Improvement of low frequency identification for wind turbines employing eemd and time integration.

Nowadays wind turbines are wide employed as a clean energy resource. However, their use implies a wide number of eolic structures which also requires a demanding monitoring and maintenance. The most technique employed for those kind of tasksis vibration analysis inasmuch as it is non-destructive tec...

Full description

Autores:
Aguirre Echeverry, Cesar Augusto
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/52583
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/52583
http://bdigital.unal.edu.co/46939/
Palabra clave:
Sistemas energéticos
mercados energéticos
industrial de la energía
Eolic energy
predictive maintenance
EEMD
Digital integration
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_bbdc7df68905767c6d55a8dae5efc8a1
oai_identifier_str oai:repositorio.unal.edu.co:unal/52583
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aguirre Echeverry, Cesar Augusto13cda215-9ad5-424a-9dd1-8903590ea0213002019-06-29T14:49:41Z2019-06-29T14:49:41Z2014-12-20https://repositorio.unal.edu.co/handle/unal/52583http://bdigital.unal.edu.co/46939/Nowadays wind turbines are wide employed as a clean energy resource. However, their use implies a wide number of eolic structures which also requires a demanding monitoring and maintenance. The most technique employed for those kind of tasksis vibration analysis inasmuch as it is non-destructive technique and presents a high performance for this task. Among vibration analysis, Components identification turns important because it allows programming the machine maintenance in a proper time. In addition, the accessibility for installing several mechanical vibration transducers into the machine is limited either by the physical space or the high cost of sensor networks. Therefore, it is useful and needed to perform an analysis using just one sensor. In that sense, the accelerometers are commonly utilized since these sensors allow extracting the velocity and displacement, signals which have additional information about the machine, performing a double digital integration. Nonetheless, digital integration evolves several difficulties such as biased errors, leakages in the signal, and strong instability at low and high frequencies.This paper proposes a new methodology based on the ensemble empirical mode decomposition (EEMD) for extracting low frequency components of a wind turbine structure from a single-channel vibration measurement and double integration in time to improve the interpretability of the components.The methodology overcomes the lack of multiple vibration measurements using pseudo-sources and it is especially suitable forsignals with high frequency behavior.application/pdfspaUniversidad Nacional de Colombia Sede Manizaleshttp://revistas.unal.edu.co/index.php/energetica/article/view/45401Universidad Nacional de Colombia Revistas electrónicas UN EnergéticaEnergéticaEnergética; núm. 44 (2014); 85-91 Energética; núm. 44 (2014); 85-91 2357-612X 0120-9833Aguirre Echeverry, Cesar Augusto (2014) Improvement of low frequency identification for wind turbines employing eemd and time integration. Energética; núm. 44 (2014); 85-91 Energética; núm. 44 (2014); 85-91 2357-612X 0120-9833 .Improvement of low frequency identification for wind turbines employing eemd and time integration.Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSistemas energéticosmercados energéticosindustrial de la energíaEolic energypredictive maintenanceEEMDDigital integrationORIGINAL45401-236929-1-PB.pdfapplication/pdf3377709https://repositorio.unal.edu.co/bitstream/unal/52583/1/45401-236929-1-PB.pdf9c44c4e948c6cf9e46ba59af290309eeMD51THUMBNAIL45401-236929-1-PB.pdf.jpg45401-236929-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8744https://repositorio.unal.edu.co/bitstream/unal/52583/2/45401-236929-1-PB.pdf.jpge08575e33cde52d47b280cd8587c168bMD52unal/52583oai:repositorio.unal.edu.co:unal/525832023-02-25 23:05:59.022Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Improvement of low frequency identification for wind turbines employing eemd and time integration.
title Improvement of low frequency identification for wind turbines employing eemd and time integration.
spellingShingle Improvement of low frequency identification for wind turbines employing eemd and time integration.
Sistemas energéticos
mercados energéticos
industrial de la energía
Eolic energy
predictive maintenance
EEMD
Digital integration
title_short Improvement of low frequency identification for wind turbines employing eemd and time integration.
title_full Improvement of low frequency identification for wind turbines employing eemd and time integration.
title_fullStr Improvement of low frequency identification for wind turbines employing eemd and time integration.
title_full_unstemmed Improvement of low frequency identification for wind turbines employing eemd and time integration.
title_sort Improvement of low frequency identification for wind turbines employing eemd and time integration.
dc.creator.fl_str_mv Aguirre Echeverry, Cesar Augusto
dc.contributor.author.spa.fl_str_mv Aguirre Echeverry, Cesar Augusto
dc.subject.proposal.spa.fl_str_mv Sistemas energéticos
mercados energéticos
industrial de la energía
Eolic energy
predictive maintenance
EEMD
Digital integration
topic Sistemas energéticos
mercados energéticos
industrial de la energía
Eolic energy
predictive maintenance
EEMD
Digital integration
description Nowadays wind turbines are wide employed as a clean energy resource. However, their use implies a wide number of eolic structures which also requires a demanding monitoring and maintenance. The most technique employed for those kind of tasksis vibration analysis inasmuch as it is non-destructive technique and presents a high performance for this task. Among vibration analysis, Components identification turns important because it allows programming the machine maintenance in a proper time. In addition, the accessibility for installing several mechanical vibration transducers into the machine is limited either by the physical space or the high cost of sensor networks. Therefore, it is useful and needed to perform an analysis using just one sensor. In that sense, the accelerometers are commonly utilized since these sensors allow extracting the velocity and displacement, signals which have additional information about the machine, performing a double digital integration. Nonetheless, digital integration evolves several difficulties such as biased errors, leakages in the signal, and strong instability at low and high frequencies.This paper proposes a new methodology based on the ensemble empirical mode decomposition (EEMD) for extracting low frequency components of a wind turbine structure from a single-channel vibration measurement and double integration in time to improve the interpretability of the components.The methodology overcomes the lack of multiple vibration measurements using pseudo-sources and it is especially suitable forsignals with high frequency behavior.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-12-20
dc.date.accessioned.spa.fl_str_mv 2019-06-29T14:49:41Z
dc.date.available.spa.fl_str_mv 2019-06-29T14:49:41Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/52583
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/46939/
url https://repositorio.unal.edu.co/handle/unal/52583
http://bdigital.unal.edu.co/46939/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/energetica/article/view/45401
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Energética
Energética
dc.relation.ispartofseries.none.fl_str_mv Energética; núm. 44 (2014); 85-91 Energética; núm. 44 (2014); 85-91 2357-612X 0120-9833
dc.relation.references.spa.fl_str_mv Aguirre Echeverry, Cesar Augusto (2014) Improvement of low frequency identification for wind turbines employing eemd and time integration. Energética; núm. 44 (2014); 85-91 Energética; núm. 44 (2014); 85-91 2357-612X 0120-9833 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/52583/1/45401-236929-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/52583/2/45401-236929-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 9c44c4e948c6cf9e46ba59af290309ee
e08575e33cde52d47b280cd8587c168b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089515879366656