Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades

ilustraciones, diagramas, tablas

Autores:
Cataño Ospina, Jaider Andrés
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80675
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80675
https://repositorio.unal.edu.co/
Palabra clave:
330 - Economía::332 - Economía financiera
330 - Economía::339 - Macroeconomía y temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Estadística
Time-series analysis
Análisis de series de tiempo
Series de tiempo
Transmisión
Volatilidad
Causalidad
Time series
Transmission
Causality
Volatility
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_ba1a250afa17b8e76b2d60ab7f3dbbd3
oai_identifier_str oai:repositorio.unal.edu.co:unal/80675
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
dc.title.translated.eng.fl_str_mv Transfer models between time series with positive values and their application to the transmission of volatilities
title Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
spellingShingle Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
330 - Economía::332 - Economía financiera
330 - Economía::339 - Macroeconomía y temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Estadística
Time-series analysis
Análisis de series de tiempo
Series de tiempo
Transmisión
Volatilidad
Causalidad
Time series
Transmission
Causality
Volatility
title_short Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
title_full Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
title_fullStr Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
title_full_unstemmed Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
title_sort Modelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidades
dc.creator.fl_str_mv Cataño Ospina, Jaider Andrés
dc.contributor.advisor.none.fl_str_mv Giraldo Gómez, Norman Diego
dc.contributor.author.none.fl_str_mv Cataño Ospina, Jaider Andrés
dc.subject.ddc.spa.fl_str_mv 330 - Economía::332 - Economía financiera
330 - Economía::339 - Macroeconomía y temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 330 - Economía::332 - Economía financiera
330 - Economía::339 - Macroeconomía y temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Estadística
Time-series analysis
Análisis de series de tiempo
Series de tiempo
Transmisión
Volatilidad
Causalidad
Time series
Transmission
Causality
Volatility
dc.subject.lem.none.fl_str_mv Estadística
dc.subject.lemb.none.fl_str_mv Time-series analysis
Análisis de series de tiempo
dc.subject.proposal.spa.fl_str_mv Series de tiempo
Transmisión
Volatilidad
Causalidad
dc.subject.proposal.eng.fl_str_mv Time series
Transmission
Causality
dc.subject.proposal.fra.fl_str_mv Volatility
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-10T15:30:13Z
dc.date.available.none.fl_str_mv 2021-11-10T15:30:13Z
dc.date.issued.none.fl_str_mv 2021-11-09
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80675
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80675
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agresti, Alan. 2015. Foundations of linear and generalized linear models. John Wiley & Sons.
Akaike, Hirotugu. 1974. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716–723.
Alves, Mariane B, Gamerman, Dani, & Ferreira, Marco A. 2010. Transfer functions in dynamic generalized linear models. Statistical Modelling, 10(1), 3–40.
Andel, Martin. 1991. Non-negative linear processes. Applications of Mathematics, Vol. 36(4), 277–283.
Ardia, David, & Hoogerheide, Lennart F. 2010. Bayesian estimation of the garch (1, 1) model with student-t innovations. The R Journal, 2(2), 41–47.
Ardia, David, et al. 2008. Financial risk management with Bayesian estimation of GARCH models. Vol. 18. Springer
Baaske, Markus. 2017. Multivariate GARCH models: a survey. Journal of applied econometrics.Estimation. R package version 0.16-6. https://CRAN.R--project.org/package=qle.
Balli, Faruk, Balli, Hatice O, Louis, Rosmy Jean, & Vo, Tuan Kiet. 2015. The transmission of market shocks and bilateral linkages: Evidence from emerging economies. International Review of Financial Analysis, 42, 349–357.
Bauwens, L., Laurent, S., & Rombouts, J. V. 2006. Multivariate GARCH models: a survey. Journal of applied econometrics, 21(1), 79–109.
Beirne, J., G. M. Caporale M. Schulze-Ghattas, & Spagnolo, N. 2013. Volatility Spillovers and Contagion from Mature to Emerging Stock Markets. Review of International Economics, 21(5), 1060–1075.
Benjamin, M. A., Rigby, R. A., & Stasinopoulos, D. M. 2003. Generalized autoregressive moving average models. Journal of the American Statistical association, 98(461), 214– 223.
BoIlerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 69, 307–327.
Borda Ángel, Juan Pablo, et al. Comparación de metodologías de valor en riesgo (VaR), sobre un portafolio de activos financieros. B.S. thesis, Universidad de La Sabana.
Boubaker, Heni, & Raza, Syed Ali. 2016. On the dynamic dependence and asymmetric comovement between the US and Central and Eastern European transition markets. Physica A: Statistical Mechanics and its Applications, 459, 9–23.
Bougerol, Ph., & Picard, N. 1992. Stationarity of Garch processes and of some nonnegative time series. Journal of econometrics, 52(1-2), 115–127.
Clements, Hurn., & Volkov, V. V. 2015. Volatility transmission in global financial markets. Journal of Empirical Finance, 32, 3–18.
Cox, David Roxbee, & Snell, E Joyce. 2018. Analysis of binary data. Routledge.
Czado, C. 2018. Lecture Slides on GLM. Lehrstuhl für Mathematische Statistik. Fakultät für Mathematik Technische Universität München.
Debaly, M. Z., & Truquet, L. 2019. Iterations of dependent random maps and exogeneity in nonlinear dynamics. arXiv preprint arXiv:1908.00845.
Demirhan, H. 2020. dLagM: An R package for distributed lag models and ARDL bounds testing. 15(2), https://doi.org/10.1371/journal.pone.0228812.
Dickey, David A, & Fuller, Wayne A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427–431.
Emenike, K. O. 2014. Volatility transmission between stock and foreign exchange markets: Evidence from Nigeria. Journal of Banking and Financial Economics, 1 (1), 59–72.
Engle, R. F., Ito, T., & Lin, W. L. 1988. Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. (No. w2609, National Bureau of Economic Research.
Campani, C. H., & Durães, A. G. D. S. 2018. Forecasting USD-BRL Currency Rate Volatility using Realized and Implied Volatilities Data. Estudos Econômicos (São Paulo), 48(4), 687–719.
Clements, Hurn., & Volkov, V. V. 2015. Volatility transmission in global financial markets. Journal of Empirical Finance, 32, 3–18.
Fleming, Jeff, Kirby, Chris, & Ostdiek, Barbara. 2008. The specification of GARCH models with stochastic covariates. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 28(10), 911–934.
Fleming, J., Kirby C. Ostdiek B. 2002. No Contagion, Only Interdependence: Measuring Stock Market Comovements. The Journal of Finance, 57(5), 2223–2261.
Francq, Christian, & Zakoian, Jean-Michel. 2019. GARCH models: structure, statistical inference and financial applications. John Wiley & Sons.
Francq, C. Thieu, L. Q. 2019. QML inference for volatility models with covariates. Econometric Theory, 35(1), 37–72.
Galeano-González, David Andrés. 2015. A transfer function model for volatilities between water inflows and spot prices for Colombian electricity market. Master thesis, Universidad Nacional de Colombia – Sede Medellín, http://bdigital.unal.edu.co/49539/.
Gamba-Santamaria, Santiago, Gomez-Gonzalez, Jose Eduardo, Hurtado-Guarin, Jorge Luis, & Melo-Velandia, Luis Fernando. 2017. Stock market volatility spillovers: Evidence for Latin America. Finance Research Letters, 20, 207–216.
Garzón, Miller J Ariza, & Lozano, Javier B Cadena. 2014. Identificación de relaciones entre variables de política económica en Colombia a través de funciones de correlación cruzada. Cuadernos de Administración, 30(51), 36–48.
Ghalanos, A. 2020. Introduction to the rugarch package. Version 1.3-8, Technical report v. Available at http://cran. r–project. org/web/packages/rugarch.
Ghalanos, Alexios, Ghalanos, Maintainer Alexios, & Rcpp, LinkingTo. 2019. Package rugarch.
Giraitis, Liudas, Kokoszka, Piotr, Leipus, Remigijus, & Teyssiére, Gilles. 2003. Rescaled variance and related tests for long memory in volatility and levels. Journal of econometrics, 112(2), 265–294.
Gomes, M., & Chaibi, A. 2014. Volatility Spillovers Between Oil Prices And Stock Returns: A Focus On Frontier Markets. Journal of Applied Business Research (JABR), 30(2), 509–526.
Granger, Clive WJ. 1969. Investigating causal relations by econometric models and crossspectral methods. Econometrica: journal of the Econometric Society, 424–438.
Guesmi, Khaled, & Goutte, Stephane. 2020. Risk Factors and Contagion in Commodity Markets and Stocks Markets. World Scientific.
Han, H. 2007. GARCH (1, 1) Process with Persistent Covariates. Citeseer
Han, H., & Kristensen, D. 2015. Semiparametric multiplicative GARCH-X model: Adopting economic variables to explain volatility.Toulouse, France: Toulouse School of Economics.
Hassler, U., & Wolters, J. 2006. Autoregressive distributed lag models and cointegration. In Modern Econometric Analysis. Heidelberg: Springer, Berlin.
Hastie, T.J., & Tibshirani, R. 1990. Generalized Additive Models. London: hapman and Hall.
Judge, G. G.and Hill, R. C.and Griffiths-W.and Lutkepohl H., & Lee, T. C. 1982. Introduction to the Theory and Practice of Econometrics. John Wiley and Sons.
Kanas, Angelos. 1998. Volatility spillovers across equity markets: European evidence. Applied financial economics, 8(3), 245–256.
Kiviaho, Jarno, Nikkinen, Jussi, Piljak, Vanja, & Rothovius, Timo. 2014. The co-movement dynamics of European frontier stock markets. European Financial Management, 20(3), 574–595.
Koutmos, Gregory, & Booth, G Geoffrey. 1995. Asymmetric volatility transmission in international stock markets. Journal of international Money and Finance, 14(6), 747–762.
Kwiatkowski, Denis, Phillips, Peter CB, Schmidt, Peter, & Shin, Yongcheol. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54(1-3), 159–178.
Le Quyen, Thieu. 2016. Infèrence de modèles conditionnellement hètèroscèdastiques avec variables exogènes [math.ST]. Ph.D. thesis.
Li, W.K. 1994. Time Series Models Based on Generalized Linear Models: Some Further Results. Biometrics, Vol. 50, No. 2, 506–511.
Lin, W. L., Engle, R. F., & Ito, T. 1994. Do bulls and bears move across borders? International transmission of stock returns and volatility. Review of financial studies, 7(3), 507–538.
Lo, Andrew W. 1991. Long-term memory in stock market prices. Econometrica: Journal of the Econometric Society, 1279–1313.
Longerstaey, Jacques, & Spencer, Martin. 1996. Riskmetricstm: technical document. Morgan Guaranty Trust Company of New York: New York, 51, 54.
Lopez, R. 2015. Do stylized facts of equity-based volatility indices apply to fixed-income volatility indices? Evidence from the US Treasury market. International Review of Financial Analysis, 42, 292–303.
Lunn, DJ., Thomas, A., Best, N., & D, Spiegelhalter. 1972. Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384.
McCullagh, P., & Nelder, J.A. 1989. Generalized Linear Models. London: Chapman and Hall.
Nana, G. A. N., Korn, R., & Erlwein-Sayer, C. 2013. GARCH-extended models: theoretical properties and applications. arXiv preprint arXiv:1307.6685.
Newey, Whitney K, & West, Kenneth D. 1987. Hypothesis testing with efficient method of moments estimation. International Economic Review, 777–787.
Pesaran, M. H., & Pick, A. 2007. Econometric issues in the analysis of contagion. Journal of Economic Dynamics and Control, 31(4), 1245–1277.
Phillips, Peter CB, & Perron, Pierre. 1988. Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.
Regino, A. 2006. Estimación y Comparación del Efecto de Asimetría en Modelos GJR, con Aplicaciones. Tesis de Maestría en Estadística. Escuela de Estadística. M.Phil. thesis, Universidad Nacional de Colombia-Sede Medellín.
Rocha, A. V., & Cribari-Neto, F. 2009. Beta autoregressive moving average models. Test, 18(3), 529.
Rodríguez Castellanos, Arturo, Urionabarrenetxea Zabalandikoetxea, Sara, & San Martín Albizuri, Nerea. 2008. Crisis financieras y globalización: un análisis de sus factores determinantes. Problemas del desarrollo, 39(153), 159–183.
Ruppert, D., Wand M. P., & Carroll, R. J. 2003. Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University: 12.
Serra, T. 2011. Volatility spillovers between food and energy markets: a semiparametric approach. Energy Economics, 33(6), 1155–1164.
Shaikh, Imlak. 2021. Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 1–52.
Shepard, N. 1995. Generalized linear autoregressions Economics Working Papers. University of Oxford: Nuffield College.
Soriano, P., & Climent, F. 2006. Volatility transmission models: a survey. Revista de economfinanciera, 10), 32–81.
Straumann, D., & Mikosch, T. 2006. Quasi-Maximum-Likelihood Estimation in Conditionally Heteroscedastic Time Series: A Stochastic Recurrence Equations Approach. The Annals of Statistics, Vol. 34, No. 5, 2449–2495.
Subba Rao, S. 2015. A course in Time Series Analysis. En https://www.stat.tamu.edu/ ~suhasini/teaching673/time_series.pdf.
Tsai, H., & Chan, K. S. 2007. A Note on Non-Negative Arma Processes. Journal of Time Series Analysis, 28(3), 350–360.
Tsay, Ruey S. 2005. Analysis of financial time series. John Wiley and Sons.
Wood, S.N. 2017. Generalized Additive Models: An Introduction with R. (2nd edition). Chapman and Hall/CRC.
Wuertz, Diethelm, Setz, Tobias, Chalabi, Yohan, Boudt, Chris, Chausse, Pierre, Miklovac, Michal, Setz, Maintainer Tobias, & RUnit, Suggests. 2013. Package fGarch. Tech. rept. Technical report, working paper/manual, 09.11. 2009. URL https://cran.r-project.org/.
Zanobetti, A., Wand, M. P., Schwartz, J., & Ryan, L. M. 2000. Generalized additive distributed lag models: quantifying mortality displacement. Biostatistics, 1(3), 279–292.
Zeger, Scott L., & Qaqish, Bahjat. 1988. Markov Regression Models for Time Series: A Quasi-Likelihood Approach. Biometrics, 44(4), 1019–1031.
McFadden, Daniel. 1974. Conditional Logit Analysis of Qualitative Choice Behavior" in P. Zarembka Eds. Frontiers in Econometrics, New York Acedemic press.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 66 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.department.spa.fl_str_mv Escuela de estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80675/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80675/2/1036636839.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80675/3/1036636839.2021.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
5288c91f94465de59a99ad58de55919d
f5590045c6c9ac8a12c25f402a1a3cf8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090180222517248
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Gómez, Norman Diego1fe8759b9fc1218bec22a4b4a06a0ff7Cataño Ospina, Jaider Andrés375824927c7c3008b87853e4cd78c3d92021-11-10T15:30:13Z2021-11-10T15:30:13Z2021-11-09https://repositorio.unal.edu.co/handle/unal/80675Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasSe exponen diferentes modelos de transferencia entre series de tiempo con valores positivos, el problema principal que aborda este trabajo es la revisión de modelos para transferencia de volatilidades unidireccionales GARCH-X, GLM-GAMMA, G-ARMA y ARDL, para luego con cada modelo realizar dos aplicaciones sobre transmisión de volatilidades, la primera aplicación es sobre la influencia de las volatilidades del precio en dólares del barril de referencia WTI en las del COLCAP y la otra aplicación de las volatilidades de los índices bursátiles pertenecientes al grupo que conforma el Mercado Integrado Latinoamericano (MILA) sobre las del COLCAP. Por último, se realizó un análisis comparativo de los resultados obtenidos, con el fin de determinar cuál modelo captura mejor el efecto de transmisión. (Texto tomado de la fuente)In this thesis different transfer models between time series with positive values are studied. The main problem is the review of unidireccional models for volatility transfer as the GARCH-X, GLM-GAMMA, G-ARMA and ARDL models. Then, with each model, we analyze two applications on the transmission of volatilities, the first application is on the influence of the volatilities of the dollar price of the WTI reference barrel on those of the COLCAP and the other application of the volatilities of the stock indices belonging to the group that makes up the Latin American Integrated Market (MILA) over those of COLCAP. Finally, a comparative analysis of the results obtained is carried out, in order to determine which model best captures the transmission effect.MaestríamaestríaMétodos Estadísticos en Finanzas y ActuariaÁrea Curricular Estadísticaxv, 66 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - EstadísticaEscuela de estadísticaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín330 - Economía::332 - Economía financiera330 - Economía::339 - Macroeconomía y temas relacionados510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasEstadísticaTime-series analysisAnálisis de series de tiempoSeries de tiempoTransmisiónVolatilidadCausalidadTime seriesTransmissionCausalityVolatilityModelos de transferencia entre series de tiempo con valores positivos y aplicación a la transmisión de volatilidadesTransfer models between time series with positive values and their application to the transmission of volatilitiesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgresti, Alan. 2015. Foundations of linear and generalized linear models. John Wiley & Sons.Akaike, Hirotugu. 1974. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716–723.Alves, Mariane B, Gamerman, Dani, & Ferreira, Marco A. 2010. Transfer functions in dynamic generalized linear models. Statistical Modelling, 10(1), 3–40.Andel, Martin. 1991. Non-negative linear processes. Applications of Mathematics, Vol. 36(4), 277–283.Ardia, David, & Hoogerheide, Lennart F. 2010. Bayesian estimation of the garch (1, 1) model with student-t innovations. The R Journal, 2(2), 41–47.Ardia, David, et al. 2008. Financial risk management with Bayesian estimation of GARCH models. Vol. 18. SpringerBaaske, Markus. 2017. Multivariate GARCH models: a survey. Journal of applied econometrics.Estimation. R package version 0.16-6. https://CRAN.R--project.org/package=qle.Balli, Faruk, Balli, Hatice O, Louis, Rosmy Jean, & Vo, Tuan Kiet. 2015. The transmission of market shocks and bilateral linkages: Evidence from emerging economies. International Review of Financial Analysis, 42, 349–357.Bauwens, L., Laurent, S., & Rombouts, J. V. 2006. Multivariate GARCH models: a survey. Journal of applied econometrics, 21(1), 79–109.Beirne, J., G. M. Caporale M. Schulze-Ghattas, & Spagnolo, N. 2013. Volatility Spillovers and Contagion from Mature to Emerging Stock Markets. Review of International Economics, 21(5), 1060–1075.Benjamin, M. A., Rigby, R. A., & Stasinopoulos, D. M. 2003. Generalized autoregressive moving average models. Journal of the American Statistical association, 98(461), 214– 223.BoIlerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 69, 307–327.Borda Ángel, Juan Pablo, et al. Comparación de metodologías de valor en riesgo (VaR), sobre un portafolio de activos financieros. B.S. thesis, Universidad de La Sabana.Boubaker, Heni, & Raza, Syed Ali. 2016. On the dynamic dependence and asymmetric comovement between the US and Central and Eastern European transition markets. Physica A: Statistical Mechanics and its Applications, 459, 9–23.Bougerol, Ph., & Picard, N. 1992. Stationarity of Garch processes and of some nonnegative time series. Journal of econometrics, 52(1-2), 115–127.Clements, Hurn., & Volkov, V. V. 2015. Volatility transmission in global financial markets. Journal of Empirical Finance, 32, 3–18.Cox, David Roxbee, & Snell, E Joyce. 2018. Analysis of binary data. Routledge.Czado, C. 2018. Lecture Slides on GLM. Lehrstuhl für Mathematische Statistik. Fakultät für Mathematik Technische Universität München.Debaly, M. Z., & Truquet, L. 2019. Iterations of dependent random maps and exogeneity in nonlinear dynamics. arXiv preprint arXiv:1908.00845.Demirhan, H. 2020. dLagM: An R package for distributed lag models and ARDL bounds testing. 15(2), https://doi.org/10.1371/journal.pone.0228812.Dickey, David A, & Fuller, Wayne A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427–431.Emenike, K. O. 2014. Volatility transmission between stock and foreign exchange markets: Evidence from Nigeria. Journal of Banking and Financial Economics, 1 (1), 59–72.Engle, R. F., Ito, T., & Lin, W. L. 1988. Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. (No. w2609, National Bureau of Economic Research.Campani, C. H., & Durães, A. G. D. S. 2018. Forecasting USD-BRL Currency Rate Volatility using Realized and Implied Volatilities Data. Estudos Econômicos (São Paulo), 48(4), 687–719.Clements, Hurn., & Volkov, V. V. 2015. Volatility transmission in global financial markets. Journal of Empirical Finance, 32, 3–18.Fleming, Jeff, Kirby, Chris, & Ostdiek, Barbara. 2008. The specification of GARCH models with stochastic covariates. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 28(10), 911–934.Fleming, J., Kirby C. Ostdiek B. 2002. No Contagion, Only Interdependence: Measuring Stock Market Comovements. The Journal of Finance, 57(5), 2223–2261.Francq, Christian, & Zakoian, Jean-Michel. 2019. GARCH models: structure, statistical inference and financial applications. John Wiley & Sons.Francq, C. Thieu, L. Q. 2019. QML inference for volatility models with covariates. Econometric Theory, 35(1), 37–72.Galeano-González, David Andrés. 2015. A transfer function model for volatilities between water inflows and spot prices for Colombian electricity market. Master thesis, Universidad Nacional de Colombia – Sede Medellín, http://bdigital.unal.edu.co/49539/.Gamba-Santamaria, Santiago, Gomez-Gonzalez, Jose Eduardo, Hurtado-Guarin, Jorge Luis, & Melo-Velandia, Luis Fernando. 2017. Stock market volatility spillovers: Evidence for Latin America. Finance Research Letters, 20, 207–216.Garzón, Miller J Ariza, & Lozano, Javier B Cadena. 2014. Identificación de relaciones entre variables de política económica en Colombia a través de funciones de correlación cruzada. Cuadernos de Administración, 30(51), 36–48.Ghalanos, A. 2020. Introduction to the rugarch package. Version 1.3-8, Technical report v. Available at http://cran. r–project. org/web/packages/rugarch.Ghalanos, Alexios, Ghalanos, Maintainer Alexios, & Rcpp, LinkingTo. 2019. Package rugarch.Giraitis, Liudas, Kokoszka, Piotr, Leipus, Remigijus, & Teyssiére, Gilles. 2003. Rescaled variance and related tests for long memory in volatility and levels. Journal of econometrics, 112(2), 265–294.Gomes, M., & Chaibi, A. 2014. Volatility Spillovers Between Oil Prices And Stock Returns: A Focus On Frontier Markets. Journal of Applied Business Research (JABR), 30(2), 509–526.Granger, Clive WJ. 1969. Investigating causal relations by econometric models and crossspectral methods. Econometrica: journal of the Econometric Society, 424–438.Guesmi, Khaled, & Goutte, Stephane. 2020. Risk Factors and Contagion in Commodity Markets and Stocks Markets. World Scientific.Han, H. 2007. GARCH (1, 1) Process with Persistent Covariates. CiteseerHan, H., & Kristensen, D. 2015. Semiparametric multiplicative GARCH-X model: Adopting economic variables to explain volatility.Toulouse, France: Toulouse School of Economics.Hassler, U., & Wolters, J. 2006. Autoregressive distributed lag models and cointegration. In Modern Econometric Analysis. Heidelberg: Springer, Berlin.Hastie, T.J., & Tibshirani, R. 1990. Generalized Additive Models. London: hapman and Hall.Judge, G. G.and Hill, R. C.and Griffiths-W.and Lutkepohl H., & Lee, T. C. 1982. Introduction to the Theory and Practice of Econometrics. John Wiley and Sons.Kanas, Angelos. 1998. Volatility spillovers across equity markets: European evidence. Applied financial economics, 8(3), 245–256.Kiviaho, Jarno, Nikkinen, Jussi, Piljak, Vanja, & Rothovius, Timo. 2014. The co-movement dynamics of European frontier stock markets. European Financial Management, 20(3), 574–595.Koutmos, Gregory, & Booth, G Geoffrey. 1995. Asymmetric volatility transmission in international stock markets. Journal of international Money and Finance, 14(6), 747–762.Kwiatkowski, Denis, Phillips, Peter CB, Schmidt, Peter, & Shin, Yongcheol. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54(1-3), 159–178.Le Quyen, Thieu. 2016. Infèrence de modèles conditionnellement hètèroscèdastiques avec variables exogènes [math.ST]. Ph.D. thesis.Li, W.K. 1994. Time Series Models Based on Generalized Linear Models: Some Further Results. Biometrics, Vol. 50, No. 2, 506–511.Lin, W. L., Engle, R. F., & Ito, T. 1994. Do bulls and bears move across borders? International transmission of stock returns and volatility. Review of financial studies, 7(3), 507–538.Lo, Andrew W. 1991. Long-term memory in stock market prices. Econometrica: Journal of the Econometric Society, 1279–1313.Longerstaey, Jacques, & Spencer, Martin. 1996. Riskmetricstm: technical document. Morgan Guaranty Trust Company of New York: New York, 51, 54.Lopez, R. 2015. Do stylized facts of equity-based volatility indices apply to fixed-income volatility indices? Evidence from the US Treasury market. International Review of Financial Analysis, 42, 292–303.Lunn, DJ., Thomas, A., Best, N., & D, Spiegelhalter. 1972. Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384.McCullagh, P., & Nelder, J.A. 1989. Generalized Linear Models. London: Chapman and Hall.Nana, G. A. N., Korn, R., & Erlwein-Sayer, C. 2013. GARCH-extended models: theoretical properties and applications. arXiv preprint arXiv:1307.6685.Newey, Whitney K, & West, Kenneth D. 1987. Hypothesis testing with efficient method of moments estimation. International Economic Review, 777–787.Pesaran, M. H., & Pick, A. 2007. Econometric issues in the analysis of contagion. Journal of Economic Dynamics and Control, 31(4), 1245–1277.Phillips, Peter CB, & Perron, Pierre. 1988. Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.Regino, A. 2006. Estimación y Comparación del Efecto de Asimetría en Modelos GJR, con Aplicaciones. Tesis de Maestría en Estadística. Escuela de Estadística. M.Phil. thesis, Universidad Nacional de Colombia-Sede Medellín.Rocha, A. V., & Cribari-Neto, F. 2009. Beta autoregressive moving average models. Test, 18(3), 529.Rodríguez Castellanos, Arturo, Urionabarrenetxea Zabalandikoetxea, Sara, & San Martín Albizuri, Nerea. 2008. Crisis financieras y globalización: un análisis de sus factores determinantes. Problemas del desarrollo, 39(153), 159–183.Ruppert, D., Wand M. P., & Carroll, R. J. 2003. Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University: 12.Serra, T. 2011. Volatility spillovers between food and energy markets: a semiparametric approach. Energy Economics, 33(6), 1155–1164.Shaikh, Imlak. 2021. Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 1–52.Shepard, N. 1995. Generalized linear autoregressions Economics Working Papers. University of Oxford: Nuffield College.Soriano, P., & Climent, F. 2006. Volatility transmission models: a survey. Revista de economfinanciera, 10), 32–81.Straumann, D., & Mikosch, T. 2006. Quasi-Maximum-Likelihood Estimation in Conditionally Heteroscedastic Time Series: A Stochastic Recurrence Equations Approach. The Annals of Statistics, Vol. 34, No. 5, 2449–2495.Subba Rao, S. 2015. A course in Time Series Analysis. En https://www.stat.tamu.edu/ ~suhasini/teaching673/time_series.pdf.Tsai, H., & Chan, K. S. 2007. A Note on Non-Negative Arma Processes. Journal of Time Series Analysis, 28(3), 350–360.Tsay, Ruey S. 2005. Analysis of financial time series. John Wiley and Sons.Wood, S.N. 2017. Generalized Additive Models: An Introduction with R. (2nd edition). Chapman and Hall/CRC.Wuertz, Diethelm, Setz, Tobias, Chalabi, Yohan, Boudt, Chris, Chausse, Pierre, Miklovac, Michal, Setz, Maintainer Tobias, & RUnit, Suggests. 2013. Package fGarch. Tech. rept. Technical report, working paper/manual, 09.11. 2009. URL https://cran.r-project.org/.Zanobetti, A., Wand, M. P., Schwartz, J., & Ryan, L. M. 2000. Generalized additive distributed lag models: quantifying mortality displacement. Biostatistics, 1(3), 279–292.Zeger, Scott L., & Qaqish, Bahjat. 1988. Markov Regression Models for Time Series: A Quasi-Likelihood Approach. Biometrics, 44(4), 1019–1031.McFadden, Daniel. 1974. Conditional Logit Analysis of Qualitative Choice Behavior" in P. Zarembka Eds. Frontiers in Econometrics, New York Acedemic press.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80675/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1036636839.2021.pdf1036636839.2021.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf751133https://repositorio.unal.edu.co/bitstream/unal/80675/2/1036636839.2021.pdf5288c91f94465de59a99ad58de55919dMD52THUMBNAIL1036636839.2021.pdf.jpg1036636839.2021.pdf.jpgGenerated Thumbnailimage/jpeg4716https://repositorio.unal.edu.co/bitstream/unal/80675/3/1036636839.2021.pdf.jpgf5590045c6c9ac8a12c25f402a1a3cf8MD53unal/80675oai:repositorio.unal.edu.co:unal/806752024-08-01 23:09:59.617Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK