Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos

En esta tesis se presenta el desarrollo de un modelo fenomenológico para la remediación química del daño de formación por precipitación de asfaltenos. Se estableció el modelo matemático de la fenomenología que se presenta al inyectar tratamientos químicos a un yacimiento con el fin de revertir las p...

Full description

Autores:
Olaya Marín, Guiber
Tipo de recurso:
Work document
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/78730
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/78730
Palabra clave:
660 - Ingeniería química
620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra
Asfaltenos
Disolución
Modelo fenomenológico
Remediación química
Daño de formación
Asphaltenes
Dissolution
Phenomenological model
Chemical remediation
Formation damage
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_bb006dad662133978a6a7cb6c2e6046a
oai_identifier_str oai:repositorio.unal.edu.co:unal/78730
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
dc.title.alternative.spa.fl_str_mv Development of a phenomenological model and numerical simulation of the chemical remediation of formation damage by asphaltene precipitation
title Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
spellingShingle Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
660 - Ingeniería química
620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra
Asfaltenos
Disolución
Modelo fenomenológico
Remediación química
Daño de formación
Asphaltenes
Dissolution
Phenomenological model
Chemical remediation
Formation damage
title_short Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
title_full Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
title_fullStr Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
title_full_unstemmed Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
title_sort Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos
dc.creator.fl_str_mv Olaya Marín, Guiber
dc.contributor.advisor.spa.fl_str_mv Benjumea Hernández, Pedro Nel
Mejía Cárdenas, Juan Manuel
dc.contributor.author.spa.fl_str_mv Olaya Marín, Guiber
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra
topic 660 - Ingeniería química
620 - Ingeniería y operaciones afines
550 - Ciencias de la tierra
Asfaltenos
Disolución
Modelo fenomenológico
Remediación química
Daño de formación
Asphaltenes
Dissolution
Phenomenological model
Chemical remediation
Formation damage
dc.subject.proposal.spa.fl_str_mv Asfaltenos
Disolución
Modelo fenomenológico
Remediación química
Daño de formación
dc.subject.proposal.eng.fl_str_mv Asphaltenes
Dissolution
Phenomenological model
Chemical remediation
Formation damage
description En esta tesis se presenta el desarrollo de un modelo fenomenológico para la remediación química del daño de formación por precipitación de asfaltenos. Se estableció el modelo matemático de la fenomenología que se presenta al inyectar tratamientos químicos a un yacimiento con el fin de revertir las pérdidas de porosidad y permeabilidad. Se realizaron pruebas de disolución de asfaltenos en solventes puros y en mezclas en tolueno, xileno y quinolina; obteniendo hasta el 85% de disolución en tolueno en concentraciones de 100 ppm. Se encontró que no hay sinergia entre solventes, dispersantes y surfactantes en la disolución. Con tratamientos comerciales se encontró sinergias entre el xileno y el solvente mutual. Además, se validó el modelo con datos de laboratorio con pruebas cinéticas de disolución de asfaltenos en tratamientos químicos y pruebas de desplazamiento de fluidos tratados con la remediación en núcleos.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-12-18T22:26:18Z
dc.date.available.spa.fl_str_mv 2020-12-18T22:26:18Z
dc.date.issued.spa.fl_str_mv 2020-08-30
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Olaya-Marín, G. Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos. 2020.
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/78730
identifier_str_mv Olaya-Marín, G. Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos. 2020.
url https://repositorio.unal.edu.co/handle/unal/78730
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Pasquevich DM. La Creciente Demanda Mundial de Energia Frente a Los Riesgos Ambientales.Pdf.; 2016. http://www.cab.cnea.gov.ar/ieds/images/extras/medios/2011/aapc_la_creciente_demanda_energ_frente_riesgos_amb.pdf.
2. Rodríguez Hernández A, Herrera B, Subdirectora De Hidrocarburos J, et al. PLAN ENERGETICO NACIONAL COLOMBIA: IDEARIO ENERGÉTICO 2050 REPÚBLICA DE COLOMBIA Ministerio de Minas y Energía Tomás González Estrada, Ministro UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA Ángela Inés Cadena Monroy Directora General Secretario General COLABORAD.
3. Combustibles fósiles: colombia le seguirá apostando a estos. https://sostenibilidad.semana.com/medio-ambiente/articulo/combustibles-fosiles-colombia-le-seguira-apostando-a-estos/35666.
4. Civan F. Reservoir Formation Damage. Second. Gulf Professional Publishing; 2007.
5. Hill DG, Liétard OM, Piot BM, Dowell S, King GE, Amoco BP. Formation Damage: Origin, Diagnosis and Treatment Strategy.; 2000.
6. Leontaritis KJ, Amaefule JO, Charles RE. A Systematic Approach for the Prevention and Treatment of Formation Damage Caused by Asphaltene Deposition. SPE Prod Facil. 1994;9(03):157-164. doi:10.2118/23810-PA
7. Darabi H, Sepehrnoori K. Modeling and Simulation of Near-Wellbore Asphaltene Remediation Using Asphaltene Dispersants. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers; 2015. doi:10.2118/173284-MS
8. Zekri AY, Shedid SA. The effect of fracture characteristics on reduction of permeability by asphaltene precipitation in carbonate formation. J Pet Sci Eng. 2004;42(2-4):171-182. doi:10.1016/j.petrol.2003.12.009
9. Hirschberg A. Influence of Temperature and Pressure on Asphaltene Floculation. 1984.
10. Neves GBM, de Sousa M dos A, Travalloni-Louvisse AM, Lucas EF, Gonz´lez G. CHARACTERIZATION OF ASPHALTENE PARTICLES BY LIGHT SCATTERING AND ELECTROPHORESIS. Pet Sci Technol. 2001;19(1-2):35-43. doi:10.1081/LFT-100001225
11. Ali Mansoori G. Modeling of asphaltene and other heavy organic depositions. J Pet Sci Eng. 1997;17(1-2):101-111. doi:10.1016/S0920-4105(96)00059-9
12. Yarranton H. Asphaltene Deposition. In: Canadian International Petroleum Conference. Petroleum Society of Canada; 2000. doi:10.2118/2000-099-EA
13. Amroun H, Tiab D. Alteration of Reservoir Wettability Due to Asphaltene Deposition in Rhourd-Nouss Sud Est Field, Algeria. In: SPE Rocky Mountain Petroleum Technology Conference. Society of Petroleum Engineers; 2001. doi:10.2118/71060-MS
14. Goual L, Firoozabadi A. Measuring asphaltenes and resins, and dipole moment in petroleum fluids. AIChE J. 2002;48(11):2646-2663. doi:10.1002/aic.690481124
15. Goual L, Firoozabadi A. Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AIChE J. 2004;50(2):470-479. doi:10.1002/aic.10041
16. Anisimov MA, Ganeeva YM, Gorodetskii EE, et al. Effects of Resins on Aggregation and Stability of Asphaltenes. Energy & Fuels. 2014;28(10):6200-6209. doi:10.1021/ef501145a
17. Abedini A, Ashoori S, Torabi F. Reversibility of asphaltene precipitation in porous and non-porous media. Fluid Phase Equilib. 2011;308(1-2):129-134. doi:10.1016/j.fluid.2011.06.024
18. Ju B, Luan Z, Wu Z, Lu G. A Study of Removal of Organic Formation Damage by Experiments and Modeling Approaches. In: Proceedings of SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers; 2001. doi:10.2523/68752-MS
19. Delgado JG. CUADERNO FIRP S369-A . Modulo de enseñanza en fenomenos interfaciales. 2006;1.
20. Akbarzadeh K, Hammami A, Kharrat A, et al. Los asfaltenos: Problemáticos pero ricos en potencial. Oilf Rev. 2007:24-47. http://www.water.slb.com/~/media/Files/resources/oilfield_review/spanish07/aut07/p22_43.pdf. Accessed October 23, 2014.
21. Alapati RR, Joshi N. New Test Method for Field Evaluation of Asphaltene Deposition. In: Offshore Technology Conference. Offshore Technology Conference; 2013. doi:10.4043/24168-MS
22. Schneider MH, Andrews AB, Mitra-Kirtley S, Mullins OC. Asphaltene molecular size by fluorescence correlation spectroscopy. Energy and Fuels. 2007;21(5):2875-2882. doi:10.1021/ef700216r
23. Mullins OC, Sabbah H, Eyssautier J, et al. Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels. 2012;26(7):3986-4003. doi:10.1021/ef300185p
24. Mullins OC, Sabbah H, Eyssautier J, et al. Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels. 2012;26(7):3986-4003. doi:10.1021/ef300185p
25. Kraiwattanawong K, Fogler HS, Gharfeh SG, Singh P, Thomason WH, Chavadej S. Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy & Fuels. 2009;23(3):1575-1582. doi:10.1021/ef800706c
26. Groffe P, Volle JL, Ziada A. Application of chemicals in prevention and treatment of asphaltene precipitation in crude oils. doi:10.2118/30128-MS
27. Pacheco-Sanchez JH, Mansoori GA. In situ remediation of heavy organic deposits using aromatic solvents. In: Proceedings - SPE Annual Western Regional Meeting. Soc Pet Eng (SPE); 1998. http://www.scopus.com/inward/record.url?eid=2-s2.0-0031651352&partnerID=tZOtx3y1.
28. Al-Ghazi AS, Lawson J. Asphaltene cleanout using VibraBlaster tool. In: Society of Petroleum Engineers - SPE Saudi Arabia Section Technical Symposium 2007. ; 2007. doi:10.2523/110972-ms
29. Bachmann RT, Johnson AC, Edyvean RGJ. Biotechnology in the petroleum industry: An overview. Int Biodeterior Biodegradation. 2014;86:225-237. doi:10.1016/j.ibiod.2013.09.011
30. Wu GZ, Coulon F, Yang YW, Li H, Sui H. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil. Pedosphere. 2013;23(4):455-463. doi:10.1016/S1002-0160(13)60038-7
31. Betancur S. Desarrollo de nanopartículas basadas en sílice para la inhibición de la precipitación/depositación de asfaltenos. 2015.
32. Zabala R, Mora E, Cespedes C, et al. Application and Evaluation of a NanoFluid Containing NanoParticles for Asphaltenes Inhibition in Well CPSXL4. Offshore Technol Conf Bras. 2013:14. doi:10.4043/24310-MS
33. Benjumea PN, Isaza CN. Remediación Del Daño de Formación Por Depositación de Asfaltenos. Medellín; 2015.
34. Trbovich MG, King GE. Asphaltene Deposit Removal: Long-Lasting Treatment With a Co-Solvent. In: Proceedings of SPE International Symposium on Oilfield Chemistry. Vol i. Society of Petroleum Engineers; 1991. doi:10.2523/21038-MS
35. Kuang J, Yarbrough J, Enayat S, Edward N, Wang J, Vargas FM. Evaluation of solvents for in-situ asphaltene deposition remediation. Fuel. 2019;241(October 2018):1076-1084. doi:10.1016/j.fuel.2018.12.080
36. Ogolo NA, Olafuyi OA, Onyekonwu MO. Enhanced Oil Recovery Using Nanoparticles. In: SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers; 2012:9. doi:10.2118/160847-MS
37. Hashmi SM, Firoozabadi A. Asphaltene Deposition in Metal Pipes : Efficient Inhibition and Removal by Different Surfactants. SPE J. 2013. doi:10.2118/166404-MS
38. Rittner, D., & Bailey RA. Encyclopedia of Chemistry.; 2005.
39. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Third, Upd. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003.
40. Hildebrand JH. A History of Solution Theory.
41. Belmares M, Blanco M, Goddard WA, et al. Hildebrand and hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem. 2004;25(15):1814-1826. doi:10.1002/jcc.20098
42. Holmberg K, ed. Handbook of Applied Surface and Colloid Chemistry. JOHN WILEY & SONS ,LTD; 2002.
43. Rogel E. Effect of inhibitors on asphaltene aggregation: A theoretical framework. Energy and Fuels. 2011;25(2):472-481. doi:10.1021/ef100912b
44. Al-Sahhaf T a., Fahim M a., Elkilani AS. Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants. Fluid Phase Equilib. 2002;194-197:1045-1057. doi:10.1016/S0378-3812(01)00702-6
45. Samuelson ML. Alternatives to Aromatics for Solvency of Organic Deposits. 1992. doi:10.2118/23816-MS
46. Becker HL, Thomas DC, Doddridge WR, McDougall DB. Asphaltene Deposition Control Using Chemical Control Agents. doi:10.2118/92-70
47. Jamaluddin AKM, Nazarko TW, Sills S, Fuhr BJ. Deasphalted oil: A natural asphaltene solvent. SPE Prod Facil. 1996;11(3).
48. Minssieux L. Removal of Asphalt Deposits by Cosolvent Squeeze: Mechanisms and Screening. doi:10.2118/39447-MS
49. Newberry ME, Barker KM. Organic Formation Damage Control and Remediation. SPE Int Symp Form Damage Control. 2013. doi:10.2118/58723-MS
50. Dong L, Xie H, Zhang F. Chemical Control Techniques for the Paraffin and Asphaltene Deposition. doi:10.2118/65380-MS
51. Ju B, Luan Z, Wu Z, Lu G. A Study of Removal of Organic Formation Damage by Experiments and Modeling Approaches. doi:10.2118/68752-MS
52. Alkafeef SF, Al-Medhadi F, AL-Shammari AD. Asphaltene Remedial Technology Using Advanced Deasphalted Oil. doi:10.2118/81570-MS
53. Sanada A, Miyagawa Y. A Case Study of a Successful Chemical Treatment to Mitigate Asphaltene Precipitation and Deposition in Light Crude Oil Field. doi:10.2118/101102-MS
54. Frost KA, Daussin RD, Van Domelen MS. New, Highly Effective Asphaltene Removal System with Favorable HSE Characteristics. doi:10.2118/112420-MS
55. Lightford SC, Pitoni E, Mauri L, Armesi F. Development and Field Use of a Novel Solvent Water Emulsion for the Removal of Asphaltene Deposits in Fractured Carbonate Formations. doi:10.2118/101022-MS
56. Fattah Ahmed WA, Nasr-El-Din HA. Acid Emulsified in Xylene: A Cost-Effective Treatment To Remove Asphalting Deposition and Enhance Well productivity. doi:10.2118/117251-MS
57. Abdallah D, Bazuhair MK, Zwolle S, Grutters M, Ramanathan K, Stankiewicz A. Asphaltene Studies in on-shore Abu Dhabi Oil fields, PART III: Optimization of Field Chemicals for Remediation and Inhibition of Asphaltene Deposition. 2010. doi:10.2118/138040-MS
58. Oseghale CI, Ebhodaghe FO. Asphaltene Deposition and Remediation in Crude Oil Production: Solubility Technique. J Eng Appl Sci. 2011;6(4):258-261.
59. Pereira JC, Delgado-Linares J, Briones A, Guevara M, Scorzza C, Salager J-L. The effect of solvent nature and dispersant performance on asphaltene precipitation from diluted solutions of instable crude oil. Pet Sci Technol. 2011;29(23):2432-2440.
60. Telang M, Al-Matrook MF, Oskui GR, et al. Continuous Solvent Flush Approach for Asphaltene Precipitation in a Kuwaiti Reservoir: PhaseI-An Experimental Solvent Screening. doi:10.2118/163316-MS
61. Salgaonkar L, Danait A. Environmentally Acceptable Emulsion System: An Effective Approach for Removal of Asphaltene Deposits. 2012. doi:10.2118/160877-MS
62. Chen C, Guo J, An N, Pan Y, Li Y, Jiang Q. Study of asphaltene dispersion and removal for high-asphaltene oil wells. Pet Sci. 2012;9(4):551-557. doi:10.1007/s12182-012-0242-5
63. Restrepo A, Ocampo A, Lopera Castro SH, Diaz MP, Clavijo J, Marin J. GaStim Concept - A Novel Technique for Well Stimulation. Part I: Understanding the Physics. doi:10.2118/152309-MS
64. Misra S, Abdallah D, Nuimi S. Successful Asphaltene Cleanout Field Trial in on-shore Abu Dhabi Oil Fields. 2013. doi:10.2118/164175-MS
65. Al-Taq AA, Zeid SMA, Al-Haji HH, Saleem JA. Removal of Organic Deposits from Oil Producing Wells in a Sandstone Reservoir: A Lab Study and a Case History. doi:10.2118/164410-MS
66. Murtaza S, Al-Ruwaily AA, Taqi AA, et al. Wellbore Asphaltene Cleanout Using a new Solvent Formulation in a Horizontal Openhole oil Producer in Carbonate Reservoir of North Ghawar Field -Scripting a Success Story. doi:10.2118/164434-MS
67. Alian SS, Singh K, Saidu Mohamed A, Ismail MZ, Anwar ML. Organic Deposition: From Detection and Laboratory Analysis to Treatment and Removal. doi:10.2118/165912-MS
68. Zabala Romero RD, Acuna HM, Cortés FB, et al. Application and Evaluation of a NanoFluid Containing NanoParticles for Asphaltenes Inhibition in Well CPSXL4. doi:10.4043/24310-MS
69. Restrepo A, Ocampo A, Lopera S, et al. GaStim Concept - A Novel Technique for Well Stimulation. Part II: From Laboratory to Field Pilot Testing. doi:10.2118/168133-MS
70. Moreno-Arciniegas L, Babadagli T. Optimal Application Conditions of Solvent Injection Into Oil Sands To Minimize the Effect of Asphaltene Deposition: An Experimental Investigation. doi:10.2118/165531-PA
71. Chang R. Chemistry. 10th ed.; 2010.
72. Mitchell DL, Speight JG. The solubility of asphaltenes in hydrocarbon solvents. Fuel. 1973;52(2):149-152. doi:10.1016/0016-2361(73)90040-9
73. Hong E, Watkinson P. A study of asphaltene solubility and precipitation. Fuel. 2004;83(14-15 SPEC. ISS.):1881-1887. doi:10.1016/j.fuel.2003.09.026
74. Wang T, Zhang C, Zhao R, Zhu C, Yang C, Liu C. Solvent extraction of bitumen from oil sands. Energy and Fuels. 2014;28(4):2297-2304. doi:10.1021/ef402101s
75. Sato T, Araki S, Morimoto M, Tanaka R, Yamamoto H. Comparison of Hansen Solubility Parameter of Asphaltenes Extracted from Bitumen Produced in Different Geographical Regions. Energy & Fuels. 2014;28(2):891-897. doi:10.1021/ef402065j
76. Painter PC, Veytsman B, Youtcheff J. Guide to asphaltene solubility. Energy and Fuels. 2015;29(5):2951-2961. doi:10.1021/ef502918t
77. Prausnitz JM, Linchtenthaler RN, Gomes De Azevedo E. Termodinámica Molecular de Los Equilibrios de Fases. Prentice-Hall; 2000. doi:10.1002/cjce.5450780222
78. Barton AFM. Solubility parameters. Chem Rev. 1975;75:731-753. doi:10.1021/cr60298a003
79. Flory PJ. Themodynamics of high polymer solutions. J Chem Phys. 1942. doi:10.1063/1.1723621
80. Wypych G. Handbook of Solvents. (Wypych G, ed.). Toronto-New york: ChemTec; 2001. https://www.google.com.co/search?tbm=bks&q=ISBN+1-895198-24-0.
81. Fossen M, Hemmingsen PV, Hannisdal A, Sjöblom J, Kallevik H. Solubility Parameters Based on IR and NIR Spectra: I. Correlation to Polar Solutes and Binary Systems. J Dispers Sci Technol. 2005;26(2):227-241. doi:10.1081/DIS-200045605
82. Redelius P. Bitumen solubility model using Hansen solubility parameter. Energy and Fuels. 2004;18(4):1087-1092. doi:10.1021/ef0400058
83. Siddiqui SA, Needles HL. Solubility Parameters. Text Res J. 1982;52(9):570-579. doi:10.1177/004051758205200904
84. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28(8):1223-1270. doi:10.1016/S0079-6700(03)00045-5
85. Química A De, Avanzada F. Química Física de los Polímeros. 2011:1-40.
86. Hildebrand JH, Scott RL. The Solubility of Nonelectrolytes. 1964.
87. Chemtech LS. Solutions to Solution Problems. Chem SOC 1155 16TH ST, NW …. 1979.
88. Baldeschwieler EL, Morgan MD, Troeller WJ. The Kauri Butanol Test for Solvent Power. II. Ind Eng Chem - Anal Ed. 1937;9(11):540-543. doi:10.1021/ac50115a020
89. Godfrey NB. Solvent selection via miscibility number. osti.gov. 1972. https://www.osti.gov/biblio/6068509.
90. Mannistu KD, Yarranton HW, Masliyah JH. Solubility Modeling of Asphaltenes in Organic Solvents. Energy & Fuels. 1997;11(3):615-622. doi:10.1021/ef9601879
91. Khoshandam A, Alamdari A. Kinetics of asphaltene precipitation in a heptane-toluene mixture. Energy and Fuels. 2010;24(3):1917-1924. doi:10.1021/ef9012328
92. Hirschberg A. Role of Asphaltenes in Compositional Grading of a Reservoir’s Fluid Column. J Pet Technol. 1988;40(January):89-94. doi:10.2118/13171-PA
93. Du JL, Zhang D. A Thermodynamic Model for the Prediction of Asphaltene Precipitation. Pet Sci Technol. 2004;22(7-8):1023-1033. doi:10.1081/LFT-120038724
94. Andersen SI, Speight JG. Thermodynamic models for asphaltene solubility and precipitation. J Pet Sci Eng. 1999;22(1-3):53-66. doi:10.1016/S0920-4105(98)00057-6
95. Rogel E, Roye M, Vien J, Miao T. Characterization of asphaltene fractions: Distribution, chemical characteristics, and solubility behavior. Energy and Fuels. 2015;29(4):2143-2152. doi:10.1021/ef5026455
96. Rogel E, Ovalles C, Bake KD, et al. Asphaltene Densities and Solubility Parameter Distributions: Impact on Asphaltene Gradients. Energy & Fuels. 2016;30(11):9132-9140. doi:10.1021/acs.energyfuels.6b01794
97. De Boer RB, Leerlooyer K. Screening of Crude Oils for Asphal Precipitation: Theory, Practice, and the Selection of Inhibitors. SPE. 1995;(February):55-61.
98. Correra S, Merlini M, Di Lullo A, Merino-Garcia D. Estimation of the solvent power of crude oil from density and viscosity measurements. Ind Eng Chem Res. 2005;44(24):9307-9315. doi:10.1021/ie0507272
99. Mohammadi AH, Eslamimanesh A, Richon D. Monodisperse Thermodynamic Model Based on Chemical + Flory–Hüggins Polymer Solution Theories for Predicting Asphaltene Precipitation. Ind Eng Chem Res. 2012;51(10):4041-4055. doi:10.1021/ie202737p
100. Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14(2):147-154. doi:10.1002/pen.760140211
101. Goharshadi EK, Hesabi M. Estimation of solubility parameter using equations of state. J Mol Liq. 2004;113(1-3):125-132. doi:10.1016/j.molliq.2004.02.030
102. Buckley JS, Hirasaki GJ, Liu Y, Von Drasek S, Wang JX, Gill BS. Asphaltene precipitation and solvent properties of crude oils. Pet Sci Technol. 1998;16(3-4):251-285. doi:10.1080/10916469808949783
103. Wang JX, Buckley JS. A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy and Fuels. 2001;15(5):1004-1012. doi:10.1021/ef010012l
104. Vargas FM, Chapman WG. Application of the One-Third rule in hydrocarbon and crude oil systems. Fluid Phase Equilib. 2010;290(1-2):103-108. doi:10.1016/j.fluid.2009.12.004
105. Zuo JY, Mullins OC, Freed D, Zhang D. A Simple Relation between Solubility Parameters and Densities for Live Reservoir Fluids. J Chem Eng Data. 2010;55(9):2964-2969. doi:10.1021/je100155d
106. Fan T, Wang J, Buckley JS. Evaluating Crude Oils by SARA Analysis. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers; 2002. doi:10.2118/75228-MS
107. Chamkalani A. Correlations between SARA Fractions, Density, and RI to Investigate the Stability of Asphaltene. ISRN Anal Chem. 2012;2012(I):1-6. doi:10.5402/2012/219276
108. Fan T, Buckley JS. Rapid and Accurate SARA Analysis of Medium Gravity Crude Oils. Energy & Fuels. 2002;16(6):1571-1575. doi:10.1021/ef0201228
109. Rogel E, Miao T, Vien J, Roye M. Comparing asphaltenes: Deposit versus crude oil. Fuel. 2015;147:155-160. doi:10.1016/j.fuel.2015.01.045
110. Goual L, Sedghi M. Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids. J Colloid Interface Sci. 2015;440:23-31. doi:10.1016/j.jcis.2014.10.043
111. Painter PC, Graf J, Coleman MM. Coal Solubility and Swelling. 1. Solubility Parameters for Coal and the Flory χ Parameter. Energy and Fuels. 1990;4(4):379-384. doi:10.1021/ef00022a008
112. Painter P, Veytsman B, Youtcheff J. Asphaltene Aggregation and Solubility. Energy & Fuels. 2015;29(4):2120-2133. doi:10.1021/ef5024912
113. Mohammadi AH, Richon D. A monodisperse thermodynamic model for estimating asphaltene precipitation. AIChE J. 2007;53(11):2940-2947. doi:10.1002/aic.11304
114. Dokoumetzidis A, Macheras P. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int J Pharm. 2006;321(1-2):1-11. doi:10.1016/j.ijpharm.2006.07.011
115. Wang Y, Abrahamsson B, Lindfors L, Brasseur JG. Comparison and Analysis of Theoretical Models for Diffusion-Controlled Dissolution. Mol Pharm. 2012;9(5):1052-1066. doi:10.1021/mp2002818
116. Permsukarome P, Chang C, Fogler HS. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Ind Eng …. 1997;36(9):3960-3967. doi:10.1021/ie970177a
117. Isaza Toro CN. Modelo fenomenológico y simulación de la disolución de los asfaltenos depositados en formación usando un solvente químico puro. 2017.
118. Zendehboudi S, Shafiei A, Bahadori A, James L a., Elkamel A, Lohi A. Asphaltene precipitation and deposition in oil reservoirs – Technical aspects, experimental and hybrid neural network predictive tools. Chem Eng Res Des. 2014;92(5):857-875. doi:10.1016/j.cherd.2013.08.001
119. Ahmed TH. Equations of State and PVT Analysis : Applications for Improved Reservoir Modeling. Houston: Gulf Publishing Company; 2007.
120. Kraiwattanawong K, Fogler HS, Gharfeh SG, Singh P, Thomason WH, Chavadej S. Thermodynamic solubility models to predict asphaltene instability in live crude oils. Energy and Fuels. 2007;21(3):1248-1255. doi:10.1021/ef060386k
121. Burke NE, Hobbs RE, Kashou SF. Measurement and Modeling of Asphaltene Precipitation. J Pet Technol. 1990;42(11):1440-1446. doi:10.2118/18273-PA
122. Cornell J. Experiments with Mixture. Design, Models, and the Analysis of Mixture Data. Wiley; 2002.
123. Tayakout M, Ferreira C, Espinat D, et al. Diffusion of asphaltene molecules through the pore structure of hydroconversion catalysts. Chem Eng Sci. 2010;65(5):1571-1583. doi:10.1016/j.ces.2009.10.025
124. Li J, Carr PW. Accuracy of Empirical Correlations for Estimating Diffusion Coefficients in Aqueous Organic Mixtures. Anal Chem. 1997;69(13):2530-2536. doi:10.1021/ac961005a
125. Leontaritis KJ, Mansoori GA. Asphaltene Flocculation During Oil Production and Processing: A Thermodynamic Collodial Model. In: Proceedings of SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 1987:149-158. doi:10.2523/16258-MS
126. Pereira JC, López I, Salas R, et al. Resins: The Molecules Responsible for the Stability/Instability Phenomena of Asphaltenes †. Energy & Fuels. 2007;21(3):1317-1321. doi:10.1021/ef0603333
127. Almehaideb RA. Asphaltene Precipitation and Deposition in the Near Wellbore Region: A Modeling Approach. J Pet Sci Eng. 2004;42(2-4):157-170. doi:10.1016/j.petrol.2003.12.008
128. Islam MR, Mousavizadegan SH, Mustafiz S, Abou-Kassem JH. Advanced Petroleum Reservoir Simulations. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010. doi:10.1002/9780470650684
129. Ertekin T, Abou-Kassem JH, King GR. Basic Applied Reservoir Simulation. Vol 111. Society of Petroleum Engineers; 2001. doi:10.1192/bjp.111.479.1009-a
130. Wang S, Civan F. Preventing Asphaltene Deposition in Oil Reservoirs by Early Water Injection. In: SPE Production Operations Symposium. Society of Petroleum Engineers; 2005. doi:10.2118/94268-MS
131. Shaojun W, Civan F, Strycker AR. Simulation of Paraffin and Asphaltene Deposition in Porous Media. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 1999. doi:10.2118/50746-MS
132. Mozo I. Desarrollo de un modelo matemático de la estimulación de pozos productores de crudo pesado con nanofluidos reductores de viscosidad. 2017. http://bdigital.unal.edu.co/59324/.
133. Garcia Lesmes BF. Modelamiento de la remediacion e inhibicion del daño de formacion por asfaltenos usando tratamientos dispersos en gas de inyeccion. 2016. http://www.bdigital.unal.edu.co/55106/.
134. Wang S, Civan F. Productivity Decline of Vertical and Horizontal Wells by Asphaltene Deposition in Petroleum Reservoirs. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 2001:1-16. doi:10.2118/64991-MS
135. Fernández Oro JM. Técnicas Numéricas En Ingeniería de Fluidos: Introducción a La Dinámica de Fluidos Computacional (CFD) Por El Método de Volúmenes Finitos. Barcelona: Reverté; 2012.
136. Chapra SC, Canale RP, E-libro C. Métodos Numéricos Para Ingenieros (5a. Ed.). McGraw-Hill Interamericana; 2007. https://books.google.com.co/books?id=y_1NAQAACAAJ.
137. Alvarez W, Ramirez S, Ruiz JF. Métodos iterativos GMRES & MINRES. 2018;(June). doi:10.13140/RG.2.2.22355.89129
138. Novaki LP, Moraes EO, Goncalves AB, et al. Solvatochromic and Solubility Parameters of Solvents: Equivalence of the Scales and Application to Probe the Solubilization of Asphaltenes. Energy and Fuels. 2016;30(6):4644-4652. doi:10.1021/acs.energyfuels.6b00461
139. Acevedo S, Castro A, Vásquez E, Marcano F, Ranaudo MA. Investigation of physical chemistry properties of asphaltenes using solubility parameters of asphaltenes and their fractions A1 and A2. Energy and Fuels. 2010;24(11):5921-5933. doi:10.1021/ef1005786
140. Wilczak A, Keinath TM. Kinetics of sorption and desorption of copper(II) and lead (II) on activated carbon. Water Environ Res. 1993;65(3):238-244. doi:10.2175/wer.65.3.7
141. Shayan NN, Mirzayi B. Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles. Energy and Fuels. 2015;29(3):1397-1406. doi:10.1021/ef502494d
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 138
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/78730/5/93370604.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/78730/7/license.txt
https://repositorio.unal.edu.co/bitstream/unal/78730/8/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/78730/9/93370604.2020.pdf.jpg
bitstream.checksum.fl_str_mv 9224ded43bfa80b1d766540fda1fb659
e2f63a891b6ceb28c3078128251851bf
217700a34da79ed616c2feb68d4c5e06
bf10b0943b3cbde92bd96057754b181e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089514169139200
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalAtribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Benjumea Hernández, Pedro Nel41199880-ae6a-4335-b958-ee823ebe5509-1Mejía Cárdenas, Juan Manuelb4e18ab6-066b-4890-a2fd-7c244d070797-1Olaya Marín, Guiberd049848a-14fa-4edb-9365-61f6c080e554600Universidad Nacional de Colombia - Sede Medellín2020-12-18T22:26:18Z2020-12-18T22:26:18Z2020-08-30Olaya-Marín, G. Desarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenos. 2020.https://repositorio.unal.edu.co/handle/unal/78730En esta tesis se presenta el desarrollo de un modelo fenomenológico para la remediación química del daño de formación por precipitación de asfaltenos. Se estableció el modelo matemático de la fenomenología que se presenta al inyectar tratamientos químicos a un yacimiento con el fin de revertir las pérdidas de porosidad y permeabilidad. Se realizaron pruebas de disolución de asfaltenos en solventes puros y en mezclas en tolueno, xileno y quinolina; obteniendo hasta el 85% de disolución en tolueno en concentraciones de 100 ppm. Se encontró que no hay sinergia entre solventes, dispersantes y surfactantes en la disolución. Con tratamientos comerciales se encontró sinergias entre el xileno y el solvente mutual. Además, se validó el modelo con datos de laboratorio con pruebas cinéticas de disolución de asfaltenos en tratamientos químicos y pruebas de desplazamiento de fluidos tratados con la remediación en núcleos.This thesis presents the development of a phenomenological model for chemical remediation of formation damage due to asphaltene precipitation. The mathematical model of the phenomenology that occurs when injecting chemical treatments into a reservoir was established to reverse the losses of porosity and permeability. Asphaltenes dissolution tests were carried out in pure solvents and in mixtures in toluene, xylene and quinoline, obtaining up to 85% of dissolution in toluene in concentrations of 100 ppm. It was found that there is no synergy between solvents, dispersants, and surfactants in the solution. Synergies between xylene and mutual solvent were found with commercial treatments. In addition, the model was validated with laboratory data with kinetic tests for dissolving asphaltenes in chemical treatments and fluid displacement tests treated with remediation in cores.Doctorado138application/pdfspa660 - Ingeniería química620 - Ingeniería y operaciones afines550 - Ciencias de la tierraAsfaltenosDisoluciónModelo fenomenológicoRemediación químicaDaño de formaciónAsphaltenesDissolutionPhenomenological modelChemical remediationFormation damageDesarrollo de un modelo fenomenológico y simulación numérica de la remediación química del daño de formación por precipitación de asfaltenosDevelopment of a phenomenological model and numerical simulation of the chemical remediation of formation damage by asphaltene precipitationDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaUniversidad Nacional de Colombia - Sede Medellín1. Pasquevich DM. La Creciente Demanda Mundial de Energia Frente a Los Riesgos Ambientales.Pdf.; 2016. http://www.cab.cnea.gov.ar/ieds/images/extras/medios/2011/aapc_la_creciente_demanda_energ_frente_riesgos_amb.pdf.2. Rodríguez Hernández A, Herrera B, Subdirectora De Hidrocarburos J, et al. PLAN ENERGETICO NACIONAL COLOMBIA: IDEARIO ENERGÉTICO 2050 REPÚBLICA DE COLOMBIA Ministerio de Minas y Energía Tomás González Estrada, Ministro UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA Ángela Inés Cadena Monroy Directora General Secretario General COLABORAD.3. Combustibles fósiles: colombia le seguirá apostando a estos. https://sostenibilidad.semana.com/medio-ambiente/articulo/combustibles-fosiles-colombia-le-seguira-apostando-a-estos/35666.4. Civan F. Reservoir Formation Damage. Second. Gulf Professional Publishing; 2007.5. Hill DG, Liétard OM, Piot BM, Dowell S, King GE, Amoco BP. Formation Damage: Origin, Diagnosis and Treatment Strategy.; 2000.6. Leontaritis KJ, Amaefule JO, Charles RE. A Systematic Approach for the Prevention and Treatment of Formation Damage Caused by Asphaltene Deposition. SPE Prod Facil. 1994;9(03):157-164. doi:10.2118/23810-PA7. Darabi H, Sepehrnoori K. Modeling and Simulation of Near-Wellbore Asphaltene Remediation Using Asphaltene Dispersants. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers; 2015. doi:10.2118/173284-MS8. Zekri AY, Shedid SA. The effect of fracture characteristics on reduction of permeability by asphaltene precipitation in carbonate formation. J Pet Sci Eng. 2004;42(2-4):171-182. doi:10.1016/j.petrol.2003.12.0099. Hirschberg A. Influence of Temperature and Pressure on Asphaltene Floculation. 1984.10. Neves GBM, de Sousa M dos A, Travalloni-Louvisse AM, Lucas EF, Gonz´lez G. CHARACTERIZATION OF ASPHALTENE PARTICLES BY LIGHT SCATTERING AND ELECTROPHORESIS. Pet Sci Technol. 2001;19(1-2):35-43. doi:10.1081/LFT-10000122511. Ali Mansoori G. Modeling of asphaltene and other heavy organic depositions. J Pet Sci Eng. 1997;17(1-2):101-111. doi:10.1016/S0920-4105(96)00059-912. Yarranton H. Asphaltene Deposition. In: Canadian International Petroleum Conference. Petroleum Society of Canada; 2000. doi:10.2118/2000-099-EA13. Amroun H, Tiab D. Alteration of Reservoir Wettability Due to Asphaltene Deposition in Rhourd-Nouss Sud Est Field, Algeria. In: SPE Rocky Mountain Petroleum Technology Conference. Society of Petroleum Engineers; 2001. doi:10.2118/71060-MS14. Goual L, Firoozabadi A. Measuring asphaltenes and resins, and dipole moment in petroleum fluids. AIChE J. 2002;48(11):2646-2663. doi:10.1002/aic.69048112415. Goual L, Firoozabadi A. Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AIChE J. 2004;50(2):470-479. doi:10.1002/aic.1004116. Anisimov MA, Ganeeva YM, Gorodetskii EE, et al. Effects of Resins on Aggregation and Stability of Asphaltenes. Energy & Fuels. 2014;28(10):6200-6209. doi:10.1021/ef501145a17. Abedini A, Ashoori S, Torabi F. Reversibility of asphaltene precipitation in porous and non-porous media. Fluid Phase Equilib. 2011;308(1-2):129-134. doi:10.1016/j.fluid.2011.06.02418. Ju B, Luan Z, Wu Z, Lu G. A Study of Removal of Organic Formation Damage by Experiments and Modeling Approaches. In: Proceedings of SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers; 2001. doi:10.2523/68752-MS19. Delgado JG. CUADERNO FIRP S369-A . Modulo de enseñanza en fenomenos interfaciales. 2006;1.20. Akbarzadeh K, Hammami A, Kharrat A, et al. Los asfaltenos: Problemáticos pero ricos en potencial. Oilf Rev. 2007:24-47. http://www.water.slb.com/~/media/Files/resources/oilfield_review/spanish07/aut07/p22_43.pdf. Accessed October 23, 2014.21. Alapati RR, Joshi N. New Test Method for Field Evaluation of Asphaltene Deposition. In: Offshore Technology Conference. Offshore Technology Conference; 2013. doi:10.4043/24168-MS22. Schneider MH, Andrews AB, Mitra-Kirtley S, Mullins OC. Asphaltene molecular size by fluorescence correlation spectroscopy. Energy and Fuels. 2007;21(5):2875-2882. doi:10.1021/ef700216r23. Mullins OC, Sabbah H, Eyssautier J, et al. Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels. 2012;26(7):3986-4003. doi:10.1021/ef300185p24. Mullins OC, Sabbah H, Eyssautier J, et al. Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels. 2012;26(7):3986-4003. doi:10.1021/ef300185p25. Kraiwattanawong K, Fogler HS, Gharfeh SG, Singh P, Thomason WH, Chavadej S. Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy & Fuels. 2009;23(3):1575-1582. doi:10.1021/ef800706c26. Groffe P, Volle JL, Ziada A. Application of chemicals in prevention and treatment of asphaltene precipitation in crude oils. doi:10.2118/30128-MS27. Pacheco-Sanchez JH, Mansoori GA. In situ remediation of heavy organic deposits using aromatic solvents. In: Proceedings - SPE Annual Western Regional Meeting. Soc Pet Eng (SPE); 1998. http://www.scopus.com/inward/record.url?eid=2-s2.0-0031651352&partnerID=tZOtx3y1.28. Al-Ghazi AS, Lawson J. Asphaltene cleanout using VibraBlaster tool. In: Society of Petroleum Engineers - SPE Saudi Arabia Section Technical Symposium 2007. ; 2007. doi:10.2523/110972-ms29. Bachmann RT, Johnson AC, Edyvean RGJ. Biotechnology in the petroleum industry: An overview. Int Biodeterior Biodegradation. 2014;86:225-237. doi:10.1016/j.ibiod.2013.09.01130. Wu GZ, Coulon F, Yang YW, Li H, Sui H. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil. Pedosphere. 2013;23(4):455-463. doi:10.1016/S1002-0160(13)60038-731. Betancur S. Desarrollo de nanopartículas basadas en sílice para la inhibición de la precipitación/depositación de asfaltenos. 2015.32. Zabala R, Mora E, Cespedes C, et al. Application and Evaluation of a NanoFluid Containing NanoParticles for Asphaltenes Inhibition in Well CPSXL4. Offshore Technol Conf Bras. 2013:14. doi:10.4043/24310-MS33. Benjumea PN, Isaza CN. Remediación Del Daño de Formación Por Depositación de Asfaltenos. Medellín; 2015.34. Trbovich MG, King GE. Asphaltene Deposit Removal: Long-Lasting Treatment With a Co-Solvent. In: Proceedings of SPE International Symposium on Oilfield Chemistry. Vol i. Society of Petroleum Engineers; 1991. doi:10.2523/21038-MS35. Kuang J, Yarbrough J, Enayat S, Edward N, Wang J, Vargas FM. Evaluation of solvents for in-situ asphaltene deposition remediation. Fuel. 2019;241(October 2018):1076-1084. doi:10.1016/j.fuel.2018.12.08036. Ogolo NA, Olafuyi OA, Onyekonwu MO. Enhanced Oil Recovery Using Nanoparticles. In: SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers; 2012:9. doi:10.2118/160847-MS37. Hashmi SM, Firoozabadi A. Asphaltene Deposition in Metal Pipes : Efficient Inhibition and Removal by Different Surfactants. SPE J. 2013. doi:10.2118/166404-MS38. Rittner, D., & Bailey RA. Encyclopedia of Chemistry.; 2005.39. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Third, Upd. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003.40. Hildebrand JH. A History of Solution Theory.41. Belmares M, Blanco M, Goddard WA, et al. Hildebrand and hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem. 2004;25(15):1814-1826. doi:10.1002/jcc.2009842. Holmberg K, ed. Handbook of Applied Surface and Colloid Chemistry. JOHN WILEY & SONS ,LTD; 2002.43. Rogel E. Effect of inhibitors on asphaltene aggregation: A theoretical framework. Energy and Fuels. 2011;25(2):472-481. doi:10.1021/ef100912b44. Al-Sahhaf T a., Fahim M a., Elkilani AS. Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants. Fluid Phase Equilib. 2002;194-197:1045-1057. doi:10.1016/S0378-3812(01)00702-645. Samuelson ML. Alternatives to Aromatics for Solvency of Organic Deposits. 1992. doi:10.2118/23816-MS46. Becker HL, Thomas DC, Doddridge WR, McDougall DB. Asphaltene Deposition Control Using Chemical Control Agents. doi:10.2118/92-7047. Jamaluddin AKM, Nazarko TW, Sills S, Fuhr BJ. Deasphalted oil: A natural asphaltene solvent. SPE Prod Facil. 1996;11(3).48. Minssieux L. Removal of Asphalt Deposits by Cosolvent Squeeze: Mechanisms and Screening. doi:10.2118/39447-MS49. Newberry ME, Barker KM. Organic Formation Damage Control and Remediation. SPE Int Symp Form Damage Control. 2013. doi:10.2118/58723-MS50. Dong L, Xie H, Zhang F. Chemical Control Techniques for the Paraffin and Asphaltene Deposition. doi:10.2118/65380-MS51. Ju B, Luan Z, Wu Z, Lu G. A Study of Removal of Organic Formation Damage by Experiments and Modeling Approaches. doi:10.2118/68752-MS52. Alkafeef SF, Al-Medhadi F, AL-Shammari AD. Asphaltene Remedial Technology Using Advanced Deasphalted Oil. doi:10.2118/81570-MS53. Sanada A, Miyagawa Y. A Case Study of a Successful Chemical Treatment to Mitigate Asphaltene Precipitation and Deposition in Light Crude Oil Field. doi:10.2118/101102-MS54. Frost KA, Daussin RD, Van Domelen MS. New, Highly Effective Asphaltene Removal System with Favorable HSE Characteristics. doi:10.2118/112420-MS55. Lightford SC, Pitoni E, Mauri L, Armesi F. Development and Field Use of a Novel Solvent Water Emulsion for the Removal of Asphaltene Deposits in Fractured Carbonate Formations. doi:10.2118/101022-MS56. Fattah Ahmed WA, Nasr-El-Din HA. Acid Emulsified in Xylene: A Cost-Effective Treatment To Remove Asphalting Deposition and Enhance Well productivity. doi:10.2118/117251-MS57. Abdallah D, Bazuhair MK, Zwolle S, Grutters M, Ramanathan K, Stankiewicz A. Asphaltene Studies in on-shore Abu Dhabi Oil fields, PART III: Optimization of Field Chemicals for Remediation and Inhibition of Asphaltene Deposition. 2010. doi:10.2118/138040-MS58. Oseghale CI, Ebhodaghe FO. Asphaltene Deposition and Remediation in Crude Oil Production: Solubility Technique. J Eng Appl Sci. 2011;6(4):258-261.59. Pereira JC, Delgado-Linares J, Briones A, Guevara M, Scorzza C, Salager J-L. The effect of solvent nature and dispersant performance on asphaltene precipitation from diluted solutions of instable crude oil. Pet Sci Technol. 2011;29(23):2432-2440.60. Telang M, Al-Matrook MF, Oskui GR, et al. Continuous Solvent Flush Approach for Asphaltene Precipitation in a Kuwaiti Reservoir: PhaseI-An Experimental Solvent Screening. doi:10.2118/163316-MS61. Salgaonkar L, Danait A. Environmentally Acceptable Emulsion System: An Effective Approach for Removal of Asphaltene Deposits. 2012. doi:10.2118/160877-MS62. Chen C, Guo J, An N, Pan Y, Li Y, Jiang Q. Study of asphaltene dispersion and removal for high-asphaltene oil wells. Pet Sci. 2012;9(4):551-557. doi:10.1007/s12182-012-0242-563. Restrepo A, Ocampo A, Lopera Castro SH, Diaz MP, Clavijo J, Marin J. GaStim Concept - A Novel Technique for Well Stimulation. Part I: Understanding the Physics. doi:10.2118/152309-MS64. Misra S, Abdallah D, Nuimi S. Successful Asphaltene Cleanout Field Trial in on-shore Abu Dhabi Oil Fields. 2013. doi:10.2118/164175-MS65. Al-Taq AA, Zeid SMA, Al-Haji HH, Saleem JA. Removal of Organic Deposits from Oil Producing Wells in a Sandstone Reservoir: A Lab Study and a Case History. doi:10.2118/164410-MS66. Murtaza S, Al-Ruwaily AA, Taqi AA, et al. Wellbore Asphaltene Cleanout Using a new Solvent Formulation in a Horizontal Openhole oil Producer in Carbonate Reservoir of North Ghawar Field -Scripting a Success Story. doi:10.2118/164434-MS67. Alian SS, Singh K, Saidu Mohamed A, Ismail MZ, Anwar ML. Organic Deposition: From Detection and Laboratory Analysis to Treatment and Removal. doi:10.2118/165912-MS68. Zabala Romero RD, Acuna HM, Cortés FB, et al. Application and Evaluation of a NanoFluid Containing NanoParticles for Asphaltenes Inhibition in Well CPSXL4. doi:10.4043/24310-MS69. Restrepo A, Ocampo A, Lopera S, et al. GaStim Concept - A Novel Technique for Well Stimulation. Part II: From Laboratory to Field Pilot Testing. doi:10.2118/168133-MS70. Moreno-Arciniegas L, Babadagli T. Optimal Application Conditions of Solvent Injection Into Oil Sands To Minimize the Effect of Asphaltene Deposition: An Experimental Investigation. doi:10.2118/165531-PA71. Chang R. Chemistry. 10th ed.; 2010.72. Mitchell DL, Speight JG. The solubility of asphaltenes in hydrocarbon solvents. Fuel. 1973;52(2):149-152. doi:10.1016/0016-2361(73)90040-973. Hong E, Watkinson P. A study of asphaltene solubility and precipitation. Fuel. 2004;83(14-15 SPEC. ISS.):1881-1887. doi:10.1016/j.fuel.2003.09.02674. Wang T, Zhang C, Zhao R, Zhu C, Yang C, Liu C. Solvent extraction of bitumen from oil sands. Energy and Fuels. 2014;28(4):2297-2304. doi:10.1021/ef402101s75. Sato T, Araki S, Morimoto M, Tanaka R, Yamamoto H. Comparison of Hansen Solubility Parameter of Asphaltenes Extracted from Bitumen Produced in Different Geographical Regions. Energy & Fuels. 2014;28(2):891-897. doi:10.1021/ef402065j76. Painter PC, Veytsman B, Youtcheff J. Guide to asphaltene solubility. Energy and Fuels. 2015;29(5):2951-2961. doi:10.1021/ef502918t77. Prausnitz JM, Linchtenthaler RN, Gomes De Azevedo E. Termodinámica Molecular de Los Equilibrios de Fases. Prentice-Hall; 2000. doi:10.1002/cjce.545078022278. Barton AFM. Solubility parameters. Chem Rev. 1975;75:731-753. doi:10.1021/cr60298a00379. Flory PJ. Themodynamics of high polymer solutions. J Chem Phys. 1942. doi:10.1063/1.172362180. Wypych G. Handbook of Solvents. (Wypych G, ed.). Toronto-New york: ChemTec; 2001. https://www.google.com.co/search?tbm=bks&q=ISBN+1-895198-24-0.81. Fossen M, Hemmingsen PV, Hannisdal A, Sjöblom J, Kallevik H. Solubility Parameters Based on IR and NIR Spectra: I. Correlation to Polar Solutes and Binary Systems. J Dispers Sci Technol. 2005;26(2):227-241. doi:10.1081/DIS-20004560582. Redelius P. Bitumen solubility model using Hansen solubility parameter. Energy and Fuels. 2004;18(4):1087-1092. doi:10.1021/ef040005883. Siddiqui SA, Needles HL. Solubility Parameters. Text Res J. 1982;52(9):570-579. doi:10.1177/00405175820520090484. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28(8):1223-1270. doi:10.1016/S0079-6700(03)00045-585. Química A De, Avanzada F. Química Física de los Polímeros. 2011:1-40.86. Hildebrand JH, Scott RL. The Solubility of Nonelectrolytes. 1964.87. Chemtech LS. Solutions to Solution Problems. Chem SOC 1155 16TH ST, NW …. 1979.88. Baldeschwieler EL, Morgan MD, Troeller WJ. The Kauri Butanol Test for Solvent Power. II. Ind Eng Chem - Anal Ed. 1937;9(11):540-543. doi:10.1021/ac50115a02089. Godfrey NB. Solvent selection via miscibility number. osti.gov. 1972. https://www.osti.gov/biblio/6068509.90. Mannistu KD, Yarranton HW, Masliyah JH. Solubility Modeling of Asphaltenes in Organic Solvents. Energy & Fuels. 1997;11(3):615-622. doi:10.1021/ef960187991. Khoshandam A, Alamdari A. Kinetics of asphaltene precipitation in a heptane-toluene mixture. Energy and Fuels. 2010;24(3):1917-1924. doi:10.1021/ef901232892. Hirschberg A. Role of Asphaltenes in Compositional Grading of a Reservoir’s Fluid Column. J Pet Technol. 1988;40(January):89-94. doi:10.2118/13171-PA93. Du JL, Zhang D. A Thermodynamic Model for the Prediction of Asphaltene Precipitation. Pet Sci Technol. 2004;22(7-8):1023-1033. doi:10.1081/LFT-12003872494. Andersen SI, Speight JG. Thermodynamic models for asphaltene solubility and precipitation. J Pet Sci Eng. 1999;22(1-3):53-66. doi:10.1016/S0920-4105(98)00057-695. Rogel E, Roye M, Vien J, Miao T. Characterization of asphaltene fractions: Distribution, chemical characteristics, and solubility behavior. Energy and Fuels. 2015;29(4):2143-2152. doi:10.1021/ef502645596. Rogel E, Ovalles C, Bake KD, et al. Asphaltene Densities and Solubility Parameter Distributions: Impact on Asphaltene Gradients. Energy & Fuels. 2016;30(11):9132-9140. doi:10.1021/acs.energyfuels.6b0179497. De Boer RB, Leerlooyer K. Screening of Crude Oils for Asphal Precipitation: Theory, Practice, and the Selection of Inhibitors. SPE. 1995;(February):55-61.98. Correra S, Merlini M, Di Lullo A, Merino-Garcia D. Estimation of the solvent power of crude oil from density and viscosity measurements. Ind Eng Chem Res. 2005;44(24):9307-9315. doi:10.1021/ie050727299. Mohammadi AH, Eslamimanesh A, Richon D. Monodisperse Thermodynamic Model Based on Chemical + Flory–Hüggins Polymer Solution Theories for Predicting Asphaltene Precipitation. Ind Eng Chem Res. 2012;51(10):4041-4055. doi:10.1021/ie202737p100. Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14(2):147-154. doi:10.1002/pen.760140211101. Goharshadi EK, Hesabi M. Estimation of solubility parameter using equations of state. J Mol Liq. 2004;113(1-3):125-132. doi:10.1016/j.molliq.2004.02.030102. Buckley JS, Hirasaki GJ, Liu Y, Von Drasek S, Wang JX, Gill BS. Asphaltene precipitation and solvent properties of crude oils. Pet Sci Technol. 1998;16(3-4):251-285. doi:10.1080/10916469808949783103. Wang JX, Buckley JS. A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy and Fuels. 2001;15(5):1004-1012. doi:10.1021/ef010012l104. Vargas FM, Chapman WG. Application of the One-Third rule in hydrocarbon and crude oil systems. Fluid Phase Equilib. 2010;290(1-2):103-108. doi:10.1016/j.fluid.2009.12.004105. Zuo JY, Mullins OC, Freed D, Zhang D. A Simple Relation between Solubility Parameters and Densities for Live Reservoir Fluids. J Chem Eng Data. 2010;55(9):2964-2969. doi:10.1021/je100155d106. Fan T, Wang J, Buckley JS. Evaluating Crude Oils by SARA Analysis. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers; 2002. doi:10.2118/75228-MS107. Chamkalani A. Correlations between SARA Fractions, Density, and RI to Investigate the Stability of Asphaltene. ISRN Anal Chem. 2012;2012(I):1-6. doi:10.5402/2012/219276108. Fan T, Buckley JS. Rapid and Accurate SARA Analysis of Medium Gravity Crude Oils. Energy & Fuels. 2002;16(6):1571-1575. doi:10.1021/ef0201228109. Rogel E, Miao T, Vien J, Roye M. Comparing asphaltenes: Deposit versus crude oil. Fuel. 2015;147:155-160. doi:10.1016/j.fuel.2015.01.045110. Goual L, Sedghi M. Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids. J Colloid Interface Sci. 2015;440:23-31. doi:10.1016/j.jcis.2014.10.043111. Painter PC, Graf J, Coleman MM. Coal Solubility and Swelling. 1. Solubility Parameters for Coal and the Flory χ Parameter. Energy and Fuels. 1990;4(4):379-384. doi:10.1021/ef00022a008112. Painter P, Veytsman B, Youtcheff J. Asphaltene Aggregation and Solubility. Energy & Fuels. 2015;29(4):2120-2133. doi:10.1021/ef5024912113. Mohammadi AH, Richon D. A monodisperse thermodynamic model for estimating asphaltene precipitation. AIChE J. 2007;53(11):2940-2947. doi:10.1002/aic.11304114. Dokoumetzidis A, Macheras P. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int J Pharm. 2006;321(1-2):1-11. doi:10.1016/j.ijpharm.2006.07.011115. Wang Y, Abrahamsson B, Lindfors L, Brasseur JG. Comparison and Analysis of Theoretical Models for Diffusion-Controlled Dissolution. Mol Pharm. 2012;9(5):1052-1066. doi:10.1021/mp2002818116. Permsukarome P, Chang C, Fogler HS. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Ind Eng …. 1997;36(9):3960-3967. doi:10.1021/ie970177a117. Isaza Toro CN. Modelo fenomenológico y simulación de la disolución de los asfaltenos depositados en formación usando un solvente químico puro. 2017.118. Zendehboudi S, Shafiei A, Bahadori A, James L a., Elkamel A, Lohi A. Asphaltene precipitation and deposition in oil reservoirs – Technical aspects, experimental and hybrid neural network predictive tools. Chem Eng Res Des. 2014;92(5):857-875. doi:10.1016/j.cherd.2013.08.001119. Ahmed TH. Equations of State and PVT Analysis : Applications for Improved Reservoir Modeling. Houston: Gulf Publishing Company; 2007.120. Kraiwattanawong K, Fogler HS, Gharfeh SG, Singh P, Thomason WH, Chavadej S. Thermodynamic solubility models to predict asphaltene instability in live crude oils. Energy and Fuels. 2007;21(3):1248-1255. doi:10.1021/ef060386k121. Burke NE, Hobbs RE, Kashou SF. Measurement and Modeling of Asphaltene Precipitation. J Pet Technol. 1990;42(11):1440-1446. doi:10.2118/18273-PA122. Cornell J. Experiments with Mixture. Design, Models, and the Analysis of Mixture Data. Wiley; 2002.123. Tayakout M, Ferreira C, Espinat D, et al. Diffusion of asphaltene molecules through the pore structure of hydroconversion catalysts. Chem Eng Sci. 2010;65(5):1571-1583. doi:10.1016/j.ces.2009.10.025124. Li J, Carr PW. Accuracy of Empirical Correlations for Estimating Diffusion Coefficients in Aqueous Organic Mixtures. Anal Chem. 1997;69(13):2530-2536. doi:10.1021/ac961005a125. Leontaritis KJ, Mansoori GA. Asphaltene Flocculation During Oil Production and Processing: A Thermodynamic Collodial Model. In: Proceedings of SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 1987:149-158. doi:10.2523/16258-MS126. Pereira JC, López I, Salas R, et al. Resins: The Molecules Responsible for the Stability/Instability Phenomena of Asphaltenes †. Energy & Fuels. 2007;21(3):1317-1321. doi:10.1021/ef0603333127. Almehaideb RA. Asphaltene Precipitation and Deposition in the Near Wellbore Region: A Modeling Approach. J Pet Sci Eng. 2004;42(2-4):157-170. doi:10.1016/j.petrol.2003.12.008128. Islam MR, Mousavizadegan SH, Mustafiz S, Abou-Kassem JH. Advanced Petroleum Reservoir Simulations. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010. doi:10.1002/9780470650684129. Ertekin T, Abou-Kassem JH, King GR. Basic Applied Reservoir Simulation. Vol 111. Society of Petroleum Engineers; 2001. doi:10.1192/bjp.111.479.1009-a130. Wang S, Civan F. Preventing Asphaltene Deposition in Oil Reservoirs by Early Water Injection. In: SPE Production Operations Symposium. Society of Petroleum Engineers; 2005. doi:10.2118/94268-MS131. Shaojun W, Civan F, Strycker AR. Simulation of Paraffin and Asphaltene Deposition in Porous Media. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 1999. doi:10.2118/50746-MS132. Mozo I. Desarrollo de un modelo matemático de la estimulación de pozos productores de crudo pesado con nanofluidos reductores de viscosidad. 2017. http://bdigital.unal.edu.co/59324/.133. Garcia Lesmes BF. Modelamiento de la remediacion e inhibicion del daño de formacion por asfaltenos usando tratamientos dispersos en gas de inyeccion. 2016. http://www.bdigital.unal.edu.co/55106/.134. Wang S, Civan F. Productivity Decline of Vertical and Horizontal Wells by Asphaltene Deposition in Petroleum Reservoirs. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers; 2001:1-16. doi:10.2118/64991-MS135. Fernández Oro JM. Técnicas Numéricas En Ingeniería de Fluidos: Introducción a La Dinámica de Fluidos Computacional (CFD) Por El Método de Volúmenes Finitos. Barcelona: Reverté; 2012.136. Chapra SC, Canale RP, E-libro C. Métodos Numéricos Para Ingenieros (5a. Ed.). McGraw-Hill Interamericana; 2007. https://books.google.com.co/books?id=y_1NAQAACAAJ.137. Alvarez W, Ramirez S, Ruiz JF. Métodos iterativos GMRES & MINRES. 2018;(June). doi:10.13140/RG.2.2.22355.89129138. Novaki LP, Moraes EO, Goncalves AB, et al. Solvatochromic and Solubility Parameters of Solvents: Equivalence of the Scales and Application to Probe the Solubilization of Asphaltenes. Energy and Fuels. 2016;30(6):4644-4652. doi:10.1021/acs.energyfuels.6b00461139. Acevedo S, Castro A, Vásquez E, Marcano F, Ranaudo MA. Investigation of physical chemistry properties of asphaltenes using solubility parameters of asphaltenes and their fractions A1 and A2. Energy and Fuels. 2010;24(11):5921-5933. doi:10.1021/ef1005786140. Wilczak A, Keinath TM. Kinetics of sorption and desorption of copper(II) and lead (II) on activated carbon. Water Environ Res. 1993;65(3):238-244. doi:10.2175/wer.65.3.7141. Shayan NN, Mirzayi B. Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles. Energy and Fuels. 2015;29(3):1397-1406. doi:10.1021/ef502494dORIGINAL93370604.2020.pdf93370604.2020.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf3318380https://repositorio.unal.edu.co/bitstream/unal/78730/5/93370604.2020.pdf9224ded43bfa80b1d766540fda1fb659MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/78730/7/license.txte2f63a891b6ceb28c3078128251851bfMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/78730/8/license_rdf217700a34da79ed616c2feb68d4c5e06MD58THUMBNAIL93370604.2020.pdf.jpg93370604.2020.pdf.jpgGenerated Thumbnailimage/jpeg5265https://repositorio.unal.edu.co/bitstream/unal/78730/9/93370604.2020.pdf.jpgbf10b0943b3cbde92bd96057754b181eMD59unal/78730oai:repositorio.unal.edu.co:unal/787302024-08-01 23:10:37.549Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==