Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19
ilustraciones
- Autores:
-
Burbano Gutiérrez, Juan Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80841
- Palabra clave:
- 610 - Medicina y salud::616 - Enfermedades
Infecciones por Coronavirus
Coronavirus Infections
Anemia
Anemia Hemolítica Autoinmune
Anemia, Hemolytic, Autoimmune
COVID-19
SARS-CoV-2
Anemia
Anemia hemolítica autoinmune
Prueba antiglobulínica directa
Autoimmune hemolytic anemia
Direct antiglobulin test
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_bbef065415634b3e3034d16355e2f2f1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80841 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
dc.title.translated.eng.fl_str_mv |
Prevalence of anemia and positive direct antiglobulin test (DAT) in hospitalized patients with COVID-19 |
title |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
spellingShingle |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 610 - Medicina y salud::616 - Enfermedades Infecciones por Coronavirus Coronavirus Infections Anemia Anemia Hemolítica Autoinmune Anemia, Hemolytic, Autoimmune COVID-19 SARS-CoV-2 Anemia Anemia hemolítica autoinmune Prueba antiglobulínica directa Autoimmune hemolytic anemia Direct antiglobulin test |
title_short |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
title_full |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
title_fullStr |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
title_full_unstemmed |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
title_sort |
Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
dc.creator.fl_str_mv |
Burbano Gutiérrez, Juan Felipe |
dc.contributor.advisor.none.fl_str_mv |
Grajales Buitrago, Marco Antonio Camacho Rodríguez, Bernardo Armando Angarita de Botero, María del Pilar Sánchez Pedraza, Ricardo |
dc.contributor.author.none.fl_str_mv |
Burbano Gutiérrez, Juan Felipe |
dc.contributor.researcher.none.fl_str_mv |
Amador Rodríguez, Mónica Patricia Gaviria García, Paula Andrea Grass Guáqueta, Jeser Santiago Deantonio Paéz, Danna Valentina |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::616 - Enfermedades Infecciones por Coronavirus Coronavirus Infections Anemia Anemia Hemolítica Autoinmune Anemia, Hemolytic, Autoimmune COVID-19 SARS-CoV-2 Anemia Anemia hemolítica autoinmune Prueba antiglobulínica directa Autoimmune hemolytic anemia Direct antiglobulin test |
dc.subject.other.none.fl_str_mv |
Infecciones por Coronavirus Coronavirus Infections Anemia Anemia Hemolítica Autoinmune Anemia, Hemolytic, Autoimmune |
dc.subject.proposal.spa.fl_str_mv |
COVID-19 SARS-CoV-2 Anemia Anemia hemolítica autoinmune Prueba antiglobulínica directa |
dc.subject.proposal.eng.fl_str_mv |
Autoimmune hemolytic anemia Direct antiglobulin test |
description |
ilustraciones |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-01T19:45:25Z |
dc.date.available.none.fl_str_mv |
2022-02-01T19:45:25Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Especialidad Médica |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80841 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80841 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
1. Organización Mundial de la Salud. WHO Coronavirus Disease (COVID-19) Dashboard. Published 2020. Accessed August 30, 2021. https://covid19.who.int/ 2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5 3. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127(January):104362. doi:10.1016/j.jcv.2020.104362 4. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med. 2020;382(18):e43. doi:10.1056/NEJMc2010472 5. Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191 6. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575 7. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794 8. Berzuini A, Bianco C, Paccapelo C, et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-768. doi:10.1182/blood.2020006695 9. Hendrickson JE, Tormey CA. COVID-19 and the Coombs test. Blood. 2020;136(6):655-656. doi:10.1182/blood.2020007483 10. Gammazza AM, Légaré S, Lo Bosco G, et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25(5):737-741. doi:10.1007/s12192-020-01148-3 11. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020;190(2):e92-e93. doi:10.1111/bjh.16883 12. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021;100(1):37-43. doi:10.1007/s00277-020-04256-3 13. Sterne JAC, Murthy S, Diaz J V., et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19. JAMA. 2020;324(13):1330. doi:10.1001/jama.2020.17023 14. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/nejmoa2001017 15. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ B. 2020;21(5):343-360. doi:10.1631/jzus.B2000083 16. Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2. JAMA. 2020;324(5):441. doi:10.1001/jama.2020.12458 17. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9 18. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. doi:10.1038/s41591- 020-0869-5 19. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis. 2020;0(0):1-14. doi:10.1093/cid/ciaa1249 20. World Health Organization. Criteria for releasing COVID-19 patients from isolation. Sci Br. 2020;(17 June):1-5. https://www.who.int/publications/i/item/criteria-forreleasing-covid-19-patients-from-isolation 21. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577-582. doi:10.7326/M20-0504 22. Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on upto-date knowledge. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102581. doi:10.1016/j.amjoto.2020.102581 23. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3 24. Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi:10.1056/nejmcp2009249 25. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;307(23):2526- 2533. doi:10.1001/jama.2012.5669 26. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. Drazen JM, ed. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra1608077 27. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Published online 2020:1-10. doi:10.1056/nejmcp2009575 28. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J Am Med Assoc. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648 29. Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437-440. doi:10.1038/s41586-020-2355-0 30. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. doi:10.1056/NEJMoa2020283 31. Kaser A. Genetic Risk of Severe Covid-19. N Engl J Med. 2020;383(16):1590-1591. doi:10.1056/nejme2025501 32. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J Virol. 2003;77(16):8801-8811. doi:10.1128/JVI.77.16.8801-8811.2003 33. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215(January):108427. doi:10.1016/j.clim.2020.108427 34. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. doi:10.1038/s41591-020-0820-9 35. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. doi:10.1016/j.molcel.2020.04.022 36. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: Control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814-820. doi:10.1007/s00109-006-0094-9 37. Ou J, Zhou Z, Dai R, et al. Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity. bioRxiv. Published online January 1, 2020:2020.03.15.991844. doi:10.1101/2020.03.15.991844 38. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586- 020-2196-x 39. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463. doi:10.1148/radiol.2020200463 40. Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science (80- ). 2020;369(6503):510-511. doi:10.1126/science.abc6156 41. loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283(September 2020):103548. doi:10.1016/j.resp.2020.103548 42. Zhang C, Wu Z, Li J, Zhao H, Wang G. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.105954 43. Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infect Microbes Dis. 2021;3(1):14-21. doi:10.1097/IM9.0000000000000045 44. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020;17(1):38. doi:10.1186/s12979-020-00208-7 45. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for autoimmune hemolytic anemia. Expert Rev Clin Immunol. 2018;14(10):857-872. doi:10.1080/1744666X.2018.1521722 46. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020;41(xxxx):100648. doi:10.1016/j.blre.2019.100648 47. Smirnova SJ, Sidorova J V., Tsvetaeva N V., et al. Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity. 2016;49(3):147-154. doi:10.3109/08916934.2016.1138219 48. Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol. 2012;40(12):994-1004.e4. doi:10.1016/j.exphem.2012.08.008 49. Howie HL, Hudson KE. Murine models of autoimmune hemolytic anemia. Curr Opin Hematol. 2018;25(6):473-481. doi:10.1097/MOH.0000000000000459 50. Brodsky RA. Warm Autoimmune Hemolytic Anemia. Solomon CG, ed. N Engl J Med. 2019;381(7):647-654. doi:10.1056/NEJMcp1900554 51. Berentsen S. New Insights in the Pathogenesis and Therapy of Cold AgglutininMediated Autoimmune Hemolytic Anemia. Front Immunol. 2020;11(April):12-14. doi:10.3389/fimmu.2020.00590 52. McNicholl F. Clinical syndromes associated with cold agglutinins. Transfus Sci. 2000;22(1-2):125-133. doi:10.1016/S0955-3886(00)00033-3 53. Hill A, Hill QA. Autoimmune hemolytic anemia. Hematology. 2018;2018(1):382-389. doi:10.1182/asheducation-2018.1.382 54. Koffas A, Dolman GE, Kennedy PTF. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: a practical guide for clinicians. Clin Med (Northfield Il). 2018;18(3):212-218. doi:10.7861/clinmedicine.18-3-212 55. Barcellini W, Zaninoni A, Fattizzo B, et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am J Hematol. 2018;93(9):E243-E246. doi:10.1002/ajh.25212 56. Coombs RRA, Mourant AE, Race RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol. 1945;26:255-266. http://www.ncbi.nlm.nih.gov/pubmed/21006651 57. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017;141(2):305-310. doi:10.5858/arpa.2015-0444- RS 58. Borge PD, Mansfield PM. The Positive Direct Antiglobulin Test and ImmuneMediated Hemolysis. In: Cohn CS, Delaney M, Johnson ST, Katz LM, eds. Technical Manual AABB. 20th ed. ; 2020:429-452. 59. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680. doi:10.1007/s00277-020-04137-9 60. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation. Pediatr Blood Cancer. 2020;67(9):1-2. doi:10.1002/pbc.28382 61. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a patient with COVID-19. Br J Haematol. 2020;190(2):e59-e61. doi:10.1111/bjh.16846 62. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190(1):31- 32. doi:10.1111/bjh.16786 63. Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D. SARS-CoV-2- associated cold agglutinin disease: a report of two cases. Ann Hematol. 2020;99(8):1943-1944. doi:10.1007/s00277-020-04129-9 64. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77(April):246. doi:10.1016/j.jocn.2020.05.015 65. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi:10.1038/kisup.2012.73 66. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020;36:101606. doi:10.1016/j.tmaid.2020.101606 67. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Third. John Wiley & Sons, Inc.; 2003. doi:10.1002/0471445428 68. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857-872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E 69. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17(14):1623-1634. doi:10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S 70. Organización Panamericana de la Salud. Requerimientos para uso de equipos de protección personal (EPP) para el nuevo coronavirus (2019-nCoV) en establecimientos de salud. Bioseguridad y Transp nCoV. 2020;1:1-4. https://iris.paho.org/handle/10665.2/51976 71. Organización Panamerica de la Salud. Directrices provisionales de bioseguridad de laboratorio para el manejo y transporte de muestras asociadas al nuevo coronavirus 20191 (2019-nCoV). Bioseguridad y Transp nCoV. 2020;1:1-10. https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html 72. Batstra L, Bos EH, Neeleman J. Quantifying psychiatric comorbidity. Soc Psychiatry Psychiatr Epidemiol. 2002;37(3):105-111. doi:10.1007/s001270200001 73. Coutelier JP, Detalle L, Musaji A, Meite M, Izui S. Two-Step Mechanism of Virusinduced Autoimmune Hemolytic Anemia. Ann N Y Acad Sci. 2007;1109(1):151-157. doi:10.1196/annals.1398.018 74. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi:10.1111/imr.12091 75. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v11080762 76. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-239. doi:10.1080/16078454.2021.1881225 77. Motta JC, Novoa DJ, Gómez CC, et al. Factores pronósticos en pacientes hospitalizados con diagnóstico de infección por SARS-CoV-2 en Bogotá, Colombia. Biomédica. 2020;40(Supl. 2):116-130. doi:10.7705/biomedica.5764 78. Matsunaga N, Hayakawa K, Terada M, et al. Clinical Epidemiology of Hospitalized Patients With Coronavirus Disease 2019 (COVID-19) in Japan: Report of the COVID-19 Registry Japan. Clin Infect Dis. Published online September 28, 2020. doi:10.1093/cid/ciaa1470 79. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune hemolytic Anemia in COVID-19 İnfection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12(1):4-7. doi:10.4084/MJHID.2020.053 80. Maslov D V., Simenson V, Jain S, Badari A. COVID-19 and Cold Agglutinin Hemolytic Anemia. TH Open. 2020;04(03):e175-e177. doi:10.1055/s-0040- 1715791 81. Patil NR, Herc ES, Girgis M. Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol Oncol Stem Cell Ther. 2020;(January):19-21. doi:10.1016/j.hemonc.2020.06.005 82. Hannon JL. Management of Blood Donors and Blood Donations From Individuals Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev. 2012;26(2):142-152. doi:10.1016/j.tmrv.2011.08.004 83. Froissart A, Rossi B, Ranque B, et al. Effect of a Red Blood Cell Transfusion on Biological Markers Used to Determine the Cause of Anemia: A Prospective Study. Am J Med. 2018;131(3):319-322. doi:10.1016/j.amjmed.2017.10.005 84. Cid J, Ortín X, Beltran V, et al. The direct antiglobulin test in a hospital setting. Immunohematology. 2020;19(1):16-18. doi:10.21307/immunohematology-2019- 468 85. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017;176(3):395-411. doi:10.1111/bjh.14478 86. Lai M, Visconti E, D’Onofrio G, Tamburrini E, Cauda R, Leone G. Lower hemoglobin levels in human immunodeficiency virus-infected patients with a positive direct antiglobulin test (DAT): relationship with DAT strength and clinical stages. Transfusion. 2006;46(7):1237-1243. doi:10.1111/j.1537-2995.2006.00876.x 87. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794 88. Raghuwanshi B. Serological Blood Group Discrepancy and Cold Agglutinin Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus. Published online November 15, 2020. doi:10.7759/cureus.11495 89. Hassanein H, Hajdenberg J. High Thermal Amplitude Red Blood Cell Agglutinating Cold Type Autoantibodies in a Case of Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia and Multiorgan Failure. J Med Cases. 2021;12(1):16-17. doi:10.14740/jmc3608 90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078 90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078 92. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. doi:10.1186/s42358-020-00151-7 93. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.102506 94. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity. Eur J Gen Pract. 1996;2(2):65-70. doi:10.3109/13814789609162146 95. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520- 531. doi:10.1016/j.cmi.2020.12.018 96. Roy CN. Anemia of Inflammation. Hematology. 2010;2010(1):276-280. doi:10.1182/asheducation-2010.1.276 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Especialidad en Hematología |
dc.publisher.department.spa.fl_str_mv |
Departamento de Medicina Interna |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80841/1/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf https://repositorio.unal.edu.co/bitstream/unal/80841/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/80841/3/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf.jpg |
bitstream.checksum.fl_str_mv |
2010702fb46f91c933a4b83f6a0b9d38 8153f7789df02f0a4c9e079953658ab2 afcb967a857b47960629331c7bc542b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090188069011456 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Grajales Buitrago, Marco Antonioda903ef0eeb60966d23123b80a9b46f2Camacho Rodríguez, Bernardo Armando41a1d3fa4dfecadc930167e941dd257cAngarita de Botero, María del Pilar6fa4e19ac187be4ac1ab42426687f76dSánchez Pedraza, Ricardo71d39599cff2e2eb6af28ec7d259fc60Burbano Gutiérrez, Juan Felipe9af9404ad33bcba40915e9a4cb136afeAmador Rodríguez, Mónica PatriciaGaviria García, Paula AndreaGrass Guáqueta, Jeser SantiagoDeantonio Paéz, Danna Valentina2022-02-01T19:45:25Z2022-02-01T19:45:25Z2021https://repositorio.unal.edu.co/handle/unal/80841Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa infección por SARSCoV-2 causa la enfermedad por coronavirus del 2019 (COVID-19), considerada como pandemia, con complicaciones hematológicas derivadas de síndromes hiperinflamatorios y autoinmunidad en pacientes de alto riesgo y ancianos que desarrollan una infección grave por COVID-19. Una de las complicaciones documentadas es la anemia hemolítica autoinmune (AHAI), que está mediada por la emergencia de autoanticuerpos contra los eritrocitos del huésped. El diagnóstico de AHAI a menudo no se realiza, lo que conduce a resultados clínicos deficientes debido a anemia, disfunción endotelial e hipoperfusión tisular. Se realizó un estudio observacional de corte transversal por período para evaluar la coocurrencia de anemia y prueba de antiglobulina directa (PAD) positiva, en pacientes hospitalizados por COVID-19 en dos hospitales de Bogotá, Colombia, del 18 de marzo al 29 de abril. 2021. La asociación sustantiva entre anemia y PAD positiva se estimó por medio del coeficiente de agrupamiento o de cluster; Las variables de confusión que se sabe están asociadas con la anemia y PAD (p. ej., inflamación, gravedad de COVID-19, sangrado mayor y tratamiento con antibióticos) se controlaron mediante regresión logística multivariable. Se evaluaron 185 pacientes, 84 (45,4%) eran mujeres y la edad media fue 59,7 ± 14,7. Cien (54,1%) ingresaron a la unidad de cuidados intensivos, 67 (36,2%) con disfunción multiorgánica (medida por qSOFA ≥2). La prevalencia de anemia y PAD positiva fue del 19,4% (intervalo de confianza [IC] del 95%, 13,8 a 25,2). El coeficiente de cluster fue de 1,55, lo que demuestra una asociación sustancial no coincidencial. La disfunción multiorgánica, la PAD positiva y la terapia con antibióticos se asociaron significativamente con anemia durante la hospitalización (OR: 5,11 (IC 95%: 2,46 - 10,60), 2,72 (IC 95%: 1,32 – 5,60) y 2,48 (IC 95% 1,10 - 5,57), respectivamente. En conclusión, la coocurrencia de anemia y PAD positiva en pacientes hospitalizados con infección por SARS-CoV-2 no es una coincidencia y se asocia a insuficiencia multiorgánica y terapia con antibióticos. Para el médico, la anemia de nueva aparición después o durante la hospitalización debido a un COVID-19 grave debe despertar sospechas de AHAI. (texto tomado de la fuente)Hematologic complications derived from hyperinflammatory syndromes and autoimmunity can be seen in high-risk and elderly patients who develop severe COVID-19 infection. One of the reported complications is autoimmune hemolytic anemia (AIHA), which is mediated by the emergency of autoantibodies against host erythrocytes. The diagnosis of AIHA is often unrecognized leading to poor clinical outcomes due to anemia, endothelial dysfunction, and tissue hypoperfusion. Herein, we conducted a cross-sectional, observational study to evaluate the prevalence of anemia and a positive Direct Antiglobulin Test (DAT), among hospitalized patients with COVID-19 in two hospitals in Bogota, Colombia during COVID surge from March 18 to April 29, 2021. The association between anemia and a positive DAT was estimated by cluster coefficient; confounding variables known to be associated with anemia (eg, inflammation, COVID-19 severity, mayor bleeding and antibiotic therapy) were controlled by multivariate logistic regression. One hundred and eighty-five patients were evaluated, 84 (45,4%) were female, and the mean age was 59,7 ± 14,7. One hundred (54,1%) were admitted to intensive care unit, 67 (36,2%) with multi-organ dysfunction (measured by qSOFA ≥2). The prevalence of anemia and positive DAT was 19.4% (95% confidence interval [CI], 13.8 to 25.2). Cluster coefficient was 1.55 showing a substantive non coincidental association. Multi-organic dysfunction, positive DAT and antibiotic therapy were significantly associated with anemia that occurred during hospitalization (OR:5,11 (95% CI 2,46 – 10,60), 2,72 (95% CI 1,32 – 5,60) and 2,48 (95% CI 1,10 – 5,57), respectively In summary, the prevalence of anemia and positive DAT in hospitalized patients with SARS-CoV-2 infection is not coincidental and it is associated to multiple organ failure and antibiotic therapy. For the clinician, new onset anemia following hospitalization due to severe COVID-19 should raise suspicion for AIHA.Especialidades MédicasEspecialista en HematologíaHematologíaapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Especialidad en HematologíaDepartamento de Medicina InternaFacultad de MedicinaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - EnfermedadesInfecciones por CoronavirusCoronavirus InfectionsAnemiaAnemia Hemolítica AutoinmuneAnemia, Hemolytic, AutoimmuneCOVID-19SARS-CoV-2AnemiaAnemia hemolítica autoinmunePrueba antiglobulínica directaAutoimmune hemolytic anemiaDirect antiglobulin testCoocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19Prevalence of anemia and positive direct antiglobulin test (DAT) in hospitalized patients with COVID-19Trabajo de grado - Especialidad Médicainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferencia1. Organización Mundial de la Salud. WHO Coronavirus Disease (COVID-19) Dashboard. Published 2020. Accessed August 30, 2021. https://covid19.who.int/2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-53. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127(January):104362. doi:10.1016/j.jcv.2020.1043624. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med. 2020;382(18):e43. doi:10.1056/NEJMc20104725. Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc20091916. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc20075757. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.167948. Berzuini A, Bianco C, Paccapelo C, et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-768. doi:10.1182/blood.20200066959. Hendrickson JE, Tormey CA. COVID-19 and the Coombs test. Blood. 2020;136(6):655-656. doi:10.1182/blood.202000748310. Gammazza AM, Légaré S, Lo Bosco G, et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25(5):737-741. doi:10.1007/s12192-020-01148-311. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020;190(2):e92-e93. doi:10.1111/bjh.1688312. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021;100(1):37-43. doi:10.1007/s00277-020-04256-313. Sterne JAC, Murthy S, Diaz J V., et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19. JAMA. 2020;324(13):1330. doi:10.1001/jama.2020.1702314. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/nejmoa200101715. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ B. 2020;21(5):343-360. doi:10.1631/jzus.B200008316. Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2. JAMA. 2020;324(5):441. doi:10.1001/jama.2020.1245817. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-918. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. doi:10.1038/s41591- 020-0869-519. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis. 2020;0(0):1-14. doi:10.1093/cid/ciaa124920. World Health Organization. Criteria for releasing COVID-19 patients from isolation. Sci Br. 2020;(17 June):1-5. https://www.who.int/publications/i/item/criteria-forreleasing-covid-19-patients-from-isolation21. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577-582. doi:10.7326/M20-050422. Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on upto-date knowledge. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102581. doi:10.1016/j.amjoto.2020.10258123. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-324. Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi:10.1056/nejmcp200924925. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;307(23):2526- 2533. doi:10.1001/jama.2012.566926. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. Drazen JM, ed. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra160807727. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Published online 2020:1-10. doi:10.1056/nejmcp200957528. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J Am Med Assoc. 2020;323(13):1239-1242. doi:10.1001/jama.2020.264829. Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437-440. doi:10.1038/s41586-020-2355-030. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. doi:10.1056/NEJMoa202028331. Kaser A. Genetic Risk of Severe Covid-19. N Engl J Med. 2020;383(16):1590-1591. doi:10.1056/nejme202550132. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J Virol. 2003;77(16):8801-8811. doi:10.1128/JVI.77.16.8801-8811.200333. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215(January):108427. doi:10.1016/j.clim.2020.10842734. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. doi:10.1038/s41591-020-0820-935. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. doi:10.1016/j.molcel.2020.04.02236. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: Control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814-820. doi:10.1007/s00109-006-0094-937. Ou J, Zhou Z, Dai R, et al. Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity. bioRxiv. Published online January 1, 2020:2020.03.15.991844. doi:10.1101/2020.03.15.99184438. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586- 020-2196-x39. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463. doi:10.1148/radiol.202020046340. Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science (80- ). 2020;369(6503):510-511. doi:10.1126/science.abc615641. loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283(September 2020):103548. doi:10.1016/j.resp.2020.10354842. Zhang C, Wu Z, Li J, Zhao H, Wang G. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.10595443. Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infect Microbes Dis. 2021;3(1):14-21. doi:10.1097/IM9.000000000000004544. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020;17(1):38. doi:10.1186/s12979-020-00208-745. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for autoimmune hemolytic anemia. Expert Rev Clin Immunol. 2018;14(10):857-872. doi:10.1080/1744666X.2018.152172246. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020;41(xxxx):100648. doi:10.1016/j.blre.2019.10064847. Smirnova SJ, Sidorova J V., Tsvetaeva N V., et al. Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity. 2016;49(3):147-154. doi:10.3109/08916934.2016.113821948. Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol. 2012;40(12):994-1004.e4. doi:10.1016/j.exphem.2012.08.00849. Howie HL, Hudson KE. Murine models of autoimmune hemolytic anemia. Curr Opin Hematol. 2018;25(6):473-481. doi:10.1097/MOH.000000000000045950. Brodsky RA. Warm Autoimmune Hemolytic Anemia. Solomon CG, ed. N Engl J Med. 2019;381(7):647-654. doi:10.1056/NEJMcp190055451. Berentsen S. New Insights in the Pathogenesis and Therapy of Cold AgglutininMediated Autoimmune Hemolytic Anemia. Front Immunol. 2020;11(April):12-14. doi:10.3389/fimmu.2020.0059052. McNicholl F. Clinical syndromes associated with cold agglutinins. Transfus Sci. 2000;22(1-2):125-133. doi:10.1016/S0955-3886(00)00033-353. Hill A, Hill QA. Autoimmune hemolytic anemia. Hematology. 2018;2018(1):382-389. doi:10.1182/asheducation-2018.1.38254. Koffas A, Dolman GE, Kennedy PTF. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: a practical guide for clinicians. Clin Med (Northfield Il). 2018;18(3):212-218. doi:10.7861/clinmedicine.18-3-21255. Barcellini W, Zaninoni A, Fattizzo B, et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am J Hematol. 2018;93(9):E243-E246. doi:10.1002/ajh.2521256. Coombs RRA, Mourant AE, Race RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol. 1945;26:255-266. http://www.ncbi.nlm.nih.gov/pubmed/2100665157. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017;141(2):305-310. doi:10.5858/arpa.2015-0444- RS58. Borge PD, Mansfield PM. The Positive Direct Antiglobulin Test and ImmuneMediated Hemolysis. In: Cohn CS, Delaney M, Johnson ST, Katz LM, eds. Technical Manual AABB. 20th ed. ; 2020:429-452.59. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680. doi:10.1007/s00277-020-04137-960. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation. Pediatr Blood Cancer. 2020;67(9):1-2. doi:10.1002/pbc.2838261. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a patient with COVID-19. Br J Haematol. 2020;190(2):e59-e61. doi:10.1111/bjh.1684662. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190(1):31- 32. doi:10.1111/bjh.1678663. Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D. SARS-CoV-2- associated cold agglutinin disease: a report of two cases. Ann Hematol. 2020;99(8):1943-1944. doi:10.1007/s00277-020-04129-964. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77(April):246. doi:10.1016/j.jocn.2020.05.01565. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi:10.1038/kisup.2012.7366. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020;36:101606. doi:10.1016/j.tmaid.2020.10160667. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Third. John Wiley & Sons, Inc.; 2003. doi:10.1002/047144542868. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857-872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E69. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17(14):1623-1634. doi:10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S70. Organización Panamericana de la Salud. Requerimientos para uso de equipos de protección personal (EPP) para el nuevo coronavirus (2019-nCoV) en establecimientos de salud. Bioseguridad y Transp nCoV. 2020;1:1-4. https://iris.paho.org/handle/10665.2/5197671. Organización Panamerica de la Salud. Directrices provisionales de bioseguridad de laboratorio para el manejo y transporte de muestras asociadas al nuevo coronavirus 20191 (2019-nCoV). Bioseguridad y Transp nCoV. 2020;1:1-10. https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html72. Batstra L, Bos EH, Neeleman J. Quantifying psychiatric comorbidity. Soc Psychiatry Psychiatr Epidemiol. 2002;37(3):105-111. doi:10.1007/s00127020000173. Coutelier JP, Detalle L, Musaji A, Meite M, Izui S. Two-Step Mechanism of Virusinduced Autoimmune Hemolytic Anemia. Ann N Y Acad Sci. 2007;1109(1):151-157. doi:10.1196/annals.1398.01874. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi:10.1111/imr.1209175. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v1108076276. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-239. doi:10.1080/16078454.2021.188122577. Motta JC, Novoa DJ, Gómez CC, et al. Factores pronósticos en pacientes hospitalizados con diagnóstico de infección por SARS-CoV-2 en Bogotá, Colombia. Biomédica. 2020;40(Supl. 2):116-130. doi:10.7705/biomedica.576478. Matsunaga N, Hayakawa K, Terada M, et al. Clinical Epidemiology of Hospitalized Patients With Coronavirus Disease 2019 (COVID-19) in Japan: Report of the COVID-19 Registry Japan. Clin Infect Dis. Published online September 28, 2020. doi:10.1093/cid/ciaa147079. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune hemolytic Anemia in COVID-19 İnfection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12(1):4-7. doi:10.4084/MJHID.2020.05380. Maslov D V., Simenson V, Jain S, Badari A. COVID-19 and Cold Agglutinin Hemolytic Anemia. TH Open. 2020;04(03):e175-e177. doi:10.1055/s-0040- 171579181. Patil NR, Herc ES, Girgis M. Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol Oncol Stem Cell Ther. 2020;(January):19-21. doi:10.1016/j.hemonc.2020.06.00582. Hannon JL. Management of Blood Donors and Blood Donations From Individuals Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev. 2012;26(2):142-152. doi:10.1016/j.tmrv.2011.08.00483. Froissart A, Rossi B, Ranque B, et al. Effect of a Red Blood Cell Transfusion on Biological Markers Used to Determine the Cause of Anemia: A Prospective Study. Am J Med. 2018;131(3):319-322. doi:10.1016/j.amjmed.2017.10.00584. Cid J, Ortín X, Beltran V, et al. The direct antiglobulin test in a hospital setting. Immunohematology. 2020;19(1):16-18. doi:10.21307/immunohematology-2019- 46885. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017;176(3):395-411. doi:10.1111/bjh.1447886. Lai M, Visconti E, D’Onofrio G, Tamburrini E, Cauda R, Leone G. Lower hemoglobin levels in human immunodeficiency virus-infected patients with a positive direct antiglobulin test (DAT): relationship with DAT strength and clinical stages. Transfusion. 2006;46(7):1237-1243. doi:10.1111/j.1537-2995.2006.00876.x87. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.1679488. Raghuwanshi B. Serological Blood Group Discrepancy and Cold Agglutinin Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus. Published online November 15, 2020. doi:10.7759/cureus.1149589. Hassanein H, Hajdenberg J. High Thermal Amplitude Red Blood Cell Agglutinating Cold Type Autoantibodies in a Case of Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia and Multiorgan Failure. J Med Cases. 2021;12(1):16-17. doi:10.14740/jmc360890. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.1607890. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.1607892. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. doi:10.1186/s42358-020-00151-793. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.10250694. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity. Eur J Gen Pract. 1996;2(2):65-70. doi:10.3109/1381478960916214695. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520- 531. doi:10.1016/j.cmi.2020.12.01896. Roy CN. Anemia of Inflammation. Hematology. 2010;2010(1):276-280. doi:10.1182/asheducation-2010.1.276EstudiantesInvestigadoresPúblico generalORIGINALBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdfBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdfTesis de especialidad medica en Hematologíaapplication/pdf1258439https://repositorio.unal.edu.co/bitstream/unal/80841/1/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf2010702fb46f91c933a4b83f6a0b9d38MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80841/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAILBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdf.jpgBurbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdf.jpgGenerated Thumbnailimage/jpeg5358https://repositorio.unal.edu.co/bitstream/unal/80841/3/Burbano%20hematologia%202021%20-%20Juan%20Felipe%20Burbano%20Gutierrez.pdf.jpgafcb967a857b47960629331c7bc542b9MD53unal/80841oai:repositorio.unal.edu.co:unal/808412023-07-31 23:04:33.216Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |