Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear

ilustraciones, fotografías a color, gráficas

Autores:
Coy López, Julián Andrés
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82448
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82448
https://repositorio.unal.edu.co/
Palabra clave:
Rayos gamma
Espectrometría de rayos gamma
Gamma rays
Gamma ray spectrometry
Detector Híbrido
IRM
Gel polimérico
Tasa de relajación
Hybrid detector
MRI
Polymeric Gel
Relaxation rate
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_ba2bc72f45e789840fa33d9a970d4264
oai_identifier_str oai:repositorio.unal.edu.co:unal/82448
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
dc.title.translated.eng.fl_str_mv Gamma radiation dose distribution in dosimetric gel by magnetic resonance imaging
title Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
spellingShingle Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
Rayos gamma
Espectrometría de rayos gamma
Gamma rays
Gamma ray spectrometry
Detector Híbrido
IRM
Gel polimérico
Tasa de relajación
Hybrid detector
MRI
Polymeric Gel
Relaxation rate
title_short Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
title_full Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
title_fullStr Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
title_full_unstemmed Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
title_sort Distribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
dc.creator.fl_str_mv Coy López, Julián Andrés
dc.contributor.advisor.none.fl_str_mv Agulles Pedrós, Luis
dc.contributor.author.none.fl_str_mv Coy López, Julián Andrés
dc.subject.lemb.spa.fl_str_mv Rayos gamma
Espectrometría de rayos gamma
topic Rayos gamma
Espectrometría de rayos gamma
Gamma rays
Gamma ray spectrometry
Detector Híbrido
IRM
Gel polimérico
Tasa de relajación
Hybrid detector
MRI
Polymeric Gel
Relaxation rate
dc.subject.lemb.eng.fl_str_mv Gamma rays
Gamma ray spectrometry
dc.subject.proposal.spa.fl_str_mv Detector Híbrido
IRM
Gel polimérico
Tasa de relajación
dc.subject.proposal.eng.fl_str_mv Hybrid detector
MRI
Polymeric Gel
Relaxation rate
description ilustraciones, fotografías a color, gráficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-25T15:05:52Z
dc.date.available.none.fl_str_mv 2022-10-25T15:05:52Z
dc.date.issued.none.fl_str_mv 2022-10-20
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82448
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82448
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Helber Cortés. Implementación de un Dosímetro en Gel para Verificación Dosimétrica de Tratamientos con RapidArcTM. Tesis de maestría en física médica, Universidad Nacional de Colombia, 2014.
Andrea et al. 2d dose distribution images of a hybrid low field mri-gamma detector. AIP Conference Proceedings, (1753) 080012:1–5, 2016.
Andrea Abril. MRI-gamma Detector Hybrid System. Tesis de Doctorado, Universidad Nacional de Colombia, 2017.
Pedro Dorado. Dosis de radiación. Consejo de Seguridad Nacional, SDB 0407:1–15, 2010.
C. Baldock. Polymer gel dosimetry. Institute of Physics and Engineering in Medicine, 55:1–86, 2010.
Y Deene. A basic study of some normoxic polymer gel dosimeters. Physics in Medicine and Biology, 47:3441–3463, 2002.
Andrea Espinosa. Dosimetría en gel por imágenes de resonancia magnética. Trabajo Final de Maestría en Física Médica, Bogotá, 2019.
M.G. Stabin. Radiation dosimetry in nuclear medicine. Applied Radiation and Isotopes, 50:73–87, 1999.
HS1 et al. Yoon. Initial results of simultaneous pet/mri experiments with an mri compatible silicon photomultiplier pet scanner. Journal of Nuclear Medicine, 53:608– 614, 2012.
Thomas Beyer. Mr/pet hybrid imaging for the next decade. Magnetom Flash, Siemens:19–29, 2010.
Simon Cherry. The integration of positron emission tomography with magnetic resonance imaging. Proceedings of the IEEE, 96:416–438, 2008.
Thomas Yankeelov. Simultaneous pet-mri in oncology: a solution looking for a problem? Magnetic Resonance Imaging, 30:1342–1356, 2012.
Christian Goetz. Spect low-field mri system for small-animal imaging. The Journal of Nuclear Medicine, 49:88–93, 2008.
A. Boni. A polyacrylamide gamma dosimeter. Radiation Research Society, 14:374–380, 1961.
J. Pavoni. What happens when spins meet for ionizing radiation dosimetry? American Institute of Physics, 1753:080023(1–6), 2016.
B. Farhood. Dosimetric characteristics of passag as a new polymer gel dosimeter with negligible toxicity. Radiation Physics and Chemistry, 147:91–100, 2018.
American Association of Physicists in Medicine. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. AAPM report, 100:1–6, 2010.
Scott Bagwell et al. A linearised hp -finite element framework for acousto- magnetomechanical coupling in axisymmetric mri scanners. International Journal for Numerical Methods in Engineering, 112(10):1, 2017.
Christakis Constantinides. Magnetic Resonance Imaging. Taylor and Francis Group, Boca Raton, 2014.
General Electric Healthcare. Signa explorer technical data. General Electric Company, 1:1–28, 2014.
Marinus Vlaardingerbroek. Magnetic Resonance Imaging. Springer, Berlin-Heidelberg, 2003.
Andrew Webb. Magnetic Resonance Technology. Royal Society of Chemistry, Cambridge, 2013.
Eloy Calvo. Resonancia Magnética para Técnicos. Independently Published, España, 2014.
Malcolm H. Levitt. Basics of nuclear magnetic resonance, 2008.
Carlos Rodrigues. NMR of liquid Crystal Dendrimers. Pan Stanford Publishing, Singapore, 2017.
Luis Caro. Principios básicos de resonancia nuclear magnética. Morfolia, Universidad Nacional de Colombia, 1:26–33, 1991.
Miroslava Cuperlovic. Experimental methodology. NMR Metabolomics in Cancer Research, 3:139–213, 2013.
Kumar Anil. Nmr fourier zeugmatography. Journal of Magnetic Resonance, 18:69–83, 1975.
Vadim Kuperman. Magnetic Resonance Imaging. Academic Press, San Diego, 2005.
Alfred Horowitz. MRI Physics for Radiologists. Springer Verlag, Nueva York, 1992.
William Oldendorf. Basics of Magnetic Resonance Imaging. Martinus Nijhoff Publishing, Boston, 1988.
Y Deene. Essential characteristics of polymer gel dosimeters. Journal of Physics, Conf. Ser. 3 34:34–57, 2004.
Deene et al. Y. De. Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal processing, 70:85–101, 1998.
Shankar Vallabhajosula. Molecular Imaging. Springer, Heidelberg, 2009.
Jhon Prince. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay. Journal of Nuclear Medicine, 20:162–164, 1979.
Peter F. Sharp. Practical Nuclear Medicine. Springer–Verlag,3rd edition, London, 2005.
Bianca Costa. Technetium-99m metastable radiochemistry for pharmaceutical applications: old chemistry for new products. JOURNAL OF COORDINATION CHEMISTRY, 72:1–24, 2019.
Pillai Mra et al. Sustained availability of tc-99m: Possible paths forward. Journal of Nuclear Medicine, 54(2):1, 2012.
Esam Hussein. Radiation Mechanics principles and practice. Elsevier Science, Oxford, 2007.
Kenneth Krane. Introductory Nuclear Physics. John Wiley and Sons, USA, 1988.
W. Heitler. The quantum theory of radiation. University press, Oxford, 1960.
Paula Ramos. Estudio de Rayos X de la Evolución de Cáncer de Mama en un Modelo Murino. Universidad de los Andes, monografía, Bogotá, 2019.
NIST. mass attenuation coefficients. National Institute of Standards and Technology, NIST database:1, 2022.
Nath et al. Ravinder. Dosimetry of interstitial brachytherapy sources: Recomendations of the aapm radiation therapy commitee task group 43. Medical Physics, 22:210–221, 1995.
Cheng B et al. Saw. Review of aapm task group 43 reccomendations of interstitial brachytherapy sources dosimetry. Medical Dosimetry, 23:259–263, 1998.
John Bevelacqua. Contemporary Health Physics. Wiley-VCh Verlag, Weinheim, 2009.
AAPM task group. Specification of Brachytherapy source strength. American Association of Physicist in Medicine, New York, 1987.
John Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, 1997.
Bhisham Gupta. Statistics and probability with applications for engineers and scientists using minitab, R and JMP. John Wiley and Sons, USA, 2020.
Roger Sapsford. Data Collection and Analysis. SAGE publications, London, 2006.
Ciro Ramirez. Estadística y muestreo. Ecoe ediciones, Bogotá, 2008.
Alvaro Tucci. Radiodiagnostico y radioterapia. Lulu, United Kingdom, 2012.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 78 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Física Médica
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82448/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82448/2/1049640054.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82448/3/1049640054.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
dde5cf3879b619e84b73ac6f6769a197
1408ae8d122f81cc44fe6c501645b434
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089363552731136
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agulles Pedrós, Luis55865ee69ecbd0586a81c0456cb2d0e4Coy López, Julián Andrése7b47fc682e6a1b8b39a28e7ee24a1ed2022-10-25T15:05:52Z2022-10-25T15:05:52Z2022-10-20https://repositorio.unal.edu.co/handle/unal/82448Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a color, gráficasEn el presente proyecto se estima la dosis impartida por radiación ionizante en el gel dosimétrico con formulación MAGIC. Este ha sido comúnmente utilizado para la medición de dosis de radiación superiores a 1 cGy por medio de técnicas de regresión entre los valores de tasa de relajación y dosis. El gel se caracteriza por estar compuesto de ácido metacrilico, usado en fantomas equivalentes a tejido blando. El radioisotopo 99mTc se utiliza para irradiar y así calibrar las muestras del gel con diferentes valores de dosis en el rango de dosis bajas (µSv-mSv). Se propone realizar regresiones lineales entre las mediciones teniendo en cuenta la desviación estándar en la medida y el valor de los ajustes con el (χ2/DoF), tal que se obtenga una mejor evaluación del ajuste. Se presenta un método que selecciona las zonas de las muestras del gel que ofrecen mayor fiabilidad en los datos y mejora la correlación entre dosis nominal y tasa de relajación. A través del método por píxel se obtiene 60 % de probabilidad de que los resultados medidos coincidan con el modelo propuesto, la sensibilidad del gel es de (1.2±0.4)×10−3 [ms−1 mGy−1 ], con incertidumbre relativa de 33%. Los resultados conseguidos permiten establecer que el gel polimérico MAGIC puede calibrarse con buena correlación a través de una regresión lineal para valores de dosis superiores a 0.8 mGy. No obstante, en el límite de dosis bajas el error sistemático de la estabilidad térmica del gel puede afectar su precisión y desempeño. (Texto tomado de la fuente)In this project, the imparted dose by ionizing radiation is measured in the dosimetric gel of MAGIC formulation. It has been widely used for measurement of radiation doses greater than 1 cGy through regression techniques between the measured values of relaxation rate and dose. The gel is composed of methacrylic acid, this is the main component in equivalent soft tissue phantoms. The 99mTc radioisotope is used to irradiate and calibrate the gel samples with different dose values in the low dose range (Sv − mSv). It is proposed to carry out linear regressions of measurements, taking into account the standard deviations and the (χ2/DoF) values of the adjustments, such that a better evaluation of the adjustment is obtained. A method is shown to select the regions of the samples that offer greater confidence in the data and let us improve the correlation between the nominal dose and the relaxation rate. Through the pixel method, a probability of 60 % between measured values and the proposed method is found, the gel sensitivity is (1.20.4) × 10−3 [ms−1 mGy−1 ], with a relative uncertainty of 33 %. The results allow establishing that the MAGIC polymeric gel can be calibrated with good correlation for dose values greater than 0.8 mGy. However, in the low dose limit, the systematic error in the thermal stability of the gel can affect its precision and performance.MaestríaMagíster en Física Médicaix, 78 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Física MédicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáDistribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclearGamma radiation dose distribution in dosimetric gel by magnetic resonance imagingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaHelber Cortés. Implementación de un Dosímetro en Gel para Verificación Dosimétrica de Tratamientos con RapidArcTM. Tesis de maestría en física médica, Universidad Nacional de Colombia, 2014.Andrea et al. 2d dose distribution images of a hybrid low field mri-gamma detector. AIP Conference Proceedings, (1753) 080012:1–5, 2016.Andrea Abril. MRI-gamma Detector Hybrid System. Tesis de Doctorado, Universidad Nacional de Colombia, 2017.Pedro Dorado. Dosis de radiación. Consejo de Seguridad Nacional, SDB 0407:1–15, 2010.C. Baldock. Polymer gel dosimetry. Institute of Physics and Engineering in Medicine, 55:1–86, 2010.Y Deene. A basic study of some normoxic polymer gel dosimeters. Physics in Medicine and Biology, 47:3441–3463, 2002.Andrea Espinosa. Dosimetría en gel por imágenes de resonancia magnética. Trabajo Final de Maestría en Física Médica, Bogotá, 2019.M.G. Stabin. Radiation dosimetry in nuclear medicine. Applied Radiation and Isotopes, 50:73–87, 1999.HS1 et al. Yoon. Initial results of simultaneous pet/mri experiments with an mri compatible silicon photomultiplier pet scanner. Journal of Nuclear Medicine, 53:608– 614, 2012.Thomas Beyer. Mr/pet hybrid imaging for the next decade. Magnetom Flash, Siemens:19–29, 2010.Simon Cherry. The integration of positron emission tomography with magnetic resonance imaging. Proceedings of the IEEE, 96:416–438, 2008.Thomas Yankeelov. Simultaneous pet-mri in oncology: a solution looking for a problem? Magnetic Resonance Imaging, 30:1342–1356, 2012.Christian Goetz. Spect low-field mri system for small-animal imaging. The Journal of Nuclear Medicine, 49:88–93, 2008.A. Boni. A polyacrylamide gamma dosimeter. Radiation Research Society, 14:374–380, 1961.J. Pavoni. What happens when spins meet for ionizing radiation dosimetry? American Institute of Physics, 1753:080023(1–6), 2016.B. Farhood. Dosimetric characteristics of passag as a new polymer gel dosimeter with negligible toxicity. Radiation Physics and Chemistry, 147:91–100, 2018.American Association of Physicists in Medicine. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. AAPM report, 100:1–6, 2010.Scott Bagwell et al. A linearised hp -finite element framework for acousto- magnetomechanical coupling in axisymmetric mri scanners. International Journal for Numerical Methods in Engineering, 112(10):1, 2017.Christakis Constantinides. Magnetic Resonance Imaging. Taylor and Francis Group, Boca Raton, 2014.General Electric Healthcare. Signa explorer technical data. General Electric Company, 1:1–28, 2014.Marinus Vlaardingerbroek. Magnetic Resonance Imaging. Springer, Berlin-Heidelberg, 2003.Andrew Webb. Magnetic Resonance Technology. Royal Society of Chemistry, Cambridge, 2013.Eloy Calvo. Resonancia Magnética para Técnicos. Independently Published, España, 2014.Malcolm H. Levitt. Basics of nuclear magnetic resonance, 2008.Carlos Rodrigues. NMR of liquid Crystal Dendrimers. Pan Stanford Publishing, Singapore, 2017.Luis Caro. Principios básicos de resonancia nuclear magnética. Morfolia, Universidad Nacional de Colombia, 1:26–33, 1991.Miroslava Cuperlovic. Experimental methodology. NMR Metabolomics in Cancer Research, 3:139–213, 2013.Kumar Anil. Nmr fourier zeugmatography. Journal of Magnetic Resonance, 18:69–83, 1975.Vadim Kuperman. Magnetic Resonance Imaging. Academic Press, San Diego, 2005.Alfred Horowitz. MRI Physics for Radiologists. Springer Verlag, Nueva York, 1992.William Oldendorf. Basics of Magnetic Resonance Imaging. Martinus Nijhoff Publishing, Boston, 1988.Y Deene. Essential characteristics of polymer gel dosimeters. Journal of Physics, Conf. Ser. 3 34:34–57, 2004.Deene et al. Y. De. Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal processing, 70:85–101, 1998.Shankar Vallabhajosula. Molecular Imaging. Springer, Heidelberg, 2009.Jhon Prince. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay. Journal of Nuclear Medicine, 20:162–164, 1979.Peter F. Sharp. Practical Nuclear Medicine. Springer–Verlag,3rd edition, London, 2005.Bianca Costa. Technetium-99m metastable radiochemistry for pharmaceutical applications: old chemistry for new products. JOURNAL OF COORDINATION CHEMISTRY, 72:1–24, 2019.Pillai Mra et al. Sustained availability of tc-99m: Possible paths forward. Journal of Nuclear Medicine, 54(2):1, 2012.Esam Hussein. Radiation Mechanics principles and practice. Elsevier Science, Oxford, 2007.Kenneth Krane. Introductory Nuclear Physics. John Wiley and Sons, USA, 1988.W. Heitler. The quantum theory of radiation. University press, Oxford, 1960.Paula Ramos. Estudio de Rayos X de la Evolución de Cáncer de Mama en un Modelo Murino. Universidad de los Andes, monografía, Bogotá, 2019.NIST. mass attenuation coefficients. National Institute of Standards and Technology, NIST database:1, 2022.Nath et al. Ravinder. Dosimetry of interstitial brachytherapy sources: Recomendations of the aapm radiation therapy commitee task group 43. Medical Physics, 22:210–221, 1995.Cheng B et al. Saw. Review of aapm task group 43 reccomendations of interstitial brachytherapy sources dosimetry. Medical Dosimetry, 23:259–263, 1998.John Bevelacqua. Contemporary Health Physics. Wiley-VCh Verlag, Weinheim, 2009.AAPM task group. Specification of Brachytherapy source strength. American Association of Physicist in Medicine, New York, 1987.John Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, 1997.Bhisham Gupta. Statistics and probability with applications for engineers and scientists using minitab, R and JMP. John Wiley and Sons, USA, 2020.Roger Sapsford. Data Collection and Analysis. SAGE publications, London, 2006.Ciro Ramirez. Estadística y muestreo. Ecoe ediciones, Bogotá, 2008.Alvaro Tucci. Radiodiagnostico y radioterapia. Lulu, United Kingdom, 2012.Rayos gammaEspectrometría de rayos gammaGamma raysGamma ray spectrometryDetector HíbridoIRMGel poliméricoTasa de relajaciónHybrid detectorMRIPolymeric GelRelaxation rateEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82448/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1049640054.2022.pdf1049640054.2022.pdfTesis de Maestría en Física Médicaapplication/pdf14595537https://repositorio.unal.edu.co/bitstream/unal/82448/2/1049640054.2022.pdfdde5cf3879b619e84b73ac6f6769a197MD52THUMBNAIL1049640054.2022.pdf.jpg1049640054.2022.pdf.jpgGenerated Thumbnailimage/jpeg3995https://repositorio.unal.edu.co/bitstream/unal/82448/3/1049640054.2022.pdf.jpg1408ae8d122f81cc44fe6c501645b434MD53unal/82448oai:repositorio.unal.edu.co:unal/824482023-08-10 23:03:40.881Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=