Internal and external aspects of continuous logic and categorical logic for sheaves over quantales

In this text we explore and propose notions of sheaves over commutative, integral quantales, which are based on extensions of results of the theory of sheaves over locales: the interplay of sheaves as valued-sets and the analogy of sheaves as enriched categories. Over these proposals, we define logi...

Full description

Autores:
Reyes Gaona, David
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85026
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85026
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
Algebra-métodos gráficos
Lógica
Algebra - Graphic methods
Logic
Sheaves
Quantales
Enriched categories
Metric spaces
Quantale valued logic
Haces
Cuantales
Categorías enriquecidas
Espacios métricos
Lógica cuantal valuada
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_ba44511a858f71e94806151c03fe33ab
oai_identifier_str oai:repositorio.unal.edu.co:unal/85026
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
dc.title.translated.spa.fl_str_mv Aspectos internos y externos de lógica continua y lógica categórica para haces sobre cuantales
title Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
spellingShingle Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
Algebra-métodos gráficos
Lógica
Algebra - Graphic methods
Logic
Sheaves
Quantales
Enriched categories
Metric spaces
Quantale valued logic
Haces
Cuantales
Categorías enriquecidas
Espacios métricos
Lógica cuantal valuada
title_short Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
title_full Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
title_fullStr Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
title_full_unstemmed Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
title_sort Internal and external aspects of continuous logic and categorical logic for sheaves over quantales
dc.creator.fl_str_mv Reyes Gaona, David
dc.contributor.advisor.none.fl_str_mv Mariano, Hugo Luiz
Zambrano Ramírez, Pedro Hernán
dc.contributor.author.none.fl_str_mv Reyes Gaona, David
dc.contributor.researchgroup.spa.fl_str_mv Interacciones Entre Teoría de Modelos, Teoría de Conjuntos, Categorías, Análisis y Geometría
dc.contributor.researchgate.spa.fl_str_mv Reyes, David
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
topic 510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::514 - Topología
510 - Matemáticas::512 - Álgebra
510 - Matemáticas::511 - Principios generales de las matemáticas
510 - Matemáticas::515 - Análisis
510 - Matemáticas::511 - Principios generales de las matemáticas
Algebra-métodos gráficos
Lógica
Algebra - Graphic methods
Logic
Sheaves
Quantales
Enriched categories
Metric spaces
Quantale valued logic
Haces
Cuantales
Categorías enriquecidas
Espacios métricos
Lógica cuantal valuada
dc.subject.lemb.spa.fl_str_mv Algebra-métodos gráficos
Lógica
dc.subject.lemb.eng.fl_str_mv Algebra - Graphic methods
Logic
dc.subject.proposal.eng.fl_str_mv Sheaves
Quantales
Enriched categories
Metric spaces
Quantale valued logic
dc.subject.proposal.spa.fl_str_mv Haces
Cuantales
Categorías enriquecidas
Espacios métricos
Lógica cuantal valuada
description In this text we explore and propose notions of sheaves over commutative, integral quantales, which are based on extensions of results of the theory of sheaves over locales: the interplay of sheaves as valued-sets and the analogy of sheaves as enriched categories. Over these proposals, we define logics that find semantics in these sheaf-like objects, on the one hand, a categorical logic that characterize the notion of sheaves associated to complete valued sets as a model of certain internal construction, and in contrast an externally defined logic whose nature is based on continuous logic for metric spaces which finds in the proposal of sheaves as enriched categories an structure for interpret the semantic. (Texto tomado de la fuente)
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-30T14:23:58Z
dc.date.available.none.fl_str_mv 2023-11-30T14:23:58Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85026
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85026
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Kopperman, R. (1988). All topologies come from generalized metrics. American Mathematical Monthly, 95(2), 89-97.
Walters, R. F. C. (1981). "Sheaves and Cauchy-Complete categories." Cahiers de topologie et géométrie différentielle catégoriques, 22(3), 283-286.
Walters, R. F. C. (1982). "Sheaves on sites as Cauchy-Complete categories." Journal of pure and applied Algebra, 24, 95-102.
Benabou, J. (1973). "Les distributeurs." Inst. Math. Pure Appl Univ. Louvain-la-Neuve, 33, 161-189.
Lawvere, F. W. (1973). "Metric spaces, generalized logic, and closed categories." Rendiconti del seminario matématico e fisico de Milano, 43, 135-166.
Kopperman, R. (1981). "First order topological axioms." The Journal of Symbolic Logic, 46, 475-489.
Flagg, R. (1992). "Completeness In Continuity Spaces." Canadian Mathematical Society, 13, 183-199.
Flagg, R., & Kopperman, R. (1997). "Continuity spaces: Reconciling domains and metric spaces." Theoretical Computer Science, 177, 111-138.
Flagg, R. (1997). "Quantales and continuity spaces." Algebra Universalis, 37, 257-276.
Stubbe, I. (2005). "Categorical structures enriched in a quantaloid: orders and ideals over a base quantaloid." Applied Categorical Structures, 13(3), 235-255.
Stubbe, I. (2005). "Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories." Cahiers de Topologie et Géométrie Différentielle Catégoriques, 46, 99-121.
Stubbe, I. (2005). "Categorical structures enriched in a quantaloid: categories, distributors and functors." Theory Appl. Categ, 14, 1-45.
Borceux, F., van de Bossche (1986). "Quantales and their sheaves." Order, 3, 61-87.
Miraglia, F., & Solitro, U. (1998). "Sheaves over right sided idempotent quantales." Logic Journal of IGPL, 6(4), 545-600.
Höhle, U. (1998). "GL-quantales: Q-valued sets and their singletons." Studia logica, 61, 123-148.
Resende, P. (2011). "Grupoid sheaves as quantale sheaves." J. Pure Appl. Algebra, 216, 41-70.
Bénabou, J. (1967). "Introduction to bicategories." Lecture Notes in Math, 47, 1-77.
Mulvey, C. (1986). "J. 1986." Suppl. Rend. Circ. Mat. Palermo Ser, 2, 99-104.
Hyland, J., Johnstone, P., & Pitts, A. (1980). "Tripos Theory." Mathematical Proceedings of the Cambridge Philosophical Society, 88 (2), 205-232.
Pitts, A. M. (1999). "Tripos Theory in Retrospect." Electronic Notes in Theoretical Computer Science, 23, 111-127.
Weiss, I. (2018). "Value semigroups, values quantales, and positivity domains." 27.
Lieberman, M., Rosicky, J., & Zambrano, P. (2018). "Tameness in generalized metric structures." 22. [Preprint]. https://arxiv.org/abs/1810.02317
Shulman, M. A. (2010). "Stack semantics and the comparison of material and structural set theories." [Preprint]. https://arxiv.org/abs/arXiv:1004.3802
Reyes, D., & Zambrano, P. (2021). "Co-quantale valued logics." [Preprint]. https://arxiv.org/abs/arXiv:2102.06067
Hofman, D., & Reis, C. (2017). "Convergence and quantale-enriched categories." [Preprint]. https://arxiv.org/abs/arXiv:1705.08671
Alvim, J. G., Mendes, C. A., & Mariano, H. L. (2023). "{$Q$}-Sets and Friends: Categorical Constructions and Categorical Properties." [Preprint]. https://arxiv.org/abs/arXiv:2302.03123
Alvim, J. G., Mendes, C. A., & Mariano, H. L. (2023). "{$Q$}-Sets and Friends: Regarding Singleton and Gluing Completeness." [Preprint]. https://arxiv.org/abs/arXiv:2302.03691
Tenório, A. L., Mendes, C. A., & Mariano, H. L. (2022). "Introducing sheaves over commutative semicartesian quantales." [Preprint]. https://arxiv.org/abs/arXiv:2204.08351
Ben-Yaacov, I., Berenstein, A., Henson, C. W., & Usvyatsov, A. (2008). "Model theory for metric structures." In Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (Eds.), Model Theory with Applications to Algebra and Analysis (Vol. 2, pp. 315–427). Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511735219.011
Bell, J. (2005). "Set Theory: Boolean-Valued Models and Independence Proofs" (3rd ed.). Oxford: Oxford University Press.
Schweizer, B., & Sklar, A. (1983). "Probabilistic Metric Spaces." Amsterdam: North Holland.
Borceux, F. (1994). "Handbook of Categorical Algebra, Volume 3, Sheaf Theory." Cambridge: Cambridge University Press.
McLarty, C. (1992). "Elementary Categories, Elementary Toposes." Oxford: Clarendon Press.
Mac Lane, S., & Moerdijk, I. (1992). "Sheaves in Geometry and Logic: A First Introduction to Topos Theory." Springer.
Johnstone, P. T. (2002). "Sketches of an Elephant: Topos Theory Compendium." Oxford: Oxford University Press.
A. L. da Conceição Tenório, C. de Andrade Mendes, J. Goudet Alvim, H.L. Mariano. "Sheaves over quantales and Grothendieck L-topoi." Work in progress, Hugo Mariano students in IME-USP, 202X.
de Andrade Mendes C., Mariano H.L. "Sheaf-like categories over semicartesian quantales and applications." PhD Thesis, Work in progress, Hugo Mariano student in IME-USP, 202X.
Moncayo V. J. R., Zambrano P.H. "Constructible sets in lattice-valued models." Master Thesis, Pedro Zambrano student in UNAL (Bog), 2023.
K.I. Rosenthal. "Quantales and Their Applications." Pitman Research Notes in Mathematics Series, Harlow, UK, 1990.
M.P. Fourman, D.S. Scott. "Sheaves and Logic." Lectures Notes in Mathematics, Springer 753, 1979.
L.M. Acosta. "Temas de teoría de retículos." Universidad Nacional De Colombia, Bogotá, Colombia, 2015.
G.M. Kelly. "Basic Concepts of Enriched Category Theory." Theory and Applications of Categories, 2005.
G. Gierz, K. H. Hofmann, K. K., J. Lawson, M. Mislove, D. Scott. "A Compendium of Continuous Lattices." Springer-Verlag Berlin Heidelberg, 1980.
M. Goldstern, H. Judah. "The Incompleteness Phenomenon: A New Course in Mathematical Logic." A K Peters, 1998.
C. C. Chang, H. J. Keisler. "Continuous Model Theory." Princeton University Press, 1966.
Hausdorff F. "Grundzüge der Mengenlehre." Cambridge University Press, Veit, Leipzig, 1914.
Hofmann D., Seal G., Tholen W. "Monoidal Topology: A Categorical Approach to Order, Metric and Topology." New York: Cambridge University Press, 2014.
John L. Bell. "Set Theory: Boolean-valued Models and Independence Proofs." Oxford Logic Guides, Clarendon Press, volume 47, Oxford, United Kingdom, 2005.
D. Scott. (1972). "Continuous lattices." Lecture Notes in Mathematics - Springer-verlag-, 274, 97-136. DOI: 10.1007/BFb0073967.
José Goudet Alvim, Arthur Francisco Schwerz Cahali, Hugo Luiz Mariano. (2022). "Induced Morphisms between Heyting-valued Models." Journal of Applied Logics, 9, 5-40.
nLab. (2023). "Hyperdoctrine." Recuperado de https://ncatlab.org/nlab/show/hyperdoctrine.
nLab. (2023). "Karoubi envelope." Recuperado de https://ncatlab.org/nlab/show/Karoubi+envelope.
Iovino, J. (1995). Stable Banach Spaces and Banach Space Structures, I: Fundamentals. En C. Raymond (Ed.), Handbook of Metric Fixed Point Theory (pp. 329-386). Taylor & Francis. DOI: 10.1201/9780429332890-10
Henson, C. W., & Iovino, J. (2003). Ultraproducts in Analysis. En Editores del libro (Eds.), Analysis and Logic (pp. xi-xiv). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781107360006.002
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 112 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85026/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85026/2/1032492033.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85026/3/1032492033.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
96b446af427517a7b94a02ee3ad387a4
93b52b5fcc78aa7e4c2f2b623f8fe45a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090055848820736
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mariano, Hugo Luizecebb601694b29c422dc1f913ed72b23Zambrano Ramírez, Pedro Hernán81ad894ee4d503e5a9459e9ca6218ef3Reyes Gaona, David57da3ccaacb8455a32f46e12096de01aInteracciones Entre Teoría de Modelos, Teoría de Conjuntos, Categorías, Análisis y GeometríaReyes, David2023-11-30T14:23:58Z2023-11-30T14:23:58Z2023https://repositorio.unal.edu.co/handle/unal/85026Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/In this text we explore and propose notions of sheaves over commutative, integral quantales, which are based on extensions of results of the theory of sheaves over locales: the interplay of sheaves as valued-sets and the analogy of sheaves as enriched categories. Over these proposals, we define logics that find semantics in these sheaf-like objects, on the one hand, a categorical logic that characterize the notion of sheaves associated to complete valued sets as a model of certain internal construction, and in contrast an externally defined logic whose nature is based on continuous logic for metric spaces which finds in the proposal of sheaves as enriched categories an structure for interpret the semantic. (Texto tomado de la fuente)En este texto exploramos y proponemos nociones de haces sobre cuantales conmutativos e integrales, basadas en extensiones de resultados de la teoría de haces sobre locales: la interacción de los haces como conjuntos valuados y la analogía de los haces como categorías enriquecidas. Sobre estas propuestas, definimos lógicas que encuentran su semántica en estos objetos tipo haz; por un lado, una lógica categórica que caracteriza la noción de haces asociada a conjuntos valuados completos como un modelo de cierta construcción interna, y en contraste, una lógica definida externamente cuya naturaleza se basa en la lógica continua para espacios métricos, la cual encuentra en la propuesta de haces como categorías enriquecidas una estructura para interpretar su semántica.MaestríaMaestría en MatemáticasLógica matemáticax, 112 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::514 - Topología510 - Matemáticas::512 - Álgebra510 - Matemáticas::511 - Principios generales de las matemáticas510 - Matemáticas::515 - Análisis510 - Matemáticas::511 - Principios generales de las matemáticas510 - Matemáticas::514 - Topología510 - Matemáticas::512 - Álgebra510 - Matemáticas::511 - Principios generales de las matemáticas510 - Matemáticas::515 - Análisis510 - Matemáticas::511 - Principios generales de las matemáticasAlgebra-métodos gráficosLógicaAlgebra - Graphic methodsLogicSheavesQuantalesEnriched categoriesMetric spacesQuantale valued logicHacesCuantalesCategorías enriquecidasEspacios métricosLógica cuantal valuadaInternal and external aspects of continuous logic and categorical logic for sheaves over quantalesAspectos internos y externos de lógica continua y lógica categórica para haces sobre cuantalesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMKopperman, R. (1988). All topologies come from generalized metrics. American Mathematical Monthly, 95(2), 89-97.Walters, R. F. C. (1981). "Sheaves and Cauchy-Complete categories." Cahiers de topologie et géométrie différentielle catégoriques, 22(3), 283-286.Walters, R. F. C. (1982). "Sheaves on sites as Cauchy-Complete categories." Journal of pure and applied Algebra, 24, 95-102.Benabou, J. (1973). "Les distributeurs." Inst. Math. Pure Appl Univ. Louvain-la-Neuve, 33, 161-189.Lawvere, F. W. (1973). "Metric spaces, generalized logic, and closed categories." Rendiconti del seminario matématico e fisico de Milano, 43, 135-166.Kopperman, R. (1981). "First order topological axioms." The Journal of Symbolic Logic, 46, 475-489.Flagg, R. (1992). "Completeness In Continuity Spaces." Canadian Mathematical Society, 13, 183-199.Flagg, R., & Kopperman, R. (1997). "Continuity spaces: Reconciling domains and metric spaces." Theoretical Computer Science, 177, 111-138.Flagg, R. (1997). "Quantales and continuity spaces." Algebra Universalis, 37, 257-276.Stubbe, I. (2005). "Categorical structures enriched in a quantaloid: orders and ideals over a base quantaloid." Applied Categorical Structures, 13(3), 235-255.Stubbe, I. (2005). "Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories." Cahiers de Topologie et Géométrie Différentielle Catégoriques, 46, 99-121.Stubbe, I. (2005). "Categorical structures enriched in a quantaloid: categories, distributors and functors." Theory Appl. Categ, 14, 1-45.Borceux, F., van de Bossche (1986). "Quantales and their sheaves." Order, 3, 61-87.Miraglia, F., & Solitro, U. (1998). "Sheaves over right sided idempotent quantales." Logic Journal of IGPL, 6(4), 545-600.Höhle, U. (1998). "GL-quantales: Q-valued sets and their singletons." Studia logica, 61, 123-148.Resende, P. (2011). "Grupoid sheaves as quantale sheaves." J. Pure Appl. Algebra, 216, 41-70.Bénabou, J. (1967). "Introduction to bicategories." Lecture Notes in Math, 47, 1-77.Mulvey, C. (1986). "J. 1986." Suppl. Rend. Circ. Mat. Palermo Ser, 2, 99-104.Hyland, J., Johnstone, P., & Pitts, A. (1980). "Tripos Theory." Mathematical Proceedings of the Cambridge Philosophical Society, 88 (2), 205-232.Pitts, A. M. (1999). "Tripos Theory in Retrospect." Electronic Notes in Theoretical Computer Science, 23, 111-127.Weiss, I. (2018). "Value semigroups, values quantales, and positivity domains." 27.Lieberman, M., Rosicky, J., & Zambrano, P. (2018). "Tameness in generalized metric structures." 22. [Preprint]. https://arxiv.org/abs/1810.02317Shulman, M. A. (2010). "Stack semantics and the comparison of material and structural set theories." [Preprint]. https://arxiv.org/abs/arXiv:1004.3802Reyes, D., & Zambrano, P. (2021). "Co-quantale valued logics." [Preprint]. https://arxiv.org/abs/arXiv:2102.06067Hofman, D., & Reis, C. (2017). "Convergence and quantale-enriched categories." [Preprint]. https://arxiv.org/abs/arXiv:1705.08671Alvim, J. G., Mendes, C. A., & Mariano, H. L. (2023). "{$Q$}-Sets and Friends: Categorical Constructions and Categorical Properties." [Preprint]. https://arxiv.org/abs/arXiv:2302.03123Alvim, J. G., Mendes, C. A., & Mariano, H. L. (2023). "{$Q$}-Sets and Friends: Regarding Singleton and Gluing Completeness." [Preprint]. https://arxiv.org/abs/arXiv:2302.03691Tenório, A. L., Mendes, C. A., & Mariano, H. L. (2022). "Introducing sheaves over commutative semicartesian quantales." [Preprint]. https://arxiv.org/abs/arXiv:2204.08351Ben-Yaacov, I., Berenstein, A., Henson, C. W., & Usvyatsov, A. (2008). "Model theory for metric structures." In Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (Eds.), Model Theory with Applications to Algebra and Analysis (Vol. 2, pp. 315–427). Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511735219.011Bell, J. (2005). "Set Theory: Boolean-Valued Models and Independence Proofs" (3rd ed.). Oxford: Oxford University Press.Schweizer, B., & Sklar, A. (1983). "Probabilistic Metric Spaces." Amsterdam: North Holland.Borceux, F. (1994). "Handbook of Categorical Algebra, Volume 3, Sheaf Theory." Cambridge: Cambridge University Press.McLarty, C. (1992). "Elementary Categories, Elementary Toposes." Oxford: Clarendon Press.Mac Lane, S., & Moerdijk, I. (1992). "Sheaves in Geometry and Logic: A First Introduction to Topos Theory." Springer.Johnstone, P. T. (2002). "Sketches of an Elephant: Topos Theory Compendium." Oxford: Oxford University Press.A. L. da Conceição Tenório, C. de Andrade Mendes, J. Goudet Alvim, H.L. Mariano. "Sheaves over quantales and Grothendieck L-topoi." Work in progress, Hugo Mariano students in IME-USP, 202X.de Andrade Mendes C., Mariano H.L. "Sheaf-like categories over semicartesian quantales and applications." PhD Thesis, Work in progress, Hugo Mariano student in IME-USP, 202X.Moncayo V. J. R., Zambrano P.H. "Constructible sets in lattice-valued models." Master Thesis, Pedro Zambrano student in UNAL (Bog), 2023.K.I. Rosenthal. "Quantales and Their Applications." Pitman Research Notes in Mathematics Series, Harlow, UK, 1990.M.P. Fourman, D.S. Scott. "Sheaves and Logic." Lectures Notes in Mathematics, Springer 753, 1979.L.M. Acosta. "Temas de teoría de retículos." Universidad Nacional De Colombia, Bogotá, Colombia, 2015.G.M. Kelly. "Basic Concepts of Enriched Category Theory." Theory and Applications of Categories, 2005.G. Gierz, K. H. Hofmann, K. K., J. Lawson, M. Mislove, D. Scott. "A Compendium of Continuous Lattices." Springer-Verlag Berlin Heidelberg, 1980.M. Goldstern, H. Judah. "The Incompleteness Phenomenon: A New Course in Mathematical Logic." A K Peters, 1998.C. C. Chang, H. J. Keisler. "Continuous Model Theory." Princeton University Press, 1966.Hausdorff F. "Grundzüge der Mengenlehre." Cambridge University Press, Veit, Leipzig, 1914.Hofmann D., Seal G., Tholen W. "Monoidal Topology: A Categorical Approach to Order, Metric and Topology." New York: Cambridge University Press, 2014.John L. Bell. "Set Theory: Boolean-valued Models and Independence Proofs." Oxford Logic Guides, Clarendon Press, volume 47, Oxford, United Kingdom, 2005.D. Scott. (1972). "Continuous lattices." Lecture Notes in Mathematics - Springer-verlag-, 274, 97-136. DOI: 10.1007/BFb0073967.José Goudet Alvim, Arthur Francisco Schwerz Cahali, Hugo Luiz Mariano. (2022). "Induced Morphisms between Heyting-valued Models." Journal of Applied Logics, 9, 5-40.nLab. (2023). "Hyperdoctrine." Recuperado de https://ncatlab.org/nlab/show/hyperdoctrine.nLab. (2023). "Karoubi envelope." Recuperado de https://ncatlab.org/nlab/show/Karoubi+envelope.Iovino, J. (1995). Stable Banach Spaces and Banach Space Structures, I: Fundamentals. En C. Raymond (Ed.), Handbook of Metric Fixed Point Theory (pp. 329-386). Taylor & Francis. DOI: 10.1201/9780429332890-10Henson, C. W., & Iovino, J. (2003). Ultraproducts in Analysis. En Editores del libro (Eds.), Analysis and Logic (pp. xi-xiv). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781107360006.002InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85026/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032492033.2023.pdf1032492033.2023.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf856738https://repositorio.unal.edu.co/bitstream/unal/85026/2/1032492033.2023.pdf96b446af427517a7b94a02ee3ad387a4MD52THUMBNAIL1032492033.2023.pdf.jpg1032492033.2023.pdf.jpgGenerated Thumbnailimage/jpeg4517https://repositorio.unal.edu.co/bitstream/unal/85026/3/1032492033.2023.pdf.jpg93b52b5fcc78aa7e4c2f2b623f8fe45aMD53unal/85026oai:repositorio.unal.edu.co:unal/850262024-08-19 23:11:32.956Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=