Funciones exponencialmente convexas

En el presente trabajo se comienza el estudio de las funciones exponencialmente convexas, desde el punto de vista del análisis complejo. En el primer capítulo se exponen las definiciones y resultados necesarios para que una persona con conocimientos básicos en análisis complejo tenga una comprensión...

Full description

Autores:
Arango Escalante, Juan Humberto
Tipo de recurso:
Fecha de publicación:
1995
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/2955
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/2955
http://bdigital.unal.edu.co/1349/
Palabra clave:
51 Matemáticas / Mathematics
Funciones exponenciales
Funciones convexas
Matemáticas
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:En el presente trabajo se comienza el estudio de las funciones exponencialmente convexas, desde el punto de vista del análisis complejo. En el primer capítulo se exponen las definiciones y resultados necesarios para que una persona con conocimientos básicos en análisis complejo tenga una comprensión cabal del trabajo. En el segundo capítulo se presentan las definiciones y caracterizaciones relacionadas con las funciones exponencialmente convexas analíticas y univalentes, con la normalización acostumbrada en la Teoría Geométrica de Funciones. En el tercer capítulo se consideran dos casos particulares (extremos) y un para de ejemplos. En el cuarto capítulo se demuestra la compacidad de las clases y de la unión de ellas (con respecto a la topología de la convergencia uniforme local). En el quinto capítulo y ultimo capitulo se demuestra y se estudia que el radio del mayor disco con centro en el origen puede inscribirse en el rango de cualquier función de la clase. Se exhiben también las únicas dos funciones extrémales del problema (aquellas cuyos rangos no contienen un disco mayor con centro en el origen). En la demostración se usa, fundamentalmente, la métrica hiperbólica.