Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)

Ilustraciones

Autores:
Murillo Gómez, Paola Andrea
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82402
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82402
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
Cultivos in vitro
Tomate de arbol
Agroinfiltración
Expresión transitoria
Glucanasa
Gus
Organogénesis
Quitinasa
Tomate de árbol común
Agroinfiltration
Transient expression
Glucanase
Gus
Organogenesis
Tree tomato
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b9bd942cda60fb9acb2b7718893347a4
oai_identifier_str oai:repositorio.unal.edu.co:unal/82402
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
dc.title.translated.eng.fl_str_mv Organogenesis, in vitro regeneration and expression of gus, gfp, pcht28 and PpGlu genes in common tree tomato (Solanum betaceum Cav.)
title Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
spellingShingle Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
Cultivos in vitro
Tomate de arbol
Agroinfiltración
Expresión transitoria
Glucanasa
Gus
Organogénesis
Quitinasa
Tomate de árbol común
Agroinfiltration
Transient expression
Glucanase
Gus
Organogenesis
Tree tomato
title_short Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
title_full Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
title_fullStr Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
title_full_unstemmed Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
title_sort Organogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)
dc.creator.fl_str_mv Murillo Gómez, Paola Andrea
dc.contributor.advisor.none.fl_str_mv Hoyos Sánchez, Rodrigo Alberto
Chavarriaga, Paul
dc.contributor.author.none.fl_str_mv Murillo Gómez, Paola Andrea
dc.contributor.researchgroup.spa.fl_str_mv Biotecnologia Vegetal
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
topic 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
Cultivos in vitro
Tomate de arbol
Agroinfiltración
Expresión transitoria
Glucanasa
Gus
Organogénesis
Quitinasa
Tomate de árbol común
Agroinfiltration
Transient expression
Glucanase
Gus
Organogenesis
Tree tomato
dc.subject.lemb.none.fl_str_mv Cultivos in vitro
Tomate de arbol
dc.subject.proposal.none.fl_str_mv Agroinfiltración
Expresión transitoria
Glucanasa
Gus
Organogénesis
Quitinasa
Tomate de árbol común
dc.subject.proposal.eng.fl_str_mv Agroinfiltration
Transient expression
Glucanase
Gus
Organogenesis
Tree tomato
description Ilustraciones
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11
dc.date.accessioned.none.fl_str_mv 2022-10-20T21:40:43Z
dc.date.available.none.fl_str_mv 2022-10-20T21:40:43Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82402
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82402
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdul Kadir, N. A. A., Rahmat, A., & Jaafar, H. Z. E. (2015). Protective Effects of Tamarillo (Cyphomandra betacea) Extract against High Fat Diet Induced Obesity in Sprague-Dawley Rats. Journal of Obesity, 1–8. https://doi.org/10.1155/2015/846041
Amaya, J. E., & Julca, J. L. (2006). Tomate de árbol (Cyphomandra betacea Send.). Biodiversidad y Conservación de los Recursos Fitogenéticos Andinos. Gerencia Regional de Recursos Naturales y conservación del Medio Ambiente. Trujillo, Perú. pp. 8. http://www.regionlalibertad.gob.pe/web/opciones/pdfs/Manual%20de%20Tomate%20de%20%C3%A1rbol.pdf
Atkinson, R. G., & Gardner, R. C. (1993). Regeneration of transgenic tamarillo plants. Plant Cell Reports, 12, 347–351. https://doi.org/10.1007/BF00237433
Bello-Bello, J., Iglesias, L., Sanchez, L., Casas, J., & Santana-Buzzy, N. (2012). In vitro regeneration of Pinus brutia Ten. var. eldarica (Medw.) through organogenesis. African Journal of Biotechnology, 11(93), 15982–15987. Doi: 10.5897/AJB12.2180
Buono, S., Aguirre, C. M., Abdo, G., Perondi, H. M., Ansonnaud, G. (2018). Solanun betaceum (Cav), Sendt. Tomate árbol. Instituto Interamericano de Cooperación para la Agricultura (IICA). Procisur. Jujuy, Argentina. pp 17. https://www.procisur.org.uy/adjuntos/01e8c39fb854_e-arbol-PROCISUR.pdf
Cerón, I., Higuita, J. C., & Cardona, C. A. (2011). Capacidad antioxidante y contenido fenólico total de tres frutas cultivadas en la región andina. Vector, 5 (1909–7891), 17–26
Chacón-Cerdas, R., Flores-Mora, D., Alvarado-Marchena, L., Schmidt-Durán, A., & Alvarado-Ulloa, C. (2014). Cultivo in vitro del tomate de árbol (Cyphomandra betacea (Cav.) Sendt. (Fenotipo naranja) proveniente de Costa Rica. Revista Tecnología En Marcha, 27, 45. https://doi.org/10.18845/tm.v27i0.2014
Correia, S., & Canhoto, J. M. (2011). Somatic embryogenesis in Cyphomandra betacea (Cav .) Sendt (tamarillo): optimization and molecular analysis. In Plant Biotechnology and Transgenic Research, 174.
Correia, S., Cunha, A. E., Salgueiro, L., & Canhoto, J. M. (2012). Somatic embryogenesis in tamarillo (Cyphomandra betacea): Approaches to increase efficiency of embryo formation and plant development. Plant Cell, Tissue and Organ Culture, 109(1), 143–152. https://doi.org/10.1007/s11240-011-0082-9
Davies, W. P. (2003). Plant tissue culture. In A. Slater, N. Scott, & M. Fowler (Eds.), Plant biotechnology: the genetic manipulation of plants (p. 346). Oxford University Press Inc. https://doi.org/10.1093/aob/mch186
Feicán-Mejia, C.G., Encalada-Alvarado, C.R., & Becerril-Román, A.E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum cav.). Agroproductividad, 9(8), 78-86.
Hussain, A., Qarshi, I. A. , Nazir, H., & Ullah, I. (2012). Plant Tissue Culture: Current Status and Opportunities. En A. Leva, & L. M. R. Rinaldi (Eds.), Recent Advances in Plant in vitro Culture. IntechOpen. https://doi.org/10.5772/50568
Kahia, J., Sallah, P. K., Diby, L., Kouame, C., Kirika, M., & Niyitegeka, S. (2015). A novel regeneration system for tamarillo (Cyphomandra betacea) via organogenesis from hypocotyl, leaf, and root explants. HortScience, 50(9), 1375–1378.
Kitimu, S. R., Taylor, J., March, T. J., Tairo, F., Wilkinson, M. J., & Rodríguez López, C. M. (2015). Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation. Frontiers in Plant Science, 6, 590. https://doi.org/10.3389/fpls.2015.00590
Meza, N., & Manzano, J. (2007). Características morfológicas de la semilla, procesos de germinación y emergencia del tomate de árbol (Cyphomandra betacea Cav Sendth). Rev. Fav. Agron., 24(1), 271-275.
Mukuralinda, A., Mutaganda, A., Twagirayezu, D., Kiptot, E., Muthuri, C., & Musana, B. S. 2016. Cyphomandra betacea. World Agroforestry Centre. pp. 2. http://apps.worldagroforestry.org/downloads/Publications/PDFS/LE16226.pdf
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x
Obando, M., Goreux, A., & Jordan, M. (1992). Regeneración in vitro de Cyphomandra betacea (tamarillo), una especie frutal andina. Ciencia e investigación agraria, 19, 125-130.
Obando, M., & Jordan, M. (2001). Regenerative responses of Cyphomandra betacea (Cav.) Sendt. (Tamarillo) cultivated in vitro. Proc. IV IS on In Vitro Cult. & Hort. Breeding Eds. S. Sorvari et al. Acta Hort, 1, 429–432.
Roca, W., & Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones (W. Roca & L. Mroginski (eds.); 151st ed.). Centro Internacional de Agricultura Tropical CIAT.
Slater, A., Scott, N., & Fowler, M. (2003). Chapter 2: Plant tissue culture. In A. Slater, N. Scott, & M. Fowler (Eds.), Plant biotechnology: the genetic manipulation of plants (p. 346). Oxford University Press Inc. https://doi.org/10.1093/aob/mch186
Vasco, C., Avila, J., Ruales, J., Svanberg, U., & Kamal-Eldin, A. (2009). Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). International Journal of Food Sciences and Nutrition, 60(7), 278–288. https://doi.org/10.1080/09637480903099618
Beltrán, J., Jaimes, H., Echeverry, M., Ladino, Y., López, D., Duque, M. C., Chavarriaga, P., & Tohme, J. (2009). Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cellular and Developmental Biology - Plant, 45(1), 48–56. https://doi.org/10.1007/s11627-008-9159-5
Bertani, G. (1951). Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol., 62 (3), 293–300. doi:10.1128/jb.62.3.293-300.1951
BioFeng. (2013). pCambia1305.2. Recuperado de http://www.biofeng.com/zaiti/zhiwu/pCambia1305.2.html
Cambia Labs. GusPlus Project. Canberra, Australia. Recuperado de https://cambia.org/welcome-to-cambialabs/cambialabs-projects/cambialabs-projects-gusplus-project-1/cambialabs-projects-gusplus-project-gusplus-overview-2/
Chen, X., Equi, R., Baxter, H., Berk, K., Han, J., Agarwal, S., & Zale, J. (2010). A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnology for Biofuels, 3(1), 9. https://doi.org/10.1186/1754-6834-3-9
Diaz, M., Zappacosta, D., Frazone, P., & Ríos, R. (2010). Aplicación de la transformación genética al mejoramiento vegetal. In G. Levitus, V. Echenique, C. Rubinstein, E. Hopp, & L. Mroginski (Eds.), Biotecnología y Mejoramiento Vegetal II (2nd ed., pp. 243–257). INTA.
Dönmez, B.A., Dangol, S.D., & Bakhsh, A. (2019). Transformation efficiency of five Agrobacterium strains in diploid and tetraploid potatoes. Sarhad Journal of Agriculture, 35(4), 1344-1350. Doi: http://dx.doi.org/10.17582/journal.sja/2019/35.4.1344.1350
Fakhrana, I., Nurfahisza, R., Rasid, O., & Ahmad, G. (2019). Minimal inhibitory concentration of hygromycin for selecting transformed oil palm embryogenic calli. Journal of Oil Palm Research, 31(1), 14–27. https://doi.org/10.21894/jopr.2018.0063
Fenwick, A. (2004). ¿Cómo se hacen las plantas transgénicas? Colorado, E.E.U.U. Recuperado de http://cls.casa.colostate.edu/CultivosTransgenicos/sp_how.html
Fernández Perrino, F. J. (2006). Vegetales transgénicos : Mitos y realidades desde una perspectiva técnica. Revista Fitotecnia Mexicana, 29, 95–102.
Forlani, G., Bertazzini, M., & Giberti, S. (2014). Differential accumulation of γ-aminobutyric acid in elicited cells of two rice cultivars showing contrasting sensitivity to the blast pathogen. Plant Biol., 16 (6), 1127–1132. Doi: 10.1111/ plb.12165
Fu, Q., Li, C., Tang, M., Tao, Y.-B., Pan, B.-Z., Zhang, L., Niu, L., He, H., Wang, X., & Xu, Z.-F. (2015). An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection. Plant Biotechnology Reports, 9(6), 405–416. https://doi.org/10.1007/s11816-015-0377-0
Gelvin, S. (2006). 6. Agrobacterium Virulence Gene Induction. En K. Wang (Ed.), Methods in Molecular Biology. Agrobacterium Protocols Volumen I (2 ed., vol. 343, pp. 77-84). Humana Press Inc.
Gelvin, S. B., & Filichkin, S. A. (1994). Processing of the T-DNA from the Agrobacterium tumefaciens Ti-plasmid. En: Kado, C.I., Crosa, J.H. (eds) Molecular Mechanisms of Bacterial Virulence. Developments in Plant Pathology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0746-4_15
Glick, B. R., Pasternak, J. ., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA (4th ed.). AMS press. https://doi.org/10.1128/9781555819378
He, Y., Pasapula, V., Li, X., Lu, R., Niu, B., Hou, P., Wang, Y., Xu, Y., & Chen, F. C. (2009). Agrobacterium tumefaciens-mediated Transformation of Jatropha curcas: Factors Affecting Transient Transformation Efficiency and Morphology Analysis of Transgenic Calli. Silvae Genetica, 58(1–6), 123–128. https://doi.org/10.1515/sg-2009-0016
Heenatigala, P. P. M., Yang, J., Bishopp, A., Sun, Z., Li, G., KµMar, S., Hu, S., Wu, Z., Lin, W., Yao, L., Duan, P., & Hou, H. (2018). Development of Efficient Protocols for Stable and Transient Gene Transformation for Wolffia Globosa Using Agrobacterium. Frontiers in Chemistry, 6, 227. https://doi.org/10.3389/fchem.2018.00227
Howard, E. A., & Citovsky, V. (1990). The emerging structure of the Agrobacterium T-DNA transfer complex. BioEssays, 12, 103-108. https://doi.org/10.1002/bies.950120302
Hussain, I., Rashid, H., Muhammad, A., Ali, K., Asghar, R., Saqlan, S. M., Faqir, N., & Hyder, M. Z. (2019). Introduction of rice chitinase gene in potato by Agrobacterium-mediated transformation. Pak. J. Agri. Sci, 56(1), 7–13. https://doi.org/10.21162/PAKJAS/19.8154
Kaur, A., Guleria, S., Reddy, M. S., & Kumar, A. (2020). A robust genetic transformation protocol to obtain transgenic shoots of Solanum tuberosum L. cultivar ‘Kufri Chipsona 1.’ Physiology and Molecular Biology of Plants, 26(2), 367–377. https://doi.org/10.1007/s12298-019-00747-4
Khvatkov, P., Chernobrovkina, M., Okuneva, A., Pushin, A., & Dolgov, S. (2015). Transformation of Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell, Tissue and Organ Culture (PCTOC), 123(2), 299–307. https://doi.org/10.1007/s11240-015-0834-z
Lacorte, C. (1998). Glucuronidase (GUS). En: Brasileiro A, V. Carneiro, editors. Manual de Transformação Genética de Plantas. Brasília. EMBRAPASPI/EMBRAPA-Cenagen, 128-129.
Martínez, D. (2002). Factores que influyen en la transformación genética del tomate de árbol (Solanum betacea) mediada por Agrobacterium tumefaciens. Tesis de maestría. Universidad Nacional de Colombia, Medellín.
Miki, B., & McHugh, S. (2004). Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol.,107, 193–232. Doi: https://doi.org/10.1016/j.jbiotec.2003.10.011
Mudunkothge, J. S., & Krizek, B. A. (2014). The GUS Reporter System in Flower Development Studies. In Methods in Molecular Biology (Vol. 1110, pp. 295–304). https://doi.org/10.1007/978-1-4614-9408-9_15
Nonaka, S., & Ezura, H. (2014). Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Front. Plant Sci., 5, 681. Doi: https://doi.org/10.3389/fpls.2014.00681
Nonaka, S., Someya, T., Kadota, Y., Nakamura, K., & Ezura, H. (2019). Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Frontiers in Plant Science, 10, 1204. https://doi.org/10.3389/fpls.2019.01204
Ohnuma, M., Teramura, H., & Shimada, H. (2020). A simple method to establish an efficient medium suitable for potato regeneration. Plant Biotechnology, 37(1), 25–30. https://doi.org/10.5511/plantbiotechnology.19.1209a
Orbegozo, J., Román, M. L., Rivera, C., Tovar, J. C., Perez, W., Gamboa, S., Forbes, G., Kreuze, J., & Ghislain, M. (2013). Agrotransformación y evaluación de la resistencia a Phytophthora infestans en Solanum tuberosum L. variedad Désirée. Revista Peruana de Biología, U. Mayor de San Marcos, 20(3), 205–210. http://www.redalyc.org/articulo.oa?id=195030135001
Pratheesh, P., M., S. G., Thomas, J., I., A. C., & G., M. K. (2012). Study on efficacy of different Agrobacterium tumefaciens strains in genetic transformation of microalga Chlamydomonas reinhardtii. Advances in Applied Science Research, 3(5), 2679–2686.
Rao, R. N., Allen, N. E., Hobbs, J. N. Jr, Alborn, W. E. Jr, Kirst, H. A. & Paschal, J. W. (1983). Genetic and enzymatic basis of hygromycin B resistance in Escherichia coli. Antimicrob Agents Chemother., 24(5), 689-95. Doi: 10.1128/AAC.24.5.689
Sánchez-Álvarez, A., Ruíz-López, N., Moreno-Pérez, A. J., Martínez-Force, E., Garcés, R., & Salas, J. J. (2019). Agrobacterium-Mediated Transient Gene Expression in Developing Ricinus communis Seeds: A First Step in Making the Castor Oil Plant a Chemical Biofactory. Frontiers in Plant Science, 10, 1–11. https://doi.org/10.3389/fpls.2019.01410
Shilpha, J., Jayashre, M., Largia, M. J. V., & Ramesh, M. (2016). Direct shoot organogenesis and Agrobacterium tumefaciens mediated transformation of Solanum trilobatum L.," Turkish Journal of Biology, 40(4), 866-877. Doi: https://doi.org/10.3906/biy-1509-83
Terakami, S., Matsuta, N., Yamamoto, T., Sugaya, S., Gemma, H., & Soejima, J. (2007). Agrobacterium-mediated transformation of the dwarf pomegranate (Punica granatum L. var. nana). Plant Cell Reports, 26(8), 1243–1251. https://doi.org/10.1007/s00299-007-0347-2
Trick, H.N., & Finer, J.J. (1998). Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep., 17(6-7), 482-488. Doi: 10.1007/s002990050429
Valderrama, A., Arango, R., & Afanador, L. (2005). Transformación de plantas mediada por Agrobacterium. Rev. Fac. Nal. Agr. Medellín, 59, 2569–2585. https://doi.org/10.15446/rfnam
Wang, X., Chen, X., Cheng, Q., Zhu, K., Yang, X., & Cheng, Z. (2019). Agrobacterium–mediated Transformation of Kalanchoe laxiflora. Horticultural Plant Journal, 5(5), 221–228. https://doi.org/10.1016/j.hpj.2019.07.001
Wise, A., Liu, Z., & Binns, A. N. (2006). 1. Culture and maintenance of Agrobacterium strains. En K. Wang (Ed.), Methods in Molecular Biology. Agrobacterium Protocols Volumen I (2 ed., vol. 343, pp. 3-13). Humana Press Inc.
Xiong, A. S., Peng, R. H., Zhuang, J., Chen, J. M., Zhang, B., Zhang, J., & Yao, Q. H. (2011). A thermostable β-glucuronidase obtained by directed evolution as a reporter gene in transgenic plants. PloS one, 6(11), e26773. Doi: https://doi.org/10.1371/journal.pone.0026773
Zambryski, P. C. (1992). Chronicles from the Agrobacterium-Plant Cell DNA Transfer Story. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1), 465–490. Doi: https://doi.org/10.1146/annurev.pp.43.060192.002341
Arabidopsis Biological Resource Center (2005). Vector: pMDC85. Recuperado de https://www.arabidopsis.org/servlets/TairObject?type=vector&id=501100112
Carvalho, R. F., Carvalho, S. D., O’Grady, K., & Folta, K. M. (2016). Agroinfiltration of strawberry fruit — A powerful transient expression system for gene validation. Current Plant Biology, 6, 19-37. Doi: https://doi.org/10.1016/j.cpb.2016.09.002
Castro-Quezada, P., Bravo, C., Cabrera, A., Quillay, N., Ramón, M., Belesaca, I., & Diaz, L. (2019). Caracterización morfológica y molecular del agente causal de la antracnosis en tomate de árbol en Azuay y Loja. Revista Indexada Bosques Latitud Cero, 9(1), 1–15. https://revistas.unl.edu.ec/index.php/bosques/article/view/579/521
Chen, R.-D., Yu, L.-X., Greer, A., Cheriti, H., & Tabaeizadeh, Z. (1994). Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. MGG Molecular & General Genetics, 245, 195–202. https://doi.org/10.1007/BF00283267
D’Aoust, M.A., Lavoie, P.O., Belles-Isles, J., Bechtold, N., Michèle, M., & Louis-P., V. (2008) Transient expression of antibodies in plants using syringe agroinfiltration. En: Recombinant Proteins From Plants: Methods and Protocols (Loïc, F., and Véronique, G., Eds.), pp 41–50, Humana Press.
Debler, J. W., Henares, B. M., & Lee, R. C. (2021). Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hosts. Plant Cell Reports, 40(5), 805–818. https://doi.org/10.1007/S00299-021-02671-Y/FIGURES/6
Dhillon, T., Chiera, J., Lindbo, J., & Finer, J. (2009) Quantitative evaluation of six different viral suppressors of silencing using image analysis of transient GFP expression. Plant Cell Rep, 28, 639–647.
Die, J. V., & Román, B. (2012). RNA quality assessment: a view from plant qPCR studies. Journal of Experimental Botany, 63(17), 6069–6077. Doi: https://doi.org/10.1093/jxb/ers276
Donini, M., & Marusic, C. (2019). Current state-of-the-art in plant-based antibody production systems. Biotechnol Lett., 41, 335–346. https://doi.org/10.1007/s10529-019-02651-z
Es-Soufi, R., L’bachir El Kbiach, M., Errabii, T., Saidi, R., Badoc, A., Chaveriat, L., Martin, P., & Lamarti, A. (2018). Biology and Physiology of Colletotrichum acutatum Strains Causing Strawberry’s Anthracnose. Agricultural Sciences, 9, 974–990. https://doi.org/10.4236/as.2018.98068
Faizal, A., & Geelen, D. (2012). Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Reports, 31(8), 1517–1526. https://doi.org/10.1007/s00299-012-1266-4
Hanur, V. S., Reddy, B., Arya, V. V., & Rami, P. V. (2015). Genetic Transformation of Tomato Using Bt Cry2A Gene and Characterization in Indian cultivar Arka Vikas. J. Agr. Sci. Tech., 17: 1805-1814. http://ir.jkuat.ac.ke/handle/123456789/3754
Kapila, J.; De Rycke, R.; van Montagu, M.; & Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci., 1997, 122, 101–108.
Kaur, M., Manchanda, P., Kalia, A., Ahmed, F. K., Nepovimova, E., Kuca, K., & Abd-Elsalam, K. A. (2021). Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. International Journal of Molecular Sciences, 22(19), 10882. https://doi.org/10.3390/ijms221910882
Kobayashi, A.K.; Vieira, L.G.; Bespalhok, J.C., Leite, R.P., Pereira, L. F., Molinari, H.B., & Marques, V. (2017). Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur J Plant Pathol., 865-873. http://dx.doi.org/10.1007/s10658-017-1234-5
Krishnan, V., Jose, J., Jolly, M., Vinutha, T., KµMar, R., Manickavasagam, M., Praveen, S., & Sachdev, A. (2019). ‘AGRODATE’: a rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. Journal of Plant Biochemistry and Biotechnology, 29(2), 294–304. https://doi.org/10.1007/s13562-019-00536-w
Leckie, B. M., & Stewart, C. N. (2011). Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Reports, 30(3), 325–334. https://doi.org/10.1007/s00299-010-0961-2
Liu, D., He, X., Li, W., Chen, C., & Ge, F. (2013). A β-1,3-glucanase gene expressed in fruit of Pyrus pyrifolia enhances resistance to several pathogenic fungi in transgenic tobacco. European Journal of Plant Pathology, 135, 265–277. https://doi.org/10.1007/s10658-012-0083-5
Ma, L., Lukasik, E., Gawehns, F., & Takken, F. L. W. (2012). The Use of Agroinfiltration for Transient Expression of Plant Resistance and Fungal Effector Proteins in Nicotiana benthamiana Leaves, 61–74. https://doi.org/10.1007/978-1-61779-501-5_4
Martínez, E. P., Hío, J. C., Osorio, J. A., & Torres, M. F. (2009). Identification of Colletotrichum species causing anthracnose on Tahiti lime, tree tomato and mango. Agronomía Colombiana, 27(2), 211–218.
Michielse, C. B., Hooykaas, P. J. J., van den Hondel, C. A. M. J. & Ram, A. F. J. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet., 48, 1–17.
Peres, N. A., Timmer, L. W., Adaskaveg, J. E., & Correll, J. C. (2005). Lifestyles of Colletotrichum acutatum. Plant Disease, 89(8), 784–796. https://doi.org/10.1094/PD-89-0784
Peyret, H., Brown, J. K. M., & Lomonossoff, G. P. (2019). Improving plant transient expression through the rational design of synthetic 5′ and 3′ untranslated regions. Plant Methods, 15(1), 108. https://doi.org/10.1186/s13007-019-0494-9
Ramírez, E., Szurek, B., & Lopez Carrascal, C. E. (2018). Factores que afectan la expresión transitoria del gen GUS en yuca (Manihot esculenta Crantz). Revista Colombiana de Biotecnología, 20(2), 57–67. https://doi.org/10.15446/rev.colomb.biote.v20n2.77063
Riedel, M., Calmin, G., Belbahri, L., Lefort, F., GÖtz, M., Wagner, S., & Werres, S. (2009). Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete phytophthora ramorum. Journal of Eukaryotic Microbiology, 56(2), 130–135. https://doi.org/10.1111/j.1550-7408.2008.00376.x
Sabbadini, S., Capriotti, L., Molesini, B., Pandolfni, T., Navacchi, O., Limera, C., Ricci, A., & Mezzett, B. (2019). Comparison of regeneration capacity and Agrobacterium-mediated cell transformation efficiency of different cultivars and rootstocks of Vitis spp. via organogenesis. Sci Rep, 9, 582. https://doi.org/10.1038/s41598-018-37335-7
Sheludko, Y.V., Sindarovska, Y.R., Gerasymenko, I.M., Bannikova, M.A., & Kuchuk, N.V. (2007). Comparison of several Nicotiana species as host for high-scale Agrobacterium-mediated transient expression. Biotechnol. Bioeng., 96: 608–614. doi: 10.1002/bit.21075
Simmonds, J. (1965). A study of the species of Colletotrichum causing ripe fruit rots in Queensland. Queensland J. Agr. Sci., 22, 437-459.
Tabaeizadeh, Z., Agharbaoui, Z., Harrak, H., & Poysa, V. (1999). Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Reports, 19(2), 197–202. https://doi.org/10.1007/s002990050733
Tyurin, A. A., Suhorukova, A. V., Kabardaeva, K. V., & Goldenkova-Pavlova, I. V. (2020). Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: Advantages, Limitations, and Solutions. Plants 2020, 9, 1187. https://doi.org/10.3390/PLANTS9091187
Wani, S. H. (2010). Inducing Fungus-Resistance into Plants through Biotechnology. Not. Sci. Biol, 2(2), 14–21. https://doi.org/10.15835/nsb.2.2.4594
Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J., 3: 259-273.
Xie, L., Zhang, J.-Z., Wan, Y., & Hu, D.-W. (2010). Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 11(1), 61–70. https://doi.org/10.1631/jzus.B0900174
Afanador-Kafuri, L., Minz, D., Maymon, M., & Freeman, S. (2003). Characterization of Colletotrichum isolates from amarillo, passiflora and mango in Colombia and identification of a unique species from the genus. Phytopathology, 93(5), 579–587. https://doi.org/10.1094/PHYTO.2003.93.5.579
Beranová, M., Rakouský, S., Vávrová, Z., & Skalický, T. (2008). Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell, Tissue and Organ Culture, 94, 253-259.
Caicedo, J. D., Lalangui, K. P., Pozo, A. N., Cevallos, P. A., Arahana, V. S., & Méndez, K. S. (2017). Multilocus molecular identification and phylogenetic analysis of Colletotrichum tamarilloi as the causal agent of Tamarillo (Solanum betaceum) anthracnose in the Ecuadorian highlands. European Journal of Plant Pathology, 148(4), 983–996. https://doi.org/10.1007/s10658-017-1155-3
Ceasar, A., & Ignacimuthu, S. (2012). Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnology Letters, 34(6), 995–1002. https://doi.org/10.1007/s10529-012-0871-1
Chilton, M.-D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P., & Nester, E. W. (1974). Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proceedings of the National Academy of Sciences, 71, 3672–3676.
Collinge, D.B., Jørgensen, H. J. L., Lund, O. S., & Lyngkjær, M. F. (2010). Engineering pathogen resistance in crop plants: Current trends and future prospects. Annual Review of Phytopathology, 48, 1, 269-291. Doi: https://doi.org/10.1146/annurev-phyto-073009-114430
Dolatabadi, B., Ranjbar, G., Tohidfar, M., & Dehestani, A. (2014). Genetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusarium oxysporum f . sp . lycopersici. J. Plant Molecular Breeding (JPMB) Plant Molecular Breeding (JPMB), 2(1), 1–11. https://doi.org/10.22058/JPMB.2014.8424
Gañán, L., Álvarez, E., & Castaño Zapata, J. (2015). Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 339. https://doi.org/10.18257/raccefyn.192
Gao, Z., Xie, X., Ling, Y., Muthukrishnan, S., & Liang, G.H. (2005). Agrobacterium tumefaciens-mediated sorghµM transformation using a mannose selection system. Plant Biotechnol. J., 3: 591-599.
Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: The biology behind the gene jockey tool. Microbiol. Mol. Biol. Rev., 67, 16-37.
Hodson, E. (2005). Transformación genética de plantas para resistencia a virus. Rev. Acad. Colomb. Cienc., 29, 5–24.
Islam, A. (2006). Fungus resistant transgenic plants: Strategies, Progress and Lessons Learnt. Plant Tissue Culture and Biotechnology, 16(2), 117–138. https://doi.org/10.3329/ptcb.v16i2.1113
Jongedijk, E., Tigelaar, H., van Roekel, J. S. C., Bres-Vloemans, S. A., Dekker, I., van den Elzen, P. J. M., Cornelissen, B. J. C., & Melchers, L. S. (1995). Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 85(1–3), 173–180. https://doi.org/10.1007/BF00023946
Khanna, H. K., Paul, J.-Y., Harding, R. M., Dickman, M. B., & Dale, J. L. (2007). Inhibition of Agrobacterium -Induced Cell Death by Antiapoptotic Gene Expression Leads to Very High Transformation Efficiency of Banana. Molecular Plant-Microbe Interactions®, 20(9), 1048–1054. https://doi.org/10.1094/MPMI-20-9-1048
Kaur, R. P., & Devi, S. (2019). In Planta Transformation in Plants: A Review. Agricultural Reviews, 40(03). https://doi.org/10.18805/ag.R-1597
Keshamma, E., Rohini, S., Rao, K. S., Madhusudhan, B., & Kumar, M. U. (2008). Tissue culture-independent in Planta transformation strategy: An Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). Journal of Cotton Science, 12(3), 264–272.
Madriz, K. (2002). Mecanismos de defensa en las interacciones planta-patógeno. Manejo Integrado de Plagas (Costa Rica), 63, 22- 32.
Maximova, S. N., Marelli, J. P., Young, A., Pishak, S., Verica, J. A., & Guiltinan, M. J. (2005). Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta, 224, 740–749. https://doi.org/10.1007/s00425-005-0188-6
Mercado, J. A., Martín-Pizarro, C., Pascual, L., Quesada, M. A., Pliego-Alfaro, F., de los Santos, B., Romero, F., Galvez, J., Rey, M., de la Viña, G., Llobell, A., Yubero-Serrano, E.-M., Muñoz-Blanco, J., & Caballero, J. L. (2007). Evaluation of tolerance of Colletotrichum acutatum in strawberry plants transformed with Trichoderma-derived genes. Acta Horticulturae, 738(738), 383–388. https://doi.org/10.17660/ActaHortic.2007.738.46
Mishra, M., Jalil, S. U., Mishra, R. K., KµMari, S., & Pandey, B. K. (2016). In vitro screening of guava plantlets transformed with endochitinase gene against Fusarium oxysporum f.sp. psidii. Czech Journal of Genetics and Plant Breeding, 52(1), 6–13. https://doi.org/10.17221/74/2015-CJGPB
Mondal, T., Bhattacharya, A., Ahuja, P., & Chand, P. (2001). Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep., 20, 712–20.
Norkunas, K.; Harding, R.; Dale, J.; Dugdale, B.(2018). Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods, 14, 71.
Ojola, P., Nyaboga, E. N., Njiru, P. N., & Orinda, G. (2018). Overexpression of rice thaumatin-like protein (Ostlp) gene in transgenic cassava results in enhanced tolerance to Colletotrichum gloeosporioides f. sp. manihotis. Journal of Genetic Engineering and Biotechnology, 16, 125–131. https://doi.org/10.1016/j.jgeb.2017.12.002
Perl, A., Lotan, O., Abu-Abeid, M., & Holland, D. (1996). Establishment of an Agrobacterium-mediated genetic transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape–Agrobacterium interaction. Nat. Biotechnol., 14, 624-628.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. In The Plant Cell, 8, 1809-1819.
Riedel, M., Calmin, G., Belbahri, L., Lefort, F., GÖtz, M., Wagner, S., & Werres, S. (2009). Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete phytophthora ramorum. Journal of Eukaryotic Microbiology, 56(2), 130–135. https://doi.org/10.1111/j.1550-7408.2008.00376.x
Sanabria, A., Mahuku, G., Kelemu, S., Cadavid, M., García, C., Hío, J. C., Martínez, É., & Osorio, J. A. (2010). Molecular identification and characterization of Colletotrichum sp. isolates from Tahiti lime, tamarillo and mango. Agronomia Colombiana, 28(3), 391–399.
Selatsa, A., Papenbrock, J., Hassa, F., & Jacobsen, H. J. (2008). Combination of antifungal genes (chitinase and glucanase) to increase the resistance level of transgenic pea (Pisum sativum L.) against fungal diseases. Conference on International Research on Food Security, Natural Resource Management and Rural Development. Tropentag, 2, 1–4. http://www.tropentag.de/2008/abstracts/full/636.pdf
Sheludko, Y.V., Sindarovska, Y.R., Gerasymenko, I.M., Bannikova, M.A., & Kuchuk, N.V. (2007). Comparison of several Nicotiana species as host for high-scale Agrobacterium-mediated transient expression. Biotechnol. Bioeng., 96: 608–614. doi: 10.1002/bit.21075
Song, L., Zhao, D. gang, Wu, Y. jun, & Tian, X. e. (2009). A Simplified Seed Transformation Method for Obtaining Transgenic Brassica napus Plants. Agricultural Sciences in China, 8(6), 658–663. https://doi.org/10.1016/S1671-2927(08)60261-8
Subramanyam, K., Rajesh, M., Jaganath, B., Vasuki, A., Theboral, J., Elayaraja, D., Karthik, S., Manickavasagam, M., & Ganapathi, A. (2013). Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.). Applied Biochemistry and Biotechnology, 171(2), 450–468. https://doi.org/10.1007/s12010-013-0359-z
Van der Hoorn, R.A.L., Laurent, F., Roth, R., & De Wit, P.J.G.M. (2000). Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol. Plant-Microbe Interact., 13, 439-446.
Veena, J. H., Doerge, R. W., & Gelvin, S. B. (2003). Transfer of T- DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J., 35, 219-236.
Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J., 3: 259-273.
Zhou, X., Carranco, R., Vitha, S., & Hall, T. C. (2005). The dark side of green fluorescent protein. New Phytologist, 168(2), 313–322. https://doi.org/10.1111/j.1469-8137.2005.01489.x
Agrios, G. N. (2005). Plant Pathology. Fifth Edition. Academic Press. New York.
Agronet. (2021). https://www.agronet.gov.co/estadistica/paginas/home.aspx
Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296, 1270–1273
Alarcón, J.J., & Chavarriaga, W. (2007). Diagnóstico precoz de la antracnosis (Colletotrichum gloeosporioides) (Penz) Penz & Sacc. en tomate de árbol mediante el empleo de infecciones quiescentes. Agronomía (Manizales), 15(1), 89–102.
Aponte, A., Debrot, E., Arnal, E., Solórzano, R., & Ramos, F. (2006). Diagnóstico de las enfermedades del Tomate de Árbol en los estados de Aragua y Miranda, Venezuela. Revista Ceniap Hoy, 9. https://www.engormix.com/agricultura/articulos/enfermedades-tomate-de-arbol-t26678.htm
Aranzazu, L., & Rondón, J. (1999). Manejo productivo del cultivo de tomate de árbol y de la antracnosis (Corpoica & Pronata (eds.)). Produmedios.
Bernal, J.A. (1996). Plagas y enfermedades del tomate de árbol. Universidad Nacional de Colombia, Bogotá. Facultad de Agronomia. Boletin de Sanidad Vegetal - Instituto Colombiano Agropecuario (Colombia), 11.
Cai, L., Hyde, K., Taylor, P., Weir, B., M. Waller, J., Abang, M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., & Liu, Z. Y. (2009). A polyphasic approach for studying Colletotrichum. In Fungal Diversity, 39.
Caicedo, J. D., Lalangui, K. P., Pozo, A. N., Cevallos, P. A., Arahana, V. S., & Méndez, K. S. (2017). Multilocus molecular identification and phylogenetic analysis of Colletotrichum tamarilloi as the causal agent of Tamarillo (Solanum betaceum) anthracnose in the Ecuadorian highlands. European Journal of Plant Pathology, 148(4), 983–996. https://doi.org/10.1007/s10658-017-1155-3
Camarena, F., Chura, J., Blas R. (2014). Mejoramientp genético y biotecnológico de plantas. UNALM/Agrobanco. Lima. Perú. pp. 278. https://www.agrobanco.com.pe/wp-content/uploads/2017/07/MEJORAMIENTO_GENETICO_Y_BIOTECNOLOGICO_DE_PLANTAS.pdf
Campo-Arana, R.; Urango-Esquivel, N.;Pérez-Polo, D. (2019). Integrated management of Colletotrichum gloesporioides in yellow passion fruit (Passiflora edulis f. flavicarpa Degener). Revista de Ciencias Agrícolas, 36(2): 87-94. doi: https://doi.org/10.22267/rcia.193602.120
Cerón, I., Higuita, J. C., & Cardona, C. A. (2011). Capacidad antioxidante y contenido fenólico total de tres frutas cultivadas en la región andina. Vector, 5 (1909–7891), 17–26.
Damm, U., Cannon, P. F., Woudenberg, J. H. C., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113. https://doi.org/10.3114/sim0010
Dean, R., Van Kan, J. A., Pretorius, Z.A. Hammond-Kosack, K. E. D. P. A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430. https://doi.org/https://doi.org/10.1111/j.1364-3703.2011.00783.x
Feicán-Mejia, C.G., Encalada-Alvarado, C.R., & Becerril-Román, A.E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum cav.). Agroproductividad, 9(8), 78-86. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/806
Freeman, S., Shalev, Z., & Katan, J. (2002). Survival in soil of Colletotrichum acutatum and C. gloeosporioides pathogenic on strawberry. Plant Disease, 86(9), 965–970. https://doi.org/10.1094/PDIS.2002.86.9.965
Gañán, L., Álvarez, E., & Castaño Zapata, J. (2015). Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 339. https://doi.org/10.18257/raccefyn.192
Hutcheson, S. W. (1998). Current concepts of active defense in plants. Annual Review of Phytopathology, 36(1), 59–90. https://doi.org/10.1146/annurev.phyto.36.1.59
Jefferson, R., Kavanagh, T., & Michael, B. (1987). GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907. https://doi.org/10.1073/pnas.1411926112
Johnston, P. R., & Jones, D. (1997). Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia, 89(3), 420–430. https://doi.org/10.1080/00275514.1997.12026801
Landero-Valenzuela, N., Lara-Viveros, F. M., Andrade-Hoyos, P., Aguilar-Pérez, L. A., & Aguado Rodríguez, G. J. (2016). Alternativas para el control de Colletotrichum spp. Revista Mexicana de Ciencias Agrícolas, 7(5), 1189. https://doi.org/10.29312/remexca.v7i5.245
Lim, T. K. (2012). Solanum betaceum. In Edible Medicinal and Non-Medicinal Plantas, Fruits, 6, 326–332. https://doi.org/10.1007/978-94-007-5628-1_38
Paez, A. (2003). Tecnologías sostenibles para el manejo de antracnosis en mango y papaya. http://www.agronet.gov.co/www/docs_si2/Manejodelaantracnosisenmango.pdf
Pardo-De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López-Kleine, L., Restrepo, S., & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227–237. https://doi.org/10.1111/ppa.12410
Parikka, P., Lemmetty, A., Sundelin, T., Strømeng, G.M. and Stensvand, A. (2016). Survival of Colletotrichum acutatum in plant residue. Acta Hortic., 1117, 177-180 https://doi.org/10.17660/ActaHortic.2016.1117.28
Pedroza, A. C. S. (2016). Genetic variability analysis of Tamarillo (Solanum betaceum (Cav.) and optimization of micropropagation conditions. Tesis de maestría. Universidad de Coimbra. Coimbra, Portugal. 69 pp. En: https://estudogeral.sib.uc.pt/bitstream/10316/33574/1/Ana%20Carolina%20Sim%C3%B5es%20Pedrosa.pdf
Pringle, G. J., & Murray, B. G. (1991). Interspecific hybridisation involving the tamarillo, Cyphomandra betacea (Cav.) sendt. (solanaceae). New Zealand Journal of Crop and Horticultural Science, 19(2), 103–111. https://doi.org/10.1080/01140671.1991.10421787
Ramírez, F. & Kallarackal, J. 2019. Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review, Scientia Horticulturae, 248, 206-215. Doi: https://doi.org/10.1016/j.scienta.2019.01.019
Rondón, A., & Rondón, O. (2009). Principales enfermedades del guanábano en Venezuela. INIA Divulga, 23–26.
Rondón, J. G., Aranzazu, L., Tamayo, P., & Bonett, J. (1999). Estudios biológicos y epidemiológicos de la antracnosis del tomate de árbol y generación de alternativas para su manejo integrado en colombia. In Programa nacional de manejo integrado de plagas- Corpoica.
Saldarriaga, A., Bernal, J. A., & Tamayo, P. J. (1997). Enfermedades del cultivo del tomate de arbol en Antioquia: guia de reconocimiento y control. Corporación Colombiana de Investigación Agropecuaria, CORPOICA. https://repository.agrosavia.co/bitstream/handle/20.500.12324/1159/39500_23393.pdf?sequence=1&isAllowed=y
Saldarriaga, A., Castaño, J., & Arango, R. (2008). Caracterización del agente causante de la antracnosis en tomate de árbol, manzano y mora. Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 32(123), 145–156. https://doi.org/10.15713/ins.mmj.3
Sanabria, A., Mahuku, G., Kelemu, S., Cadavid, M., García, C., Hío, J. C., Martínez, É., & Osorio, J. A. (2010). Molecular identification and characterization of Colletotrichum sp. isolates from Tahiti lime, tamarillo and mango. Agronomia Colombiana, 28(3), 391–399.
Tamayo M., P. J. (2001). Principales enfermedades del tomate de árbol, la mora y el lulo en Colombia. http://bibliotecadigital.agronet.gov.co/bitstream/11348/4176/1/083.pdf
Viera, W. F., Sotomayor, A. V., Tamba, M. V., Vásquez, W. A., Martínez, A., Viteri, P. F., & Ron, L. (2016). Estimación de parámetros de calidad del fruto para segregantes interespecíficos de tomate de árbol (Solanum betaceum Cav.) en respuesta de resistencia a la Antracnosis (Colletotrichum acutatum J.H. Simmonds). Acta Agronomica, 65(3), 304–311. https://doi.org/http://dx.doi.org/10.15446/acag.v65n3.49771
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 194 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82402/4/28719377%20Paola%20Murillo%202021.pdf
https://repositorio.unal.edu.co/bitstream/unal/82402/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82402/5/28719377%20Paola%20Murillo%202021.pdf.jpg
bitstream.checksum.fl_str_mv 465c48df942799d7c3697c16a1ca3374
eb34b1cf90b7e1103fc9dfd26be24b4a
0897c534beeb4265dec1a52ea481fbef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089473498021888
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hoyos Sánchez, Rodrigo Alberto77b15cd865de5695e551bcba0d6d800f600Chavarriaga, Paul56c25d00d7afea01d84e12b377f73e87Murillo Gómez, Paola Andreac7da733f2feea11171e5a9a594db6e81Biotecnologia Vegetal2022-10-20T21:40:43Z2022-10-20T21:40:43Z2021-11https://repositorio.unal.edu.co/handle/unal/82402Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEl cultivo de tomate de árbol (Solanum betaceum Cav.) es un cultivo que, aunque es muy conocido y sus frutos muy consumidos en Colombia, no se encuentra tecnificado, como muchos otros cultivos en el país. Este frutal es susceptible a plagas como mosca blanca y áfidos, y a enfermedades como las causadas por virosis o por hongos, por ejemplo, la antracnosis, enfermedad causada por los hongos Colletotrichum, que causa daños principalmente en el fruto, ya sea antes o después de su cosecha, y también afecta partes jóvenes como flores y primordios foliares. Con miras a la transformación estable de tomate de árbol común para eventualmente poder generar alguna resistencia a enfermedades como la antracnosis, en este trabajo se optimizó la regeneración in vitro de esta especie vía organogénesis obteniéndose un promedio de 18 brotes por explante, en el caso de hojas. Se evaluó la expresión transitoria en hojas de tomate de árbol común in vitro, mediante el plásmido pCambia 1305.2 con el gen reportero gusPlus y la agroinfiltración de hojas en planta, esta última utilizando la cepa EHA105 de Agrobacterium tumefaciens con el plásmido pMDC85, portando los genes para una endoquitinasa (pcht28) o para una β-1,3-glucanasa (PpGlu); hasta la fecha no hay reportes de la evaluación de la expresión transitoria en hojas de tomate de árbol mediante agroinfiltración. Mediante el gen gus se encontró una eficiencia de transformación del 97,5% para la cepa EHA105, con base en el número de explantes gus positivos. Se llevaron a cabo ensayos in vitro para evaluar la expresión de los genes pcht28 y PpGlu en segmentos de hojas de tomate de árbol común, y se encontró un alto sobrecremiento de Agrobacterium y una alta tasa de muerte del tejido in vitro. (Texto tomado de la fuente)Tree tomato (Solanum betaceum Cav.) is a crop well known and its fruits widely consumed in Colombia, but it is not technified, like many other crops in the country. This fruit tree is susceptible to pests such as whiteflies and aphids, and to diseases caused by viruses or fungi, for example, anthracnose, disease caused by Colletotrichum fungi, which mainly causes damage to the fruit, either before or after harvest, and it also affects the young parts as flowers and leaf primordia. For the purpose of the stable transformation of common tree tomato, in the future, to eventually be able to generate some resistance to diseases such as anthracnose, in this work the in vitro regeneration of this species via organogenesis was optimized, obtaining an average of 18 shoots per explant, in the case of leaves. The transient expression in common tree tomato leaves in vitro was evaluated by means of the pCambia 1305.2 plasmid with the gusPlus reporter gene and the agroinfiltration of leaves in the plant, this last one using the EHA105 strain of Agrobacterium tumefaciens with the plasmid pMDC85, carrying the genes for an endochitinase (pcht28) or for a β-1,3-glucanase (PpGlu). To date there are no reports of the evaluation of transient expression in tree tomato leaves by agroinfiltration. Using the gus gene, a transformation efficiency of 97,5% was found for the EHA105 strain, based on the number of positive gus explants. In vitro assays were carried out to evaluate the expression of pcht28 and PpGlu genes in segments of common tree tomato leaves, and a high overgrowth of Agrobacterium and a high rate of tissue death in vitro were found.DoctoradoDoctor en BiotecnologíaÁrea curricular Biotecnologíaxx, 194 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)Cultivos in vitroTomate de arbolAgroinfiltraciónExpresión transitoriaGlucanasaGusOrganogénesisQuitinasaTomate de árbol comúnAgroinfiltrationTransient expressionGlucanaseGusOrganogenesisTree tomatoOrganogénesis, regeneración in vitro y expresión de los genes gus, gfp, pcht28 y PpGlu en tomate de árbol común (Solanum betaceum Cav.)Organogenesis, in vitro regeneration and expression of gus, gfp, pcht28 and PpGlu genes in common tree tomato (Solanum betaceum Cav.)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbdul Kadir, N. A. A., Rahmat, A., & Jaafar, H. Z. E. (2015). Protective Effects of Tamarillo (Cyphomandra betacea) Extract against High Fat Diet Induced Obesity in Sprague-Dawley Rats. Journal of Obesity, 1–8. https://doi.org/10.1155/2015/846041Amaya, J. E., & Julca, J. L. (2006). Tomate de árbol (Cyphomandra betacea Send.). Biodiversidad y Conservación de los Recursos Fitogenéticos Andinos. Gerencia Regional de Recursos Naturales y conservación del Medio Ambiente. Trujillo, Perú. pp. 8. http://www.regionlalibertad.gob.pe/web/opciones/pdfs/Manual%20de%20Tomate%20de%20%C3%A1rbol.pdfAtkinson, R. G., & Gardner, R. C. (1993). Regeneration of transgenic tamarillo plants. Plant Cell Reports, 12, 347–351. https://doi.org/10.1007/BF00237433Bello-Bello, J., Iglesias, L., Sanchez, L., Casas, J., & Santana-Buzzy, N. (2012). In vitro regeneration of Pinus brutia Ten. var. eldarica (Medw.) through organogenesis. African Journal of Biotechnology, 11(93), 15982–15987. Doi: 10.5897/AJB12.2180Buono, S., Aguirre, C. M., Abdo, G., Perondi, H. M., Ansonnaud, G. (2018). Solanun betaceum (Cav), Sendt. Tomate árbol. Instituto Interamericano de Cooperación para la Agricultura (IICA). Procisur. Jujuy, Argentina. pp 17. https://www.procisur.org.uy/adjuntos/01e8c39fb854_e-arbol-PROCISUR.pdfCerón, I., Higuita, J. C., & Cardona, C. A. (2011). Capacidad antioxidante y contenido fenólico total de tres frutas cultivadas en la región andina. Vector, 5 (1909–7891), 17–26Chacón-Cerdas, R., Flores-Mora, D., Alvarado-Marchena, L., Schmidt-Durán, A., & Alvarado-Ulloa, C. (2014). Cultivo in vitro del tomate de árbol (Cyphomandra betacea (Cav.) Sendt. (Fenotipo naranja) proveniente de Costa Rica. Revista Tecnología En Marcha, 27, 45. https://doi.org/10.18845/tm.v27i0.2014Correia, S., & Canhoto, J. M. (2011). Somatic embryogenesis in Cyphomandra betacea (Cav .) Sendt (tamarillo): optimization and molecular analysis. In Plant Biotechnology and Transgenic Research, 174.Correia, S., Cunha, A. E., Salgueiro, L., & Canhoto, J. M. (2012). Somatic embryogenesis in tamarillo (Cyphomandra betacea): Approaches to increase efficiency of embryo formation and plant development. Plant Cell, Tissue and Organ Culture, 109(1), 143–152. https://doi.org/10.1007/s11240-011-0082-9Davies, W. P. (2003). Plant tissue culture. In A. Slater, N. Scott, & M. Fowler (Eds.), Plant biotechnology: the genetic manipulation of plants (p. 346). Oxford University Press Inc. https://doi.org/10.1093/aob/mch186Feicán-Mejia, C.G., Encalada-Alvarado, C.R., & Becerril-Román, A.E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum cav.). Agroproductividad, 9(8), 78-86.Hussain, A., Qarshi, I. A. , Nazir, H., & Ullah, I. (2012). Plant Tissue Culture: Current Status and Opportunities. En A. Leva, & L. M. R. Rinaldi (Eds.), Recent Advances in Plant in vitro Culture. IntechOpen. https://doi.org/10.5772/50568Kahia, J., Sallah, P. K., Diby, L., Kouame, C., Kirika, M., & Niyitegeka, S. (2015). A novel regeneration system for tamarillo (Cyphomandra betacea) via organogenesis from hypocotyl, leaf, and root explants. HortScience, 50(9), 1375–1378.Kitimu, S. R., Taylor, J., March, T. J., Tairo, F., Wilkinson, M. J., & Rodríguez López, C. M. (2015). Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation. Frontiers in Plant Science, 6, 590. https://doi.org/10.3389/fpls.2015.00590Meza, N., & Manzano, J. (2007). Características morfológicas de la semilla, procesos de germinación y emergencia del tomate de árbol (Cyphomandra betacea Cav Sendth). Rev. Fav. Agron., 24(1), 271-275.Mukuralinda, A., Mutaganda, A., Twagirayezu, D., Kiptot, E., Muthuri, C., & Musana, B. S. 2016. Cyphomandra betacea. World Agroforestry Centre. pp. 2. http://apps.worldagroforestry.org/downloads/Publications/PDFS/LE16226.pdfMurashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.xObando, M., Goreux, A., & Jordan, M. (1992). Regeneración in vitro de Cyphomandra betacea (tamarillo), una especie frutal andina. Ciencia e investigación agraria, 19, 125-130.Obando, M., & Jordan, M. (2001). Regenerative responses of Cyphomandra betacea (Cav.) Sendt. (Tamarillo) cultivated in vitro. Proc. IV IS on In Vitro Cult. & Hort. Breeding Eds. S. Sorvari et al. Acta Hort, 1, 429–432.Roca, W., & Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones (W. Roca & L. Mroginski (eds.); 151st ed.). Centro Internacional de Agricultura Tropical CIAT.Slater, A., Scott, N., & Fowler, M. (2003). Chapter 2: Plant tissue culture. In A. Slater, N. Scott, & M. Fowler (Eds.), Plant biotechnology: the genetic manipulation of plants (p. 346). Oxford University Press Inc. https://doi.org/10.1093/aob/mch186Vasco, C., Avila, J., Ruales, J., Svanberg, U., & Kamal-Eldin, A. (2009). Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). International Journal of Food Sciences and Nutrition, 60(7), 278–288. https://doi.org/10.1080/09637480903099618Beltrán, J., Jaimes, H., Echeverry, M., Ladino, Y., López, D., Duque, M. C., Chavarriaga, P., & Tohme, J. (2009). Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cellular and Developmental Biology - Plant, 45(1), 48–56. https://doi.org/10.1007/s11627-008-9159-5Bertani, G. (1951). Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol., 62 (3), 293–300. doi:10.1128/jb.62.3.293-300.1951BioFeng. (2013). pCambia1305.2. Recuperado de http://www.biofeng.com/zaiti/zhiwu/pCambia1305.2.htmlCambia Labs. GusPlus Project. Canberra, Australia. Recuperado de https://cambia.org/welcome-to-cambialabs/cambialabs-projects/cambialabs-projects-gusplus-project-1/cambialabs-projects-gusplus-project-gusplus-overview-2/Chen, X., Equi, R., Baxter, H., Berk, K., Han, J., Agarwal, S., & Zale, J. (2010). A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnology for Biofuels, 3(1), 9. https://doi.org/10.1186/1754-6834-3-9Diaz, M., Zappacosta, D., Frazone, P., & Ríos, R. (2010). Aplicación de la transformación genética al mejoramiento vegetal. In G. Levitus, V. Echenique, C. Rubinstein, E. Hopp, & L. Mroginski (Eds.), Biotecnología y Mejoramiento Vegetal II (2nd ed., pp. 243–257). INTA.Dönmez, B.A., Dangol, S.D., & Bakhsh, A. (2019). Transformation efficiency of five Agrobacterium strains in diploid and tetraploid potatoes. Sarhad Journal of Agriculture, 35(4), 1344-1350. Doi: http://dx.doi.org/10.17582/journal.sja/2019/35.4.1344.1350Fakhrana, I., Nurfahisza, R., Rasid, O., & Ahmad, G. (2019). Minimal inhibitory concentration of hygromycin for selecting transformed oil palm embryogenic calli. Journal of Oil Palm Research, 31(1), 14–27. https://doi.org/10.21894/jopr.2018.0063Fenwick, A. (2004). ¿Cómo se hacen las plantas transgénicas? Colorado, E.E.U.U. Recuperado de http://cls.casa.colostate.edu/CultivosTransgenicos/sp_how.htmlFernández Perrino, F. J. (2006). Vegetales transgénicos : Mitos y realidades desde una perspectiva técnica. Revista Fitotecnia Mexicana, 29, 95–102.Forlani, G., Bertazzini, M., & Giberti, S. (2014). Differential accumulation of γ-aminobutyric acid in elicited cells of two rice cultivars showing contrasting sensitivity to the blast pathogen. Plant Biol., 16 (6), 1127–1132. Doi: 10.1111/ plb.12165Fu, Q., Li, C., Tang, M., Tao, Y.-B., Pan, B.-Z., Zhang, L., Niu, L., He, H., Wang, X., & Xu, Z.-F. (2015). An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection. Plant Biotechnology Reports, 9(6), 405–416. https://doi.org/10.1007/s11816-015-0377-0Gelvin, S. (2006). 6. Agrobacterium Virulence Gene Induction. En K. Wang (Ed.), Methods in Molecular Biology. Agrobacterium Protocols Volumen I (2 ed., vol. 343, pp. 77-84). Humana Press Inc.Gelvin, S. B., & Filichkin, S. A. (1994). Processing of the T-DNA from the Agrobacterium tumefaciens Ti-plasmid. En: Kado, C.I., Crosa, J.H. (eds) Molecular Mechanisms of Bacterial Virulence. Developments in Plant Pathology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0746-4_15Glick, B. R., Pasternak, J. ., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA (4th ed.). AMS press. https://doi.org/10.1128/9781555819378He, Y., Pasapula, V., Li, X., Lu, R., Niu, B., Hou, P., Wang, Y., Xu, Y., & Chen, F. C. (2009). Agrobacterium tumefaciens-mediated Transformation of Jatropha curcas: Factors Affecting Transient Transformation Efficiency and Morphology Analysis of Transgenic Calli. Silvae Genetica, 58(1–6), 123–128. https://doi.org/10.1515/sg-2009-0016Heenatigala, P. P. M., Yang, J., Bishopp, A., Sun, Z., Li, G., KµMar, S., Hu, S., Wu, Z., Lin, W., Yao, L., Duan, P., & Hou, H. (2018). Development of Efficient Protocols for Stable and Transient Gene Transformation for Wolffia Globosa Using Agrobacterium. Frontiers in Chemistry, 6, 227. https://doi.org/10.3389/fchem.2018.00227Howard, E. A., & Citovsky, V. (1990). The emerging structure of the Agrobacterium T-DNA transfer complex. BioEssays, 12, 103-108. https://doi.org/10.1002/bies.950120302Hussain, I., Rashid, H., Muhammad, A., Ali, K., Asghar, R., Saqlan, S. M., Faqir, N., & Hyder, M. Z. (2019). Introduction of rice chitinase gene in potato by Agrobacterium-mediated transformation. Pak. J. Agri. Sci, 56(1), 7–13. https://doi.org/10.21162/PAKJAS/19.8154Kaur, A., Guleria, S., Reddy, M. S., & Kumar, A. (2020). A robust genetic transformation protocol to obtain transgenic shoots of Solanum tuberosum L. cultivar ‘Kufri Chipsona 1.’ Physiology and Molecular Biology of Plants, 26(2), 367–377. https://doi.org/10.1007/s12298-019-00747-4Khvatkov, P., Chernobrovkina, M., Okuneva, A., Pushin, A., & Dolgov, S. (2015). Transformation of Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell, Tissue and Organ Culture (PCTOC), 123(2), 299–307. https://doi.org/10.1007/s11240-015-0834-zLacorte, C. (1998). Glucuronidase (GUS). En: Brasileiro A, V. Carneiro, editors. Manual de Transformação Genética de Plantas. Brasília. EMBRAPASPI/EMBRAPA-Cenagen, 128-129.Martínez, D. (2002). Factores que influyen en la transformación genética del tomate de árbol (Solanum betacea) mediada por Agrobacterium tumefaciens. Tesis de maestría. Universidad Nacional de Colombia, Medellín.Miki, B., & McHugh, S. (2004). Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol.,107, 193–232. Doi: https://doi.org/10.1016/j.jbiotec.2003.10.011Mudunkothge, J. S., & Krizek, B. A. (2014). The GUS Reporter System in Flower Development Studies. In Methods in Molecular Biology (Vol. 1110, pp. 295–304). https://doi.org/10.1007/978-1-4614-9408-9_15Nonaka, S., & Ezura, H. (2014). Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Front. Plant Sci., 5, 681. Doi: https://doi.org/10.3389/fpls.2014.00681Nonaka, S., Someya, T., Kadota, Y., Nakamura, K., & Ezura, H. (2019). Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Frontiers in Plant Science, 10, 1204. https://doi.org/10.3389/fpls.2019.01204Ohnuma, M., Teramura, H., & Shimada, H. (2020). A simple method to establish an efficient medium suitable for potato regeneration. Plant Biotechnology, 37(1), 25–30. https://doi.org/10.5511/plantbiotechnology.19.1209aOrbegozo, J., Román, M. L., Rivera, C., Tovar, J. C., Perez, W., Gamboa, S., Forbes, G., Kreuze, J., & Ghislain, M. (2013). Agrotransformación y evaluación de la resistencia a Phytophthora infestans en Solanum tuberosum L. variedad Désirée. Revista Peruana de Biología, U. Mayor de San Marcos, 20(3), 205–210. http://www.redalyc.org/articulo.oa?id=195030135001Pratheesh, P., M., S. G., Thomas, J., I., A. C., & G., M. K. (2012). Study on efficacy of different Agrobacterium tumefaciens strains in genetic transformation of microalga Chlamydomonas reinhardtii. Advances in Applied Science Research, 3(5), 2679–2686.Rao, R. N., Allen, N. E., Hobbs, J. N. Jr, Alborn, W. E. Jr, Kirst, H. A. & Paschal, J. W. (1983). Genetic and enzymatic basis of hygromycin B resistance in Escherichia coli. Antimicrob Agents Chemother., 24(5), 689-95. Doi: 10.1128/AAC.24.5.689Sánchez-Álvarez, A., Ruíz-López, N., Moreno-Pérez, A. J., Martínez-Force, E., Garcés, R., & Salas, J. J. (2019). Agrobacterium-Mediated Transient Gene Expression in Developing Ricinus communis Seeds: A First Step in Making the Castor Oil Plant a Chemical Biofactory. Frontiers in Plant Science, 10, 1–11. https://doi.org/10.3389/fpls.2019.01410Shilpha, J., Jayashre, M., Largia, M. J. V., & Ramesh, M. (2016). Direct shoot organogenesis and Agrobacterium tumefaciens mediated transformation of Solanum trilobatum L.," Turkish Journal of Biology, 40(4), 866-877. Doi: https://doi.org/10.3906/biy-1509-83Terakami, S., Matsuta, N., Yamamoto, T., Sugaya, S., Gemma, H., & Soejima, J. (2007). Agrobacterium-mediated transformation of the dwarf pomegranate (Punica granatum L. var. nana). Plant Cell Reports, 26(8), 1243–1251. https://doi.org/10.1007/s00299-007-0347-2Trick, H.N., & Finer, J.J. (1998). Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep., 17(6-7), 482-488. Doi: 10.1007/s002990050429Valderrama, A., Arango, R., & Afanador, L. (2005). Transformación de plantas mediada por Agrobacterium. Rev. Fac. Nal. Agr. Medellín, 59, 2569–2585. https://doi.org/10.15446/rfnamWang, X., Chen, X., Cheng, Q., Zhu, K., Yang, X., & Cheng, Z. (2019). Agrobacterium–mediated Transformation of Kalanchoe laxiflora. Horticultural Plant Journal, 5(5), 221–228. https://doi.org/10.1016/j.hpj.2019.07.001Wise, A., Liu, Z., & Binns, A. N. (2006). 1. Culture and maintenance of Agrobacterium strains. En K. Wang (Ed.), Methods in Molecular Biology. Agrobacterium Protocols Volumen I (2 ed., vol. 343, pp. 3-13). Humana Press Inc.Xiong, A. S., Peng, R. H., Zhuang, J., Chen, J. M., Zhang, B., Zhang, J., & Yao, Q. H. (2011). A thermostable β-glucuronidase obtained by directed evolution as a reporter gene in transgenic plants. PloS one, 6(11), e26773. Doi: https://doi.org/10.1371/journal.pone.0026773Zambryski, P. C. (1992). Chronicles from the Agrobacterium-Plant Cell DNA Transfer Story. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1), 465–490. Doi: https://doi.org/10.1146/annurev.pp.43.060192.002341Arabidopsis Biological Resource Center (2005). Vector: pMDC85. Recuperado de https://www.arabidopsis.org/servlets/TairObject?type=vector&id=501100112Carvalho, R. F., Carvalho, S. D., O’Grady, K., & Folta, K. M. (2016). Agroinfiltration of strawberry fruit — A powerful transient expression system for gene validation. Current Plant Biology, 6, 19-37. Doi: https://doi.org/10.1016/j.cpb.2016.09.002Castro-Quezada, P., Bravo, C., Cabrera, A., Quillay, N., Ramón, M., Belesaca, I., & Diaz, L. (2019). Caracterización morfológica y molecular del agente causal de la antracnosis en tomate de árbol en Azuay y Loja. Revista Indexada Bosques Latitud Cero, 9(1), 1–15. https://revistas.unl.edu.ec/index.php/bosques/article/view/579/521Chen, R.-D., Yu, L.-X., Greer, A., Cheriti, H., & Tabaeizadeh, Z. (1994). Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. MGG Molecular & General Genetics, 245, 195–202. https://doi.org/10.1007/BF00283267D’Aoust, M.A., Lavoie, P.O., Belles-Isles, J., Bechtold, N., Michèle, M., & Louis-P., V. (2008) Transient expression of antibodies in plants using syringe agroinfiltration. En: Recombinant Proteins From Plants: Methods and Protocols (Loïc, F., and Véronique, G., Eds.), pp 41–50, Humana Press.Debler, J. W., Henares, B. M., & Lee, R. C. (2021). Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hosts. Plant Cell Reports, 40(5), 805–818. https://doi.org/10.1007/S00299-021-02671-Y/FIGURES/6Dhillon, T., Chiera, J., Lindbo, J., & Finer, J. (2009) Quantitative evaluation of six different viral suppressors of silencing using image analysis of transient GFP expression. Plant Cell Rep, 28, 639–647.Die, J. V., & Román, B. (2012). RNA quality assessment: a view from plant qPCR studies. Journal of Experimental Botany, 63(17), 6069–6077. Doi: https://doi.org/10.1093/jxb/ers276Donini, M., & Marusic, C. (2019). Current state-of-the-art in plant-based antibody production systems. Biotechnol Lett., 41, 335–346. https://doi.org/10.1007/s10529-019-02651-zEs-Soufi, R., L’bachir El Kbiach, M., Errabii, T., Saidi, R., Badoc, A., Chaveriat, L., Martin, P., & Lamarti, A. (2018). Biology and Physiology of Colletotrichum acutatum Strains Causing Strawberry’s Anthracnose. Agricultural Sciences, 9, 974–990. https://doi.org/10.4236/as.2018.98068Faizal, A., & Geelen, D. (2012). Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Reports, 31(8), 1517–1526. https://doi.org/10.1007/s00299-012-1266-4Hanur, V. S., Reddy, B., Arya, V. V., & Rami, P. V. (2015). Genetic Transformation of Tomato Using Bt Cry2A Gene and Characterization in Indian cultivar Arka Vikas. J. Agr. Sci. Tech., 17: 1805-1814. http://ir.jkuat.ac.ke/handle/123456789/3754Kapila, J.; De Rycke, R.; van Montagu, M.; & Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci., 1997, 122, 101–108.Kaur, M., Manchanda, P., Kalia, A., Ahmed, F. K., Nepovimova, E., Kuca, K., & Abd-Elsalam, K. A. (2021). Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. International Journal of Molecular Sciences, 22(19), 10882. https://doi.org/10.3390/ijms221910882Kobayashi, A.K.; Vieira, L.G.; Bespalhok, J.C., Leite, R.P., Pereira, L. F., Molinari, H.B., & Marques, V. (2017). Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur J Plant Pathol., 865-873. http://dx.doi.org/10.1007/s10658-017-1234-5Krishnan, V., Jose, J., Jolly, M., Vinutha, T., KµMar, R., Manickavasagam, M., Praveen, S., & Sachdev, A. (2019). ‘AGRODATE’: a rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. Journal of Plant Biochemistry and Biotechnology, 29(2), 294–304. https://doi.org/10.1007/s13562-019-00536-wLeckie, B. M., & Stewart, C. N. (2011). Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Reports, 30(3), 325–334. https://doi.org/10.1007/s00299-010-0961-2Liu, D., He, X., Li, W., Chen, C., & Ge, F. (2013). A β-1,3-glucanase gene expressed in fruit of Pyrus pyrifolia enhances resistance to several pathogenic fungi in transgenic tobacco. European Journal of Plant Pathology, 135, 265–277. https://doi.org/10.1007/s10658-012-0083-5Ma, L., Lukasik, E., Gawehns, F., & Takken, F. L. W. (2012). The Use of Agroinfiltration for Transient Expression of Plant Resistance and Fungal Effector Proteins in Nicotiana benthamiana Leaves, 61–74. https://doi.org/10.1007/978-1-61779-501-5_4Martínez, E. P., Hío, J. C., Osorio, J. A., & Torres, M. F. (2009). Identification of Colletotrichum species causing anthracnose on Tahiti lime, tree tomato and mango. Agronomía Colombiana, 27(2), 211–218.Michielse, C. B., Hooykaas, P. J. J., van den Hondel, C. A. M. J. & Ram, A. F. J. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet., 48, 1–17.Peres, N. A., Timmer, L. W., Adaskaveg, J. E., & Correll, J. C. (2005). Lifestyles of Colletotrichum acutatum. Plant Disease, 89(8), 784–796. https://doi.org/10.1094/PD-89-0784Peyret, H., Brown, J. K. M., & Lomonossoff, G. P. (2019). Improving plant transient expression through the rational design of synthetic 5′ and 3′ untranslated regions. Plant Methods, 15(1), 108. https://doi.org/10.1186/s13007-019-0494-9Ramírez, E., Szurek, B., & Lopez Carrascal, C. E. (2018). Factores que afectan la expresión transitoria del gen GUS en yuca (Manihot esculenta Crantz). Revista Colombiana de Biotecnología, 20(2), 57–67. https://doi.org/10.15446/rev.colomb.biote.v20n2.77063Riedel, M., Calmin, G., Belbahri, L., Lefort, F., GÖtz, M., Wagner, S., & Werres, S. (2009). Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete phytophthora ramorum. Journal of Eukaryotic Microbiology, 56(2), 130–135. https://doi.org/10.1111/j.1550-7408.2008.00376.xSabbadini, S., Capriotti, L., Molesini, B., Pandolfni, T., Navacchi, O., Limera, C., Ricci, A., & Mezzett, B. (2019). Comparison of regeneration capacity and Agrobacterium-mediated cell transformation efficiency of different cultivars and rootstocks of Vitis spp. via organogenesis. Sci Rep, 9, 582. https://doi.org/10.1038/s41598-018-37335-7Sheludko, Y.V., Sindarovska, Y.R., Gerasymenko, I.M., Bannikova, M.A., & Kuchuk, N.V. (2007). Comparison of several Nicotiana species as host for high-scale Agrobacterium-mediated transient expression. Biotechnol. Bioeng., 96: 608–614. doi: 10.1002/bit.21075Simmonds, J. (1965). A study of the species of Colletotrichum causing ripe fruit rots in Queensland. Queensland J. Agr. Sci., 22, 437-459.Tabaeizadeh, Z., Agharbaoui, Z., Harrak, H., & Poysa, V. (1999). Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Reports, 19(2), 197–202. https://doi.org/10.1007/s002990050733Tyurin, A. A., Suhorukova, A. V., Kabardaeva, K. V., & Goldenkova-Pavlova, I. V. (2020). Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: Advantages, Limitations, and Solutions. Plants 2020, 9, 1187. https://doi.org/10.3390/PLANTS9091187Wani, S. H. (2010). Inducing Fungus-Resistance into Plants through Biotechnology. Not. Sci. Biol, 2(2), 14–21. https://doi.org/10.15835/nsb.2.2.4594Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J., 3: 259-273.Xie, L., Zhang, J.-Z., Wan, Y., & Hu, D.-W. (2010). Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 11(1), 61–70. https://doi.org/10.1631/jzus.B0900174Afanador-Kafuri, L., Minz, D., Maymon, M., & Freeman, S. (2003). Characterization of Colletotrichum isolates from amarillo, passiflora and mango in Colombia and identification of a unique species from the genus. Phytopathology, 93(5), 579–587. https://doi.org/10.1094/PHYTO.2003.93.5.579Beranová, M., Rakouský, S., Vávrová, Z., & Skalický, T. (2008). Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell, Tissue and Organ Culture, 94, 253-259.Caicedo, J. D., Lalangui, K. P., Pozo, A. N., Cevallos, P. A., Arahana, V. S., & Méndez, K. S. (2017). Multilocus molecular identification and phylogenetic analysis of Colletotrichum tamarilloi as the causal agent of Tamarillo (Solanum betaceum) anthracnose in the Ecuadorian highlands. European Journal of Plant Pathology, 148(4), 983–996. https://doi.org/10.1007/s10658-017-1155-3Ceasar, A., & Ignacimuthu, S. (2012). Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnology Letters, 34(6), 995–1002. https://doi.org/10.1007/s10529-012-0871-1Chilton, M.-D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P., & Nester, E. W. (1974). Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proceedings of the National Academy of Sciences, 71, 3672–3676.Collinge, D.B., Jørgensen, H. J. L., Lund, O. S., & Lyngkjær, M. F. (2010). Engineering pathogen resistance in crop plants: Current trends and future prospects. Annual Review of Phytopathology, 48, 1, 269-291. Doi: https://doi.org/10.1146/annurev-phyto-073009-114430Dolatabadi, B., Ranjbar, G., Tohidfar, M., & Dehestani, A. (2014). Genetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusarium oxysporum f . sp . lycopersici. J. Plant Molecular Breeding (JPMB) Plant Molecular Breeding (JPMB), 2(1), 1–11. https://doi.org/10.22058/JPMB.2014.8424Gañán, L., Álvarez, E., & Castaño Zapata, J. (2015). Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 339. https://doi.org/10.18257/raccefyn.192Gao, Z., Xie, X., Ling, Y., Muthukrishnan, S., & Liang, G.H. (2005). Agrobacterium tumefaciens-mediated sorghµM transformation using a mannose selection system. Plant Biotechnol. J., 3: 591-599.Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: The biology behind the gene jockey tool. Microbiol. Mol. Biol. Rev., 67, 16-37.Hodson, E. (2005). Transformación genética de plantas para resistencia a virus. Rev. Acad. Colomb. Cienc., 29, 5–24.Islam, A. (2006). Fungus resistant transgenic plants: Strategies, Progress and Lessons Learnt. Plant Tissue Culture and Biotechnology, 16(2), 117–138. https://doi.org/10.3329/ptcb.v16i2.1113Jongedijk, E., Tigelaar, H., van Roekel, J. S. C., Bres-Vloemans, S. A., Dekker, I., van den Elzen, P. J. M., Cornelissen, B. J. C., & Melchers, L. S. (1995). Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 85(1–3), 173–180. https://doi.org/10.1007/BF00023946Khanna, H. K., Paul, J.-Y., Harding, R. M., Dickman, M. B., & Dale, J. L. (2007). Inhibition of Agrobacterium -Induced Cell Death by Antiapoptotic Gene Expression Leads to Very High Transformation Efficiency of Banana. Molecular Plant-Microbe Interactions®, 20(9), 1048–1054. https://doi.org/10.1094/MPMI-20-9-1048Kaur, R. P., & Devi, S. (2019). In Planta Transformation in Plants: A Review. Agricultural Reviews, 40(03). https://doi.org/10.18805/ag.R-1597Keshamma, E., Rohini, S., Rao, K. S., Madhusudhan, B., & Kumar, M. U. (2008). Tissue culture-independent in Planta transformation strategy: An Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). Journal of Cotton Science, 12(3), 264–272.Madriz, K. (2002). Mecanismos de defensa en las interacciones planta-patógeno. Manejo Integrado de Plagas (Costa Rica), 63, 22- 32.Maximova, S. N., Marelli, J. P., Young, A., Pishak, S., Verica, J. A., & Guiltinan, M. J. (2005). Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta, 224, 740–749. https://doi.org/10.1007/s00425-005-0188-6Mercado, J. A., Martín-Pizarro, C., Pascual, L., Quesada, M. A., Pliego-Alfaro, F., de los Santos, B., Romero, F., Galvez, J., Rey, M., de la Viña, G., Llobell, A., Yubero-Serrano, E.-M., Muñoz-Blanco, J., & Caballero, J. L. (2007). Evaluation of tolerance of Colletotrichum acutatum in strawberry plants transformed with Trichoderma-derived genes. Acta Horticulturae, 738(738), 383–388. https://doi.org/10.17660/ActaHortic.2007.738.46Mishra, M., Jalil, S. U., Mishra, R. K., KµMari, S., & Pandey, B. K. (2016). In vitro screening of guava plantlets transformed with endochitinase gene against Fusarium oxysporum f.sp. psidii. Czech Journal of Genetics and Plant Breeding, 52(1), 6–13. https://doi.org/10.17221/74/2015-CJGPBMondal, T., Bhattacharya, A., Ahuja, P., & Chand, P. (2001). Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep., 20, 712–20.Norkunas, K.; Harding, R.; Dale, J.; Dugdale, B.(2018). Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods, 14, 71.Ojola, P., Nyaboga, E. N., Njiru, P. N., & Orinda, G. (2018). Overexpression of rice thaumatin-like protein (Ostlp) gene in transgenic cassava results in enhanced tolerance to Colletotrichum gloeosporioides f. sp. manihotis. Journal of Genetic Engineering and Biotechnology, 16, 125–131. https://doi.org/10.1016/j.jgeb.2017.12.002Perl, A., Lotan, O., Abu-Abeid, M., & Holland, D. (1996). Establishment of an Agrobacterium-mediated genetic transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape–Agrobacterium interaction. Nat. Biotechnol., 14, 624-628.Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. In The Plant Cell, 8, 1809-1819.Riedel, M., Calmin, G., Belbahri, L., Lefort, F., GÖtz, M., Wagner, S., & Werres, S. (2009). Green Fluorescent Protein (GFP) as a reporter gene for the plant pathogenic oomycete phytophthora ramorum. Journal of Eukaryotic Microbiology, 56(2), 130–135. https://doi.org/10.1111/j.1550-7408.2008.00376.xSanabria, A., Mahuku, G., Kelemu, S., Cadavid, M., García, C., Hío, J. C., Martínez, É., & Osorio, J. A. (2010). Molecular identification and characterization of Colletotrichum sp. isolates from Tahiti lime, tamarillo and mango. Agronomia Colombiana, 28(3), 391–399.Selatsa, A., Papenbrock, J., Hassa, F., & Jacobsen, H. J. (2008). Combination of antifungal genes (chitinase and glucanase) to increase the resistance level of transgenic pea (Pisum sativum L.) against fungal diseases. Conference on International Research on Food Security, Natural Resource Management and Rural Development. Tropentag, 2, 1–4. http://www.tropentag.de/2008/abstracts/full/636.pdfSheludko, Y.V., Sindarovska, Y.R., Gerasymenko, I.M., Bannikova, M.A., & Kuchuk, N.V. (2007). Comparison of several Nicotiana species as host for high-scale Agrobacterium-mediated transient expression. Biotechnol. Bioeng., 96: 608–614. doi: 10.1002/bit.21075Song, L., Zhao, D. gang, Wu, Y. jun, & Tian, X. e. (2009). A Simplified Seed Transformation Method for Obtaining Transgenic Brassica napus Plants. Agricultural Sciences in China, 8(6), 658–663. https://doi.org/10.1016/S1671-2927(08)60261-8Subramanyam, K., Rajesh, M., Jaganath, B., Vasuki, A., Theboral, J., Elayaraja, D., Karthik, S., Manickavasagam, M., & Ganapathi, A. (2013). Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.). Applied Biochemistry and Biotechnology, 171(2), 450–468. https://doi.org/10.1007/s12010-013-0359-zVan der Hoorn, R.A.L., Laurent, F., Roth, R., & De Wit, P.J.G.M. (2000). Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol. Plant-Microbe Interact., 13, 439-446.Veena, J. H., Doerge, R. W., & Gelvin, S. B. (2003). Transfer of T- DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J., 35, 219-236.Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J., 3: 259-273.Zhou, X., Carranco, R., Vitha, S., & Hall, T. C. (2005). The dark side of green fluorescent protein. New Phytologist, 168(2), 313–322. https://doi.org/10.1111/j.1469-8137.2005.01489.xAgrios, G. N. (2005). Plant Pathology. Fifth Edition. Academic Press. New York.Agronet. (2021). https://www.agronet.gov.co/estadistica/paginas/home.aspxAhlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296, 1270–1273Alarcón, J.J., & Chavarriaga, W. (2007). Diagnóstico precoz de la antracnosis (Colletotrichum gloeosporioides) (Penz) Penz & Sacc. en tomate de árbol mediante el empleo de infecciones quiescentes. Agronomía (Manizales), 15(1), 89–102.Aponte, A., Debrot, E., Arnal, E., Solórzano, R., & Ramos, F. (2006). Diagnóstico de las enfermedades del Tomate de Árbol en los estados de Aragua y Miranda, Venezuela. Revista Ceniap Hoy, 9. https://www.engormix.com/agricultura/articulos/enfermedades-tomate-de-arbol-t26678.htmAranzazu, L., & Rondón, J. (1999). Manejo productivo del cultivo de tomate de árbol y de la antracnosis (Corpoica & Pronata (eds.)). Produmedios.Bernal, J.A. (1996). Plagas y enfermedades del tomate de árbol. Universidad Nacional de Colombia, Bogotá. Facultad de Agronomia. Boletin de Sanidad Vegetal - Instituto Colombiano Agropecuario (Colombia), 11.Cai, L., Hyde, K., Taylor, P., Weir, B., M. Waller, J., Abang, M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., & Liu, Z. Y. (2009). A polyphasic approach for studying Colletotrichum. In Fungal Diversity, 39.Caicedo, J. D., Lalangui, K. P., Pozo, A. N., Cevallos, P. A., Arahana, V. S., & Méndez, K. S. (2017). Multilocus molecular identification and phylogenetic analysis of Colletotrichum tamarilloi as the causal agent of Tamarillo (Solanum betaceum) anthracnose in the Ecuadorian highlands. European Journal of Plant Pathology, 148(4), 983–996. https://doi.org/10.1007/s10658-017-1155-3Camarena, F., Chura, J., Blas R. (2014). Mejoramientp genético y biotecnológico de plantas. UNALM/Agrobanco. Lima. Perú. pp. 278. https://www.agrobanco.com.pe/wp-content/uploads/2017/07/MEJORAMIENTO_GENETICO_Y_BIOTECNOLOGICO_DE_PLANTAS.pdfCampo-Arana, R.; Urango-Esquivel, N.;Pérez-Polo, D. (2019). Integrated management of Colletotrichum gloesporioides in yellow passion fruit (Passiflora edulis f. flavicarpa Degener). Revista de Ciencias Agrícolas, 36(2): 87-94. doi: https://doi.org/10.22267/rcia.193602.120Cerón, I., Higuita, J. C., & Cardona, C. A. (2011). Capacidad antioxidante y contenido fenólico total de tres frutas cultivadas en la región andina. Vector, 5 (1909–7891), 17–26.Damm, U., Cannon, P. F., Woudenberg, J. H. C., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113. https://doi.org/10.3114/sim0010Dean, R., Van Kan, J. A., Pretorius, Z.A. Hammond-Kosack, K. E. D. P. A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430. https://doi.org/https://doi.org/10.1111/j.1364-3703.2011.00783.xFeicán-Mejia, C.G., Encalada-Alvarado, C.R., & Becerril-Román, A.E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum cav.). Agroproductividad, 9(8), 78-86. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/806Freeman, S., Shalev, Z., & Katan, J. (2002). Survival in soil of Colletotrichum acutatum and C. gloeosporioides pathogenic on strawberry. Plant Disease, 86(9), 965–970. https://doi.org/10.1094/PDIS.2002.86.9.965Gañán, L., Álvarez, E., & Castaño Zapata, J. (2015). Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 339. https://doi.org/10.18257/raccefyn.192Hutcheson, S. W. (1998). Current concepts of active defense in plants. Annual Review of Phytopathology, 36(1), 59–90. https://doi.org/10.1146/annurev.phyto.36.1.59Jefferson, R., Kavanagh, T., & Michael, B. (1987). GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907. https://doi.org/10.1073/pnas.1411926112Johnston, P. R., & Jones, D. (1997). Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia, 89(3), 420–430. https://doi.org/10.1080/00275514.1997.12026801Landero-Valenzuela, N., Lara-Viveros, F. M., Andrade-Hoyos, P., Aguilar-Pérez, L. A., & Aguado Rodríguez, G. J. (2016). Alternativas para el control de Colletotrichum spp. Revista Mexicana de Ciencias Agrícolas, 7(5), 1189. https://doi.org/10.29312/remexca.v7i5.245Lim, T. K. (2012). Solanum betaceum. In Edible Medicinal and Non-Medicinal Plantas, Fruits, 6, 326–332. https://doi.org/10.1007/978-94-007-5628-1_38Paez, A. (2003). Tecnologías sostenibles para el manejo de antracnosis en mango y papaya. http://www.agronet.gov.co/www/docs_si2/Manejodelaantracnosisenmango.pdfPardo-De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López-Kleine, L., Restrepo, S., & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227–237. https://doi.org/10.1111/ppa.12410Parikka, P., Lemmetty, A., Sundelin, T., Strømeng, G.M. and Stensvand, A. (2016). Survival of Colletotrichum acutatum in plant residue. Acta Hortic., 1117, 177-180 https://doi.org/10.17660/ActaHortic.2016.1117.28Pedroza, A. C. S. (2016). Genetic variability analysis of Tamarillo (Solanum betaceum (Cav.) and optimization of micropropagation conditions. Tesis de maestría. Universidad de Coimbra. Coimbra, Portugal. 69 pp. En: https://estudogeral.sib.uc.pt/bitstream/10316/33574/1/Ana%20Carolina%20Sim%C3%B5es%20Pedrosa.pdfPringle, G. J., & Murray, B. G. (1991). Interspecific hybridisation involving the tamarillo, Cyphomandra betacea (Cav.) sendt. (solanaceae). New Zealand Journal of Crop and Horticultural Science, 19(2), 103–111. https://doi.org/10.1080/01140671.1991.10421787Ramírez, F. & Kallarackal, J. 2019. Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review, Scientia Horticulturae, 248, 206-215. Doi: https://doi.org/10.1016/j.scienta.2019.01.019Rondón, A., & Rondón, O. (2009). Principales enfermedades del guanábano en Venezuela. INIA Divulga, 23–26.Rondón, J. G., Aranzazu, L., Tamayo, P., & Bonett, J. (1999). Estudios biológicos y epidemiológicos de la antracnosis del tomate de árbol y generación de alternativas para su manejo integrado en colombia. In Programa nacional de manejo integrado de plagas- Corpoica.Saldarriaga, A., Bernal, J. A., & Tamayo, P. J. (1997). Enfermedades del cultivo del tomate de arbol en Antioquia: guia de reconocimiento y control. Corporación Colombiana de Investigación Agropecuaria, CORPOICA. https://repository.agrosavia.co/bitstream/handle/20.500.12324/1159/39500_23393.pdf?sequence=1&isAllowed=ySaldarriaga, A., Castaño, J., & Arango, R. (2008). Caracterización del agente causante de la antracnosis en tomate de árbol, manzano y mora. Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 32(123), 145–156. https://doi.org/10.15713/ins.mmj.3Sanabria, A., Mahuku, G., Kelemu, S., Cadavid, M., García, C., Hío, J. C., Martínez, É., & Osorio, J. A. (2010). Molecular identification and characterization of Colletotrichum sp. isolates from Tahiti lime, tamarillo and mango. Agronomia Colombiana, 28(3), 391–399.Tamayo M., P. J. (2001). Principales enfermedades del tomate de árbol, la mora y el lulo en Colombia. http://bibliotecadigital.agronet.gov.co/bitstream/11348/4176/1/083.pdfViera, W. F., Sotomayor, A. V., Tamba, M. V., Vásquez, W. A., Martínez, A., Viteri, P. F., & Ron, L. (2016). Estimación de parámetros de calidad del fruto para segregantes interespecíficos de tomate de árbol (Solanum betaceum Cav.) en respuesta de resistencia a la Antracnosis (Colletotrichum acutatum J.H. Simmonds). Acta Agronomica, 65(3), 304–311. https://doi.org/http://dx.doi.org/10.15446/acag.v65n3.49771Grupo de Biotecnología Vegetal Universidad Nacional de Colombia, sede MedellínEstudiantesInvestigadoresPúblico generalORIGINAL28719377 Paola Murillo 2021.pdf28719377 Paola Murillo 2021.pdfTesis de Doctorado en Biotecnologíaapplication/pdf5896216https://repositorio.unal.edu.co/bitstream/unal/82402/4/28719377%20Paola%20Murillo%202021.pdf465c48df942799d7c3697c16a1ca3374MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82402/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL28719377 Paola Murillo 2021.pdf.jpg28719377 Paola Murillo 2021.pdf.jpgGenerated Thumbnailimage/jpeg5311https://repositorio.unal.edu.co/bitstream/unal/82402/5/28719377%20Paola%20Murillo%202021.pdf.jpg0897c534beeb4265dec1a52ea481fbefMD55unal/82402oai:repositorio.unal.edu.co:unal/824022023-08-09 23:04:41.877Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=