El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín

ilustraciones, diagramas

Autores:
Correa Castañeda, Diego Fernando
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84480
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84480
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::515 - Análisis
ECUACIONES DIFERENCIALES PARCIALES
PROBLEMA DE CAUCHY
Differential equations, partial
Cauchy problem-8a. ed.
Buen planteamiento
Ecuaciones dispersivas
Regularización parabólica
Espacios de Bourgain
Well posedness
Dispersive equations
Parabolic regularization
Bourgain spaces
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_bbde39f59f545bee4efbb660e0d8ae39
oai_identifier_str oai:repositorio.unal.edu.co:unal/84480
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
dc.title.translated.eng.fl_str_mv The Cauchy problem associated to a fifth order perturbation of the Benjamin equation
title El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
spellingShingle El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
510 - Matemáticas::515 - Análisis
ECUACIONES DIFERENCIALES PARCIALES
PROBLEMA DE CAUCHY
Differential equations, partial
Cauchy problem-8a. ed.
Buen planteamiento
Ecuaciones dispersivas
Regularización parabólica
Espacios de Bourgain
Well posedness
Dispersive equations
Parabolic regularization
Bourgain spaces
title_short El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
title_full El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
title_fullStr El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
title_full_unstemmed El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
title_sort El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
dc.creator.fl_str_mv Correa Castañeda, Diego Fernando
dc.contributor.advisor.none.fl_str_mv Pastrán Ramírez, Ricardo Ariel
dc.contributor.author.none.fl_str_mv Correa Castañeda, Diego Fernando
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::515 - Análisis
topic 510 - Matemáticas::515 - Análisis
ECUACIONES DIFERENCIALES PARCIALES
PROBLEMA DE CAUCHY
Differential equations, partial
Cauchy problem-8a. ed.
Buen planteamiento
Ecuaciones dispersivas
Regularización parabólica
Espacios de Bourgain
Well posedness
Dispersive equations
Parabolic regularization
Bourgain spaces
dc.subject.lemb.spa.fl_str_mv ECUACIONES DIFERENCIALES PARCIALES
PROBLEMA DE CAUCHY
dc.subject.lemb.eng.fl_str_mv Differential equations, partial
Cauchy problem-8a. ed.
dc.subject.proposal.spa.fl_str_mv Buen planteamiento
Ecuaciones dispersivas
Regularización parabólica
Espacios de Bourgain
dc.subject.proposal.eng.fl_str_mv Well posedness
Dispersive equations
Parabolic regularization
Bourgain spaces
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-08T15:10:38Z
dc.date.available.none.fl_str_mv 2023-08-08T15:10:38Z
dc.date.issued.none.fl_str_mv 2023-02-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84480
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84480
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Iorio, Jr R. J. y Valéria de Magalhães Iorio, Fourier Analysis and Partial Differential Equations, Cambridge University Press, 2001.
Kenig, Ponce y Vega, A bilinear estimate with applications to the KdV equation, Journal of the american mathematical society, Volume 9, Number 2, April 1996.
Stein Elias y Shakarchi Rami, Fourier Analysis: An Introduction, Princeton University Press, (2003).
Linares, F. y Ponce, G., Introduction to Nonlinear Dispersive Equations, Springer, 2009.
Gleeson H. , Hammerton P., Papageorgiou D. T. , Vanden-Broeck J.-M. , A new application of the Korteweg–de Vries Benjamin-Ono equation in interfacial electrohydrodynamics, American Institute of Physics, 2007.
Linares Felipe, $L^2$ Global Well-Posedness of the Initial Value Problem Associated to the Benjamin Equation, IMPA, 1998.
Kenig, Ponce y Vega, The Cauchy problem for the Korteweg de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), 1 - 21. MR 94g:35196.
Bourgain, Fourier Transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, Volume 3, Number 3, 1993.
Chen, Guo y Xiao, Sharp well-posedness for the Benjamin equation, Journal of the american mathematical society, Nonlinear Analysis 74 (2011) 6209–6230.
Junfeng Li, Xia Li, Well-posedness for the fifth order KP-II initial data problem in $H^{s,0}(\R \times \mathbb{T})$, J. Differential Equations 262 (2017) 2196–2230.
Korteweg D.J. y de Vries F., On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philosophical Magazine, 39, 422—443, 1895.
Kato T., On the Cauchy Problem for the (generalized) Korteweg - de Vries Equation, Advances in Mathematics Supplementary Studies, vol. 8, M.G. Crandall, ed., Academic Press (1983) 93-128
Kruzkhov S., Faminskii A., Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Math. USSR Sbornik 48 (1984) 391-421.
Lax P.D., A Hamiltonian approach to KdV and other equations in Nonlinear Evolution Equations, Math. M.G. Crandall, ed., Academic Press (1985) 207-224.
Newell A. C., Solitons in Mathematics and Physics, Regional Conference Series in Applied Mathematics, SIAM (1985).
Novikov S. , Manakov S.V., Pitaeviskii L.P. y Zakharov V.E., Theory of Solitons - The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau, New York (1984).
Whitham G.B., Linear and Nonlinear Waves, Wiley (1974).
Benjamin, T.B., Internal Waves of Permanent Form in Fluids of Great Depth, J. Fluid Mech. 29, (1967), 559-592.
Dix D., Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation, J. Differ. Equations 90 (2) (1991) 238-287.
Dan Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Berlin Heidelberg New York 1981.
Iorio, Jr. R. J., KdV, BO and friends in weighted Sobolev spaces, in Function Analytic Methods for Partial Differential Equations, Lecture Notes in Mathematics, vol. 1450, Springer (1990) 105-121.
H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091.
Iorio Jr. R. J. , On The Cauchy Problem For The Benjamin-Ono Equation, Communications in partial differential equations. v. 11, n. 10, p. 1031-1081, 1986.
Ponce G., On the global well-posedness of the Benjamin-Ono equation, Differ. Integral Equ. 4 (3) (1991) 527-542.
Tao T., Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbb{R})$, Volume 1, J. Hyperbolic Differ. Equ. (2003).
T. B. Benjamin, A new kind of solitary waves, J. Fluid Mech. 245 (1992), 401-411.
Ben-Artzi M. y Devinatz A. , The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (Marzo 1987) no. 364.
Brandt S. y Dahmen H.D. , The picture Book of Quantum Mechanics, 2nd ed., Springer (1995).
Cycon H.L. , Froese R.G., Kirsh W. y Simon B., Schödinger Operators, Springer (1987).
Drezinski J. y Gérard C., Scattering Theory of Classical and Quantum N-Particle Systems, Springer (1997).
Gottfried K., Quantum Mechanics vol 1: Fundamentals, W.A. Benjamin (1996).
Jensen A. , Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math.Sci.) 104 (1994) 599-651.
Merzbacher E., Quantum Mechanics, 2nd ed., Wiley (1970).
Schecter M., Operator Methods in Quantum Mechanics, Elsevier-North-Holland (1981).
Iorio , Jr R. J. , Tópicos na teoria da equação de Schrödinger, IMPA.
Fonseca G., Pastrán R., Rodríguez G., The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces, Journal of Mathematical Analysis and Applications (2019).
Pastrán R., Riaño 0., On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces, Revista Colombiana de Matematicas (2006).
Pastrán R., Riaño 0., Sharp Well-posedness for the Chen-Lee equation, Communications on Pure and Applied Analysis (2016).
Tao T. , Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123(5) (2001) 839–908.
Molinet, L., Saut, J. C., and Tzvetkov, N., Ill-posedness issues fo the Benjamin- Ono and related equations. SIAM J. Math. Anal. 33, 4 (2001), 982–988.
Coddington y Levinson, Theory of Ordinary Differential Equations. McGraw-Hill (1963).
Yosida K., Functional Analysis, 2nd ed. Springer (1968).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84480/6/1010234652.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84480/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84480/7/1010234652.2023.pdf.jpg
bitstream.checksum.fl_str_mv ca2df534bdc88ef0bdd3d6c4370edbe1
eb34b1cf90b7e1103fc9dfd26be24b4a
7cfcda30458dc8a736206ab9d099e8cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090197731639296
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pastrán Ramírez, Ricardo Ariel891469efcca94bc8d850adfe63d31d59Correa Castañeda, Diego Fernando424ae976d77805f80c541ac8e378da562023-08-08T15:10:38Z2023-08-08T15:10:38Z2023-02-01https://repositorio.unal.edu.co/handle/unal/84480Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn el contexto de la electrodinámica de fluidos, se dedujo la siguiente ecuación: $u_t + u_{xxxxx} - u_{xxx} + \sigma\, u_{xx}+uu_x=0$, donde $\sigma$ es la llamada "transformada de Hilbert". En este trabajo se estudió el problema de Cauchy asociado a esta ecuación, obteniendo resultados de bien planteado local en los siguientes casos: primero, tomando un dato inicial real arbitrario en el espacio periódico de Sobolev $H^s (T)$, cuando $s>3/2$, y segundo, cuando el dato inicial pertenece a $L^2 (R)$. (Texto tomado de la fuente)In the context of the Fluid electrodynamics, the next equation was deduced: $u_t + u_{xxxxx} - u_{xxx} + \sigma\, u_{xx}+uu_x=0$, where $\sigma$ is the so called "Hilbert transform". In this work, the Cauchy problem associated to this equation was studied, obtaining results of local well - posedness in the next cases: first, taking an arbitrary real initial data in the periodic Sobolev space $H^s (T)$, when $s>3/2$, and second, when the initial data belongs to $L^2 (R)$.MaestríaMagíster en Ciencias - MatemáticasEcuaciones diferenciales parciales de tipo dispersivoPara obtener el primer resultado se usó la llamada "Regularización parabólica", y para el segundo, se usaron los llamados "Espacios de Bourgain".94 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::515 - AnálisisECUACIONES DIFERENCIALES PARCIALESPROBLEMA DE CAUCHYDifferential equations, partialCauchy problem-8a. ed.Buen planteamientoEcuaciones dispersivasRegularización parabólicaEspacios de BourgainWell posednessDispersive equationsParabolic regularizationBourgain spacesEl problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de BenjamínThe Cauchy problem associated to a fifth order perturbation of the Benjamin equationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMIorio, Jr R. J. y Valéria de Magalhães Iorio, Fourier Analysis and Partial Differential Equations, Cambridge University Press, 2001.Kenig, Ponce y Vega, A bilinear estimate with applications to the KdV equation, Journal of the american mathematical society, Volume 9, Number 2, April 1996.Stein Elias y Shakarchi Rami, Fourier Analysis: An Introduction, Princeton University Press, (2003).Linares, F. y Ponce, G., Introduction to Nonlinear Dispersive Equations, Springer, 2009.Gleeson H. , Hammerton P., Papageorgiou D. T. , Vanden-Broeck J.-M. , A new application of the Korteweg–de Vries Benjamin-Ono equation in interfacial electrohydrodynamics, American Institute of Physics, 2007.Linares Felipe, $L^2$ Global Well-Posedness of the Initial Value Problem Associated to the Benjamin Equation, IMPA, 1998.Kenig, Ponce y Vega, The Cauchy problem for the Korteweg de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), 1 - 21. MR 94g:35196.Bourgain, Fourier Transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, Volume 3, Number 3, 1993.Chen, Guo y Xiao, Sharp well-posedness for the Benjamin equation, Journal of the american mathematical society, Nonlinear Analysis 74 (2011) 6209–6230.Junfeng Li, Xia Li, Well-posedness for the fifth order KP-II initial data problem in $H^{s,0}(\R \times \mathbb{T})$, J. Differential Equations 262 (2017) 2196–2230.Korteweg D.J. y de Vries F., On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philosophical Magazine, 39, 422—443, 1895.Kato T., On the Cauchy Problem for the (generalized) Korteweg - de Vries Equation, Advances in Mathematics Supplementary Studies, vol. 8, M.G. Crandall, ed., Academic Press (1983) 93-128Kruzkhov S., Faminskii A., Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Math. USSR Sbornik 48 (1984) 391-421.Lax P.D., A Hamiltonian approach to KdV and other equations in Nonlinear Evolution Equations, Math. M.G. Crandall, ed., Academic Press (1985) 207-224.Newell A. C., Solitons in Mathematics and Physics, Regional Conference Series in Applied Mathematics, SIAM (1985).Novikov S. , Manakov S.V., Pitaeviskii L.P. y Zakharov V.E., Theory of Solitons - The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau, New York (1984).Whitham G.B., Linear and Nonlinear Waves, Wiley (1974).Benjamin, T.B., Internal Waves of Permanent Form in Fluids of Great Depth, J. Fluid Mech. 29, (1967), 559-592.Dix D., Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation, J. Differ. Equations 90 (2) (1991) 238-287.Dan Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Berlin Heidelberg New York 1981.Iorio, Jr. R. J., KdV, BO and friends in weighted Sobolev spaces, in Function Analytic Methods for Partial Differential Equations, Lecture Notes in Mathematics, vol. 1450, Springer (1990) 105-121.H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091.Iorio Jr. R. J. , On The Cauchy Problem For The Benjamin-Ono Equation, Communications in partial differential equations. v. 11, n. 10, p. 1031-1081, 1986.Ponce G., On the global well-posedness of the Benjamin-Ono equation, Differ. Integral Equ. 4 (3) (1991) 527-542.Tao T., Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbb{R})$, Volume 1, J. Hyperbolic Differ. Equ. (2003).T. B. Benjamin, A new kind of solitary waves, J. Fluid Mech. 245 (1992), 401-411.Ben-Artzi M. y Devinatz A. , The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (Marzo 1987) no. 364.Brandt S. y Dahmen H.D. , The picture Book of Quantum Mechanics, 2nd ed., Springer (1995).Cycon H.L. , Froese R.G., Kirsh W. y Simon B., Schödinger Operators, Springer (1987).Drezinski J. y Gérard C., Scattering Theory of Classical and Quantum N-Particle Systems, Springer (1997).Gottfried K., Quantum Mechanics vol 1: Fundamentals, W.A. Benjamin (1996).Jensen A. , Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math.Sci.) 104 (1994) 599-651.Merzbacher E., Quantum Mechanics, 2nd ed., Wiley (1970).Schecter M., Operator Methods in Quantum Mechanics, Elsevier-North-Holland (1981).Iorio , Jr R. J. , Tópicos na teoria da equação de Schrödinger, IMPA.Fonseca G., Pastrán R., Rodríguez G., The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces, Journal of Mathematical Analysis and Applications (2019).Pastrán R., Riaño 0., On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces, Revista Colombiana de Matematicas (2006).Pastrán R., Riaño 0., Sharp Well-posedness for the Chen-Lee equation, Communications on Pure and Applied Analysis (2016).Tao T. , Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123(5) (2001) 839–908.Molinet, L., Saut, J. C., and Tzvetkov, N., Ill-posedness issues fo the Benjamin- Ono and related equations. SIAM J. Math. Anal. 33, 4 (2001), 982–988.Coddington y Levinson, Theory of Ordinary Differential Equations. McGraw-Hill (1963).Yosida K., Functional Analysis, 2nd ed. Springer (1968).EstudiantesPúblico generalORIGINAL1010234652.2023.pdf1010234652.2023.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf851290https://repositorio.unal.edu.co/bitstream/unal/84480/6/1010234652.2023.pdfca2df534bdc88ef0bdd3d6c4370edbe1MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84480/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1010234652.2023.pdf.jpg1010234652.2023.pdf.jpgGenerated Thumbnailimage/jpeg4145https://repositorio.unal.edu.co/bitstream/unal/84480/7/1010234652.2023.pdf.jpg7cfcda30458dc8a736206ab9d099e8ccMD57unal/84480oai:repositorio.unal.edu.co:unal/844802024-08-18 23:13:09.861Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=