood. 2020;136(6):655-656. doi:10.1182/blood.2020007483
10. Gammazza AM, Légaré S, Lo Bosco G, et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25(5):737-741. doi:10.1007/s12192-020-01148-3
11. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020;190(2):e92-e93. doi:10.1111/bjh.16883
12. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021;100(1):37-43. doi:10.1007/s00277-020-04256-3
13. Sterne JAC, Murthy S, Diaz J V., et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19. JAMA. 2020;324(13):1330. doi:10.1001/jama.2020.17023
14. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/nejmoa2001017
15. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ B. 2020;21(5):343-360. doi:10.1631/jzus.B2000083
16. Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2. JAMA. 2020;324(5):441. doi:10.1001/jama.2020.12458
17. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9
18. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. doi:10.1038/s41591- 020-0869-5
19. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis. 2020;0(0):1-14. doi:10.1093/cid/ciaa1249
20. World Health Organization. Criteria for releasing COVID-19 patients from isolation. Sci Br. 2020;(17 June):1-5. https://www.who.int/publications/i/item/criteria-forreleasing-covid-19-patients-from-isolation
21. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577-582. doi:10.7326/M20-0504
22. Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on upto-date knowledge. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102581. doi:10.1016/j.amjoto.2020.102581
23. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3
24. Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi:10.1056/nejmcp2009249
25. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;307(23):2526- 2533. doi:10.1001/jama.2012.5669
26. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. Drazen JM, ed. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra1608077
27. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Published online 2020:1-10. doi:10.1056/nejmcp2009575
28. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J Am Med Assoc. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648
29. Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437-440. doi:10.1038/s41586-020-2355-0
30. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. doi:10.1056/NEJMoa2020283
31. Kaser A. Genetic Risk of Severe Covid-19. N Engl J Med. 2020;383(16):1590-1591. doi:10.1056/nejme2025501
32. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J Virol. 2003;77(16):8801-8811. doi:10.1128/JVI.77.16.8801-8811.2003
33. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215(January):108427. doi:10.1016/j.clim.2020.108427
34. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. doi:10.1038/s41591-020-0820-9
35. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. doi:10.1016/j.molcel.2020.04.022
36. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: Control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814-820. doi:10.1007/s00109-006-0094-9
37. Ou J, Zhou Z, Dai R, et al. Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity. bioRxiv. Published online January 1, 2020:2020.03.15.991844. doi:10.1101/2020.03.15.991844
38. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586- 020-2196-x
39. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463. doi:10.1148/radiol.2020200463
40. Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science (80- ). 2020;369(6503):510-511. doi:10.1126/science.abc6156
41. loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283(September 2020):103548. doi:10.1016/j.resp.2020.103548
42. Zhang C, Wu Z, Li J, Zhao H, Wang G. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.105954
43. Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infect Microbes Dis. 2021;3(1):14-21. doi:10.1097/IM9.0000000000000045
44. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020;17(1):38. doi:10.1186/s12979-020-00208-7
45. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for autoimmune hemolytic anemia. Expert Rev Clin Immunol. 2018;14(10):857-872. doi:10.1080/1744666X.2018.1521722
46. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020;41(xxxx):100648. doi:10.1016/j.blre.2019.100648
47. Smirnova SJ, Sidorova J V., Tsvetaeva N V., et al. Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity. 2016;49(3):147-154. doi:10.3109/08916934.2016.1138219
48. Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol. 2012;40(12):994-1004.e4. doi:10.1016/j.exphem.2012.08.008
49. Howie HL, Hudson KE. Murine models of autoimmune hemolytic anemia. Curr Opin Hematol. 2018;25(6):473-481. doi:10.1097/MOH.0000000000000459
50. Brodsky RA. Warm Autoimmune Hemolytic Anemia. Solomon CG, ed. N Engl J Med. 2019;381(7):647-654. doi:10.1056/NEJMcp1900554
51. Berentsen S. New Insights in the Pathogenesis and Therapy of Cold AgglutininMediated Autoimmune Hemolytic Anemia. Front Immunol. 2020;11(April):12-14. doi:10.3389/fimmu.2020.00590
52. McNicholl F. Clinical syndromes associated with cold agglutinins. Transfus Sci. 2000;22(1-2):125-133. doi:10.1016/S0955-3886(00)00033-3
53. Hill A, Hill QA. Autoimmune hemolytic anemia. Hematology. 2018;2018(1):382-389. doi:10.1182/asheducation-2018.1.382
54. Koffas A, Dolman GE, Kennedy PTF. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: a practical guide for clinicians. Clin Med (Northfield Il). 2018;18(3):212-218. doi:10.7861/clinmedicine.18-3-212
55. Barcellini W, Zaninoni A, Fattizzo B, et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am J Hematol. 2018;93(9):E243-E246. doi:10.1002/ajh.25212
56. Coombs RRA, Mourant AE, Race RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol. 1945;26:255-266. http://www.ncbi.nlm.nih.gov/pubmed/21006651
57. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017;141(2):305-310. doi:10.5858/arpa.2015-0444- RS
58. Borge PD, Mansfield PM. The Positive Direct Antiglobulin Test and ImmuneMediated Hemolysis. In: Cohn CS, Delaney M, Johnson ST, Katz LM, eds. Technical Manual AABB. 20th ed. ; 2020:429-452.
59. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680. doi:10.1007/s00277-020-04137-9
60. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation. Pediatr Blood Cancer. 2020;67(9):1-2. doi:10.1002/pbc.28382
61. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a patient with COVID-19. Br J Haematol. 2020;190(2):e59-e61. doi:10.1111/bjh.16846
62. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190(1):31- 32. doi:10.1111/bjh.16786
63. Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D. SARS-CoV-2- associated cold agglutinin disease: a report of two cases. Ann Hematol. 2020;99(8):1943-1944. doi:10.1007/s00277-020-04129-9
64. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77(April):246. doi:10.1016/j.jocn.2020.05.015
65. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi:10.1038/kisup.2012.73
66. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020;36:101606. doi:10.1016/j.tmaid.2020.101606
67. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Third. John Wiley & Sons, Inc.; 2003. doi:10.1002/0471445428
68. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857-872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
69. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17(14):1623-1634. doi:10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S
70. Organización Panamericana de la Salud. Requerimientos para uso de equipos de protección personal (EPP) para el nuevo coronavirus (2019-nCoV) en establecimientos de salud. Bioseguridad y Transp nCoV. 2020;1:1-4. https://iris.paho.org/handle/10665.2/51976
71. Organización Panamerica de la Salud. Directrices provisionales de bioseguridad de laboratorio para el manejo y transporte de muestras asociadas al nuevo coronavirus 20191 (2019-nCoV). Bioseguridad y Transp nCoV. 2020;1:1-10. https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html
72. Batstra L, Bos EH, Neeleman J. Quantifying psychiatric comorbidity. Soc Psychiatry Psychiatr Epidemiol. 2002;37(3):105-111. doi:10.1007/s001270200001
73. Coutelier JP, Detalle L, Musaji A, Meite M, Izui S. Two-Step Mechanism of Virusinduced Autoimmune Hemolytic Anemia. Ann N Y Acad Sci. 2007;1109(1):151-157. doi:10.1196/annals.1398.018
74. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi:10.1111/imr.12091
75. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v11080762
76. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-239. doi:10.1080/16078454.2021.1881225
77. Motta JC, Novoa DJ, Gómez CC, et al. Factores pronósticos en pacientes hospitalizados con diagnóstico de infección por SARS-CoV-2 en Bogotá, Colombia. Biomédica. 2020;40(Supl. 2):116-130. doi:10.7705/biomedica.5764
78. Matsunaga N, Hayakawa K, Terada M, et al. Clinical Epidemiology of Hospitalized Patients With Coronavirus Disease 2019 (COVID-19) in Japan: Report of the COVID-19 Registry Japan. Clin Infect Dis. Published online September 28, 2020. doi:10.1093/cid/ciaa1470
79. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune hemolytic Anemia in COVID-19 İnfection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12(1):4-7. doi:10.4084/MJHID.2020.053
80. Maslov D V., Simenson V, Jain S, Badari A. COVID-19 and Cold Agglutinin Hemolytic Anemia. TH Open. 2020;04(03):e175-e177. doi:10.1055/s-0040- 1715791
81. Patil NR, Herc ES, Girgis M. Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol Oncol Stem Cell Ther. 2020;(January):19-21. doi:10.1016/j.hemonc.2020.06.005
82. Hannon JL. Management of Blood Donors and Blood Donations From Individuals Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev. 2012;26(2):142-152. doi:10.1016/j.tmrv.2011.08.004
83. Froissart A, Rossi B, Ranque B, et al. Effect of a Red Blood Cell Transfusion on Biological Markers Used to Determine the Cause of Anemia: A Prospective Study. Am J Med. 2018;131(3):319-322. doi:10.1016/j.amjmed.2017.10.005
84. Cid J, Ortín X, Beltran V, et al. The direct antiglobulin test in a hospital setting. Immunohematology. 2020;19(1):16-18. doi:10.21307/immunohematology-2019- 468
85. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017;176(3):395-411. doi:10.1111/bjh.14478
86. Lai M, Visconti E, D’Onofrio G, Tamburrini E, Cauda R, Leone G. Lower hemoglobin levels in human immunodeficiency virus-infected patients with a positive direct antiglobulin test (DAT): relationship with DAT strength and clinical stages. Transfusion. 2006;46(7):1237-1243. doi:10.1111/j.1537-2995.2006.00876.x
87. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794
88. Raghuwanshi B. Serological Blood Group Discrepancy and Cold Agglutinin Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus. Published online November 15, 2020. doi:10.7759/cureus.11495
89. Hassanein H, Hajdenberg J. High Thermal Amplitude Red Blood Cell Agglutinating Cold Type Autoantibodies in a Case of Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia and Multiorgan Failure. J Med Cases. 2021;12(1):16-17. doi:10.14740/jmc3608
90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078
90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078
92. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. doi:10.1186/s42358-020-00151-7
93. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.102506
94. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity. Eur J Gen Pract. 1996;2(2):65-70. doi:10.3109/13814789609162146
95. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520- 531. doi:10.1016/j.cmi.2020.12.018
96. Roy CN. Anemia of Inflammation. Hematology. 2010;2010(1):276-280. doi:10.1182/asheducation-2010.1.276
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Especialidad en Hematología
dc.publisher.department.spa.fl_str_mv Departamento de Medicina Interna
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80841/1/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf
https://repositorio.unal.edu.co/bitstream/unal/80841/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80841/3/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf.jpg
bitstream.checksum.fl_str_mv 2010702fb46f91c933a4b83f6a0b9d38
8153f7789df02f0a4c9e079953658ab2
afcb967a857b47960629331c7bc542b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090188069011456
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Grajales Buitrago, Marco Antonioda903ef0eeb60966d23123b80a9b46f2Camacho Rodríguez, Bernardo Armando41a1d3fa4dfecadc930167e941dd257cAngarita de Botero, María del Pilar6fa4e19ac187be4ac1ab42426687f76dSánchez Pedraza, Ricardo71d39599cff2e2eb6af28ec7d259fc60Burbano Gutiérrez, Juan Felipe9af9404ad33bcba40915e9a4cb136afeAmador Rodríguez, Mónica PatriciaGaviria García, Paula AndreaGrass Guáqueta, Jeser SantiagoDeantonio Paéz, Danna Valentina2022-02-01T19:45:25Z2022-02-01T19:45:25Z2021https://repositorio.unal.edu.co/handle/unal/80841Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa infección por SARSCoV-2 causa la enfermedad por coronavirus del 2019 (COVID-19), considerada como pandemia, con complicaciones hematológicas derivadas de síndromes hiperinflamatorios y autoinmunidad en pacientes de alto riesgo y ancianos que desarrollan una infección grave por COVID-19. Una de las complicaciones documentadas es la anemia hemolítica autoinmune (AHAI), que está mediada por la emergencia de autoanticuerpos contra los eritrocitos del huésped. El diagnóstico de AHAI a menudo no se realiza, lo que conduce a resultados clínicos deficientes debido a anemia, disfunción endotelial e hipoperfusión tisular. Se realizó un estudio observacional de corte transversal por período para evaluar la coocurrencia de anemia y prueba de antiglobulina directa (PAD) positiva, en pacientes hospitalizados por COVID-19 en dos hospitales de Bogotá, Colombia, del 18 de marzo al 29 de abril. 2021. La asociación sustantiva entre anemia y PAD positiva se estimó por medio del coeficiente de agrupamiento o de cluster; Las variables de confusión que se sabe están asociadas con la anemia y PAD (p. ej., inflamación, gravedad de COVID-19, sangrado mayor y tratamiento con antibióticos) se controlaron mediante regresión logística multivariable. Se evaluaron 185 pacientes, 84 (45,4%) eran mujeres y la edad media fue 59,7 ± 14,7. Cien (54,1%) ingresaron a la unidad de cuidados intensivos, 67 (36,2%) con disfunción multiorgánica (medida por qSOFA ≥2). La prevalencia de anemia y PAD positiva fue del 19,4% (intervalo de confianza [IC] del 95%, 13,8 a 25,2). El coeficiente de cluster fue de 1,55, lo que demuestra una asociación sustancial no coincidencial. La disfunción multiorgánica, la PAD positiva y la terapia con antibióticos se asociaron significativamente con anemia durante la hospitalización (OR: 5,11 (IC 95%: 2,46 - 10,60), 2,72 (IC 95%: 1,32 – 5,60) y 2,48 (IC 95% 1,10 - 5,57), respectivamente. En conclusión, la coocurrencia de anemia y PAD positiva en pacientes hospitalizados con infección por SARS-CoV-2 no es una coincidencia y se asocia a insuficiencia multiorgánica y terapia con antibióticos. Para el médico, la anemia de nueva aparición después o durante la hospitalización debido a un COVID-19 grave debe despertar sospechas de AHAI. (texto tomado de la fuente)Hematologic complications derived from hyperinflammatory syndromes and autoimmunity can be seen in high-risk and elderly patients who develop severe COVID-19 infection. One of the reported complications is autoimmune hemolytic anemia (AIHA), which is mediated by the emergency of autoantibodies against host erythrocytes. The diagnosis of AIHA is often unrecognized leading to poor clinical outcomes due to anemia, endothelial dysfunction, and tissue hypoperfusion. Herein, we conducted a cross-sectional, observational study to evaluate the prevalence of anemia and a positive Direct Antiglobulin Test (DAT), among hospitalized patients with COVID-19 in two hospitals in Bogota, Colombia during COVID surge from March 18 to April 29, 2021. The association between anemia and a positive DAT was estimated by cluster coefficient; confounding variables known to be associated with anemia (eg, inflammation, COVID-19 severity, mayor bleeding and antibiotic therapy) were controlled by multivariate logistic regression. One hundred and eighty-five patients were evaluated, 84 (45,4%) were female, and the mean age was 59,7 ± 14,7. One hundred (54,1%) were admitted to intensive care unit, 67 (36,2%) with multi-organ dysfunction (measured by qSOFA ≥2). The prevalence of anemia and positive DAT was 19.4% (95% confidence interval [CI], 13.8 to 25.2). Cluster coefficient was 1.55 showing a substantive non coincidental association. Multi-organic dysfunction, positive DAT and antibiotic therapy were significantly associated with anemia that occurred during hospitalization (OR:5,11 (95% CI 2,46 – 10,60), 2,72 (95% CI 1,32 – 5,60) and 2,48 (95% CI 1,10 – 5,57), respectively In summary, the prevalence of anemia and positive DAT in hospitalized patients with SARS-CoV-2 infection is not coincidental and it is associated to multiple organ failure and antibiotic therapy. For the clinician, new onset anemia following hospitalization due to severe COVID-19 should raise suspicion for AIHA.Especialidades MédicasEspecialista en HematologíaHematologíaapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Especialidad en HematologíaDepartamento de Medicina InternaFacultad de MedicinaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - EnfermedadesInfecciones por CoronavirusCoronavirus InfectionsAnemiaAnemia Hemolítica AutoinmuneAnemia, Hemolytic, AutoimmuneCOVID-19SARS-CoV-2AnemiaAnemia hemolítica autoinmunePrueba antiglobulínica directaAutoimmune hemolytic anemiaDirect antiglobulin testCoocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19Prevalence of anemia and positive direct antiglobulin test (DAT) in hospitalized patients with COVID-19Trabajo de grado - Especialidad Médicainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferencia1. Organización Mundial de la Salud. WHO Coronavirus Disease (COVID-19) Dashboard. Published 2020. Accessed August 30, 2021. https://covid19.who.int/2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-53. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127(January):104362. doi:10.1016/j.jcv.2020.1043624. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med. 2020;382(18):e43. doi:10.1056/NEJMc20104725. Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc20091916. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc20075757. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.167948. Berzuini A, Bianco C, Paccapelo C, et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-768. doi:10.1182/blood.20200066959. Hendrickson JE, Tormey CA. COVID-19 and the Coombs test. Blood. 2020;136(6):655-656. doi:10.1182/blood.202000748310. Gammazza AM, Légaré S, Lo Bosco G, et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25(5):737-741. doi:10.1007/s12192-020-01148-311. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020;190(2):e92-e93. doi:10.1111/bjh.1688312. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021;100(1):37-43. doi:10.1007/s00277-020-04256-313. Sterne JAC, Murthy S, Diaz J V., et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19. JAMA. 2020;324(13):1330. doi:10.1001/jama.2020.1702314. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/nejmoa200101715. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ B. 2020;21(5):343-360. doi:10.1631/jzus.B200008316. Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2. JAMA. 2020;324(5):441. doi:10.1001/jama.2020.1245817. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-918. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. doi:10.1038/s41591- 020-0869-519. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis. 2020;0(0):1-14. doi:10.1093/cid/ciaa124920. World Health Organization. Criteria for releasing COVID-19 patients from isolation. Sci Br. 2020;(17 June):1-5. https://www.who.int/publications/i/item/criteria-forreleasing-covid-19-patients-from-isolation21. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577-582. doi:10.7326/M20-050422. Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on upto-date knowledge. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102581. doi:10.1016/j.amjoto.2020.10258123. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-324. Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi:10.1056/nejmcp200924925. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;307(23):2526- 2533. doi:10.1001/jama.2012.566926. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. Drazen JM, ed. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra160807727. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Published online 2020:1-10. doi:10.1056/nejmcp200957528. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J Am Med Assoc. 2020;323(13):1239-1242. doi:10.1001/jama.2020.264829. Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437-440. doi:10.1038/s41586-020-2355-030. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. doi:10.1056/NEJMoa202028331. Kaser A. Genetic Risk of Severe Covid-19. N Engl J Med. 2020;383(16):1590-1591. doi:10.1056/nejme202550132. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J Virol. 2003;77(16):8801-8811. doi:10.1128/JVI.77.16.8801-8811.200333. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215(January):108427. doi:10.1016/j.clim.2020.10842734. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. doi:10.1038/s41591-020-0820-935. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. doi:10.1016/j.molcel.2020.04.02236. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: Control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814-820. doi:10.1007/s00109-006-0094-937. Ou J, Zhou Z, Dai R, et al. Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity. bioRxiv. Published online January 1, 2020:2020.03.15.991844. doi:10.1101/2020.03.15.99184438. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586- 020-2196-x39. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463. doi:10.1148/radiol.202020046340. Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science (80- ). 2020;369(6503):510-511. doi:10.1126/science.abc615641. loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283(September 2020):103548. doi:10.1016/j.resp.2020.10354842. Zhang C, Wu Z, Li J, Zhao H, Wang G. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.10595443. Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infect Microbes Dis. 2021;3(1):14-21. doi:10.1097/IM9.000000000000004544. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020;17(1):38. doi:10.1186/s12979-020-00208-745. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for autoimmune hemolytic anemia. Expert Rev Clin Immunol. 2018;14(10):857-872. doi:10.1080/1744666X.2018.152172246. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020;41(xxxx):100648. doi:10.1016/j.blre.2019.10064847. Smirnova SJ, Sidorova J V., Tsvetaeva N V., et al. Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity. 2016;49(3):147-154. doi:10.3109/08916934.2016.113821948. Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol. 2012;40(12):994-1004.e4. doi:10.1016/j.exphem.2012.08.00849. Howie HL, Hudson KE. Murine models of autoimmune hemolytic anemia. Curr Opin Hematol. 2018;25(6):473-481. doi:10.1097/MOH.000000000000045950. Brodsky RA. Warm Autoimmune Hemolytic Anemia. Solomon CG, ed. N Engl J Med. 2019;381(7):647-654. doi:10.1056/NEJMcp190055451. Berentsen S. New Insights in the Pathogenesis and Therapy of Cold AgglutininMediated Autoimmune Hemolytic Anemia. Front Immunol. 2020;11(April):12-14. doi:10.3389/fimmu.2020.0059052. McNicholl F. Clinical syndromes associated with cold agglutinins. Transfus Sci. 2000;22(1-2):125-133. doi:10.1016/S0955-3886(00)00033-353. Hill A, Hill QA. Autoimmune hemolytic anemia. Hematology. 2018;2018(1):382-389. doi:10.1182/asheducation-2018.1.38254. Koffas A, Dolman GE, Kennedy PTF. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: a practical guide for clinicians. Clin Med (Northfield Il). 2018;18(3):212-218. doi:10.7861/clinmedicine.18-3-21255. Barcellini W, Zaninoni A, Fattizzo B, et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am J Hematol. 2018;93(9):E243-E246. doi:10.1002/ajh.2521256. Coombs RRA, Mourant AE, Race RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol. 1945;26:255-266. http://www.ncbi.nlm.nih.gov/pubmed/2100665157. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017;141(2):305-310. doi:10.5858/arpa.2015-0444- RS58. Borge PD, Mansfield PM. The Positive Direct Antiglobulin Test and ImmuneMediated Hemolysis. In: Cohn CS, Delaney M, Johnson ST, Katz LM, eds. Technical Manual AABB. 20th ed. ; 2020:429-452.59. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680. doi:10.1007/s00277-020-04137-960. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation. Pediatr Blood Cancer. 2020;67(9):1-2. doi:10.1002/pbc.2838261. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a patient with COVID-19. Br J Haematol. 2020;190(2):e59-e61. doi:10.1111/bjh.1684662. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190(1):31- 32. doi:10.1111/bjh.1678663. Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D. SARS-CoV-2- associated cold agglutinin disease: a report of two cases. Ann Hematol. 2020;99(8):1943-1944. doi:10.1007/s00277-020-04129-964. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77(April):246. doi:10.1016/j.jocn.2020.05.01565. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi:10.1038/kisup.2012.7366. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020;36:101606. doi:10.1016/j.tmaid.2020.10160667. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Third. John Wiley & Sons, Inc.; 2003. doi:10.1002/047144542868. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857-872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E69. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17(14):1623-1634. doi:10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S70. Organización Panamericana de la Salud. Requerimientos para uso de equipos de protección personal (EPP) para el nuevo coronavirus (2019-nCoV) en establecimientos de salud. Bioseguridad y Transp nCoV. 2020;1:1-4. https://iris.paho.org/handle/10665.2/5197671. Organización Panamerica de la Salud. Directrices provisionales de bioseguridad de laboratorio para el manejo y transporte de muestras asociadas al nuevo coronavirus 20191 (2019-nCoV). Bioseguridad y Transp nCoV. 2020;1:1-10. https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html72. Batstra L, Bos EH, Neeleman J. Quantifying psychiatric comorbidity. Soc Psychiatry Psychiatr Epidemiol. 2002;37(3):105-111. doi:10.1007/s00127020000173. Coutelier JP, Detalle L, Musaji A, Meite M, Izui S. Two-Step Mechanism of Virusinduced Autoimmune Hemolytic Anemia. Ann N Y Acad Sci. 2007;1109(1):151-157. doi:10.1196/annals.1398.01874. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi:10.1111/imr.1209175. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v1108076276. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-239. doi:10.1080/16078454.2021.188122577. Motta JC, Novoa DJ, Gómez CC, et al. Factores pronósticos en pacientes hospitalizados con diagnóstico de infección por SARS-CoV-2 en Bogotá, Colombia. Biomédica. 2020;40(Supl. 2):116-130. doi:10.7705/biomedica.576478. Matsunaga N, Hayakawa K, Terada M, et al. Clinical Epidemiology of Hospitalized Patients With Coronavirus Disease 2019 (COVID-19) in Japan: Report of the COVID-19 Registry Japan. Clin Infect Dis. Published online September 28, 2020. doi:10.1093/cid/ciaa147079. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune hemolytic Anemia in COVID-19 İnfection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12(1):4-7. doi:10.4084/MJHID.2020.05380. Maslov D V., Simenson V, Jain S, Badari A. COVID-19 and Cold Agglutinin Hemolytic Anemia. TH Open. 2020;04(03):e175-e177. doi:10.1055/s-0040- 171579181. Patil NR, Herc ES, Girgis M. Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol Oncol Stem Cell Ther. 2020;(January):19-21. doi:10.1016/j.hemonc.2020.06.00582. Hannon JL. Management of Blood Donors and Blood Donations From Individuals Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev. 2012;26(2):142-152. doi:10.1016/j.tmrv.2011.08.00483. Froissart A, Rossi B, Ranque B, et al. Effect of a Red Blood Cell Transfusion on Biological Markers Used to Determine the Cause of Anemia: A Prospective Study. Am J Med. 2018;131(3):319-322. doi:10.1016/j.amjmed.2017.10.00584. Cid J, Ortín X, Beltran V, et al. The direct antiglobulin test in a hospital setting. Immunohematology. 2020;19(1):16-18. doi:10.21307/immunohematology-2019- 46885. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017;176(3):395-411. doi:10.1111/bjh.1447886. Lai M, Visconti E, D’Onofrio G, Tamburrini E, Cauda R, Leone G. Lower hemoglobin levels in human immunodeficiency virus-infected patients with a positive direct antiglobulin test (DAT): relationship with DAT strength and clinical stages. Transfusion. 2006;46(7):1237-1243. doi:10.1111/j.1537-2995.2006.00876.x87. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.1679488. Raghuwanshi B. Serological Blood Group Discrepancy and Cold Agglutinin Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus. Published online November 15, 2020. doi:10.7759/cureus.1149589. Hassanein H, Hajdenberg J. High Thermal Amplitude Red Blood Cell Agglutinating Cold Type Autoantibodies in a Case of Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia and Multiorgan Failure. J Med Cases. 2021;12(1):16-17. doi:10.14740/jmc360890. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.1607890. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.1607892. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. doi:10.1186/s42358-020-00151-793. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.10250694. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity. Eur J Gen Pract. 1996;2(2):65-70. doi:10.3109/1381478960916214695. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520- 531. doi:10.1016/j.cmi.2020.12.01896. Roy CN. Anemia of Inflammation. Hematology. 2010;2010(1):276-280. doi:10.1182/asheducation-2010.1.276EstudiantesInvestigadoresPúblico generalORIGINALBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdfBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdfTesis de especialidad medica en Hematologíaapplication/pdf1258439https://repositorio.unal.edu.co/bitstream/unal/80841/1/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf2010702fb46f91c933a4b83f6a0b9d38MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80841/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAILBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdf.jpgBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdf.jpgGenerated Thumbnailimage/jpeg5358https://repositorio.unal.edu.co/bitstream/unal/80841/3/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf.jpgafcb967a857b47960629331c7bc542b9MD53unal/80841oai:repositorio.unal.edu.co:unal/808412023-07-31 23:04:33.216Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK