Super resolución (SR) en imágenes de resonancia magnética DWI de cerebro usando estimación bayesiana

En la presente tesis, se propone un método bayesiano de Súper resolución (SR) que obtiene imágenes de alta resolución (HR) DWI a partir de imágenes degradadas de baja resolución (LR), tratando de recuperar un máximo de la información en alta frecuencia. Bajo la formuación bayesiana, la imagen descon...

Full description

Autores:
Celis Arámbula, Juan Salvador
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76281
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76281
http://bdigital.unal.edu.co/72469/
Palabra clave:
Bayesiano
Súper resolución
DWI
Procesamiento de imágenes
Bayesian
Super resolution
Diffusion Weighted Magnetic Resonance Imaging
Image processing
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:En la presente tesis, se propone un método bayesiano de Súper resolución (SR) que obtiene imágenes de alta resolución (HR) DWI a partir de imágenes degradadas de baja resolución (LR), tratando de recuperar un máximo de la información en alta frecuencia. Bajo la formuación bayesiana, la imagen desconocida de alta resolución (HR), el proceso de adquisición y los parámetros del modelo son modelados como procesos estocásticos. El término de verosimilitud es modelado usando una distribución gausiana para estimar el error entre la representación y las observaciones. El término a priori se modela como una distribución gausiana multivariada en el que los pesos del vecindario corresponden a variables intermedias que se introducen con dos propósitos: modelar las relaciones locales con una distribución Laplaciana y utilizar la información más relevante de su vecindario. En consecuencia, la matriz de covarianza de los pesos de este prior se aproxima por variables latentes que se calculan de las relaciones locales modeladas con una Laplaciana. Los resultados experimentales muestran que el método supera la línea base por 2.56 dB usando como métrica el PSNR para una colección de 35 casos.