Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental

fotografías , graficas, ilustraciones, mapas, tablas

Autores:
Vega Rojas, Juan Sebastián
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80307
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80307
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
Pastos Marinos
Thalassia testudinum
Syringodium filiforme
Praderas mixtas
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_b9919f41b8bea77472387d6f9173dc99
oai_identifier_str oai:repositorio.unal.edu.co:unal/80307
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
dc.title.translated.eng.fl_str_mv Growth and allocation of root biomass of Thalassia testudinum and Syringodium filiforme, in monospecific and mixed seagrass beds of the Barú region, southwestern Caribbean
title Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
spellingShingle Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
570 - Biología
Pastos Marinos
Thalassia testudinum
Syringodium filiforme
Praderas mixtas
title_short Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
title_full Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
title_fullStr Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
title_full_unstemmed Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
title_sort Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental
dc.creator.fl_str_mv Vega Rojas, Juan Sebastián
dc.contributor.advisor.none.fl_str_mv Mancera Pineda, Jose Ernesto
dc.contributor.author.none.fl_str_mv Vega Rojas, Juan Sebastián
dc.contributor.researchgroup.spa.fl_str_mv Modelacion de Ecosistemas Costeros
dc.subject.ddc.spa.fl_str_mv 570 - Biología
topic 570 - Biología
Pastos Marinos
Thalassia testudinum
Syringodium filiforme
Praderas mixtas
dc.subject.proposal.spa.fl_str_mv Pastos Marinos
Thalassia testudinum
Syringodium filiforme
Praderas mixtas
description fotografías , graficas, ilustraciones, mapas, tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-17
dc.date.accessioned.none.fl_str_mv 2021-09-25T02:19:45Z
dc.date.available.none.fl_str_mv 2021-09-25T02:19:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80307
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80307
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Armitage, A. R., & Fourqurean, J. W. (2016). Carbon storage in seagrass soils: Long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences, 13(1), 313–321. https://doi.org/10.5194/bg-13-313-2016
Bach, S. S., Borum, J., Fortes, M. D., & Duarte, C. M. (1998). Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines. Marine Ecology Progress Series, 174, 247–256. https://doi.org/10.3354/meps174247
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs. https://doi.org/10.1890/10-1510.1
Barry, S. C., Jacoby, C. A., & Frazer, T. K. (2017). Environmental influences on growth and morphology of Thalassia testudinum. Marine Ecology Progress Series. https://doi.org/10.3354/meps12112
Bay, C. C., Lee, K., & Dunton, K. H. (1996). Production and carbon reserve dynamics of the seagrass Thalassia testudinum in.
Bostro, C., Jackson, E. L., & Simenstad, C. A. (2006). Seagrass landscapes and their effects on associated fauna : A review, 68. https://doi.org/10.1016/j.ecss.2006.01.026
Brouns, J. J. W. M. (1987). Quantitative and dynamic aspects of a mixed seagrass meadow in Papua New Guinea. Aquatic Botany, 29(1), 33–47. https://doi.org/10.1016/0304-3770(87)90027-1
Brouwer, R. (1963). Some aspects of the equilibrium between overground and underground plant parts. Jaarboek van Het Instituut Voor Biologisch En Scheikundig Onderzoek van Landbouwgewassen Wageningen, 31–40.
Bulletin, M. P. (2015). Variability of sedimentary organic carbon in patchy seagrass landscapes, (October). https://doi.org/10.1016/j.marpolbul.2015.09.032
Caldeira, K., & Wickett, M. E. (2003). Oceanography: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365–365. https://doi.org/10.1038/425365a
Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., … Van Den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature. https://doi.org/10.1038/387253a0
Cousens, R., & Hutchings, M. J. (1983). The relationship between density and mean frond weight in monospecific seaweed stands. Nature. https://doi.org/10.1038/301240a0
Creed, J. C. (1997). Morphological variation in the seagrass Halodule wrightii near its southern distributional limit, 59, 163–172.
Dawes, C. J., & Lawrence, J. M. (1979). Effects of blade removal on the proximate composition of the rhizome of the seagrass Thalassia testudinum banks ex könig. Aquatic Botany. https://doi.org/10.1016/0304-3770(79)90026-3
Dennisonl, C. (1999). Responses of seagrass to nutrients in the Great Barrier Reef, Australia, (Kuhlman 1988).
Di Carlo, G., & Kenworthy, W. J. (2008). Evaluation of aboveground and belowground biomass recovery in physically disturbed seagrass beds. Oecologia, 158(2), 285–298. https://doi.org/10.1007/s00442-008-1120-0
Díaz, J. M., Barrios, L., & Gomez-López, D. (2003). Las praderas de pastos marinos en Colombia: Estructura y dsitribución de un ecosistema estratégico. https://doi.org/10.13140/2.1.4073.6322
Duarte, C. M. (1991). Allometric scaling of seagrass form and productivity. Marine Ecology Progress Series, 77(2–3), 289–300. https://doi.org/10.3354/meps077289
Duarte, C M, Savela, R. S., & Fortes, M. D. (2014). Recolonization in a Mixed The Role Dynamics Seagrass Meadow : of Clonal Versus Sexual Processes, 27(5), 770–780.
Duarte, Carlos M., Marba, N., Agawin, N., Cebrian, J., Enriquez, S., Fortes, M. D., … Vermaat, J. (1994). Reconstruction of seagrass dynamics - Age determinations and associated tools for the seagrass ecologist. Marine Ecology Progress Series, 107(1–2), 195. https://doi.org/10.3354/meps107195
Duarte, Carlos M., Terrados, J., Agawin, N. S. R., Fortes, M. D., Bach, S., & Kenworthy, W. J. (1997). Response of a mixed Philippine seagrass meadow to experimental burial. Marine Ecology Progress Series. https://doi.org/10.3354/meps147285
Duarte, Carlos M. (2015). Global Change and the Future Ocean : A Grand Challenge for Marine Sciences Global change and the future ocean : a grand challenge for marine sciences, (August). https://doi.org/10.3389/fmars.2014.00063
Duarte, Carlos M, & Chiscano, C. L. (1999). Seagrass biomass and production : a reassessment, 65, 159–174.
Duarte, Carlos M, & Gallegos, M. E. (1998). Root production and belowground seagrass biomass, (May 2014). https://doi.org/10.3354/meps171097
Duarte, Carlos M, Gallegos, M. E., Gallegos, E., Marba, N., & Hemminga, M. A. (1998). Root production and belowground seagrass biomass, 171(May 2014), 97–108. https://doi.org/10.3354/meps171097
Enríquez, S., Marbà, N., Duarte, C. M., & Tussenbroek, B. I. Van. (2001). Effects of seagrass Thalassia testudinum on sediment redox, 219, 149–158.
Erftemeijer, P. L. A., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals : A review. Marine Pollution Bulletin, 64(9), 1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008
Erftemeijer, P. L. A., Robin, R. R., & Iii, L. (2006). Environmental impacts of dredging on seagrasses : A review, 52, 1553–1572. https://doi.org/10.1016/j.marpolbul.2006.09.006
Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., … Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7), 505–509. https://doi.org/10.1038/ngeo1477
Fourqurean, J. W., Johnson, B., Kauffman, B. J., Kennedy, H., Lovelock, C. E., Alongi, D. M., … Serrano, O. (2014). Field Sampling of Soil Carbon Pools in Coastal Ecosystems. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves. Tidal Marshes. and Seagrass Meadows, (October), 39–66. https://doi.org/10.13140/2.1.1445.3442
Fourqurean, J. W., Powell, G. V. N., Kenworthy, W. J., & Zieman, J. C. (1995). The Effects of Long-Term Manipulation of Nutrient Supply on Competition between the Seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos. https://doi.org/10.2307/3546120
Fourqurean, J. W., & Zieman, J. C. (1991). Photosynthesis , respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Marine Ecology Progress Series, 69, 161–170.
Fourqurean, J. W., & Zieman, J. C. (2002). Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry, 61(3), 229–245. https://doi.org/10.1023/A:1020293503405
Frankignoulle, M., & Bouquegneau, J. (1987). Seasonal variation of the diel carbon budget of a marine macrophyte ecosystem. Marine Ecology Progress Series. https://doi.org/10.3354/meps038197
Gallegos, M., Merino, M., Rodriguez, a, Marba, N., & Duarte, C. (1994). Growth patterns and demography of pioneer Caribbean seagrasses Halodule wrightii and Syringodium filiforme. Marine Ecology Progress Series, 109(August 1991), 99–104. https://doi.org/10.3354/meps109099
Green, E. P., & Short, F. (2004). World Atlas of Seagrasses. Botanica Marina (Vol. 47). https://doi.org/10.1515/BOT.2004.029
Grimsditch, G., Alder, J., & Nakamura, T. (2013). The blue carbon special edition – Introduction and overview. Ocean and Coastal Management, 83, 1–4. https://doi.org/10.1016/j.ocecoaman.2012.04.020
Guinotte, J. M., & Fabry, V. J. (2008). Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences. https://doi.org/10.1196/annals.1439.013
Gutiérrez-Moreno, C., Marrugo, M., Lozano-Rivera, P., Sierra, P., & Andrade, C. (2011). El Entorno Ambiental del Parque Nacional Natural Corales del Rosario y de San Bernardo.
Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Rev. Geophys., 48(4), RG4004. https://doi.org/10.1029/2010RG000345.1.INTRODUCTION
Harlin, M. M. (1981). Nutrient Enrichment of Seagrass Beds in a Rhode Island Coastal Lagoon, 229, 221–229.
Hartog, C. Den, & Kuo, J. (2006). Taxonomy and biogeography of seagrasses. In Seagrasses: Biology, Ecology and Conservation (pp. 1–23). https://doi.org/10.1007/978-1-4020-2983-7_1
Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. https://doi.org/10.1023/A:1008119611481
Hemminga, M. A. (1998). The root = rhizome system of seagrasses : an asset and a burden, 39, 183–196.
Hendriks, I. (2013). The role of coastal plant communities for climate change mitigation and adaptation, (November). https://doi.org/10.1038/nclimate1970
Hill, V. J., Zimmerman, R. C., Bissett, W. P., Dierssen, H., & Kohler, D. D. R. (2014). Evaluating Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne Remote Sensing in Saint Joseph’s Bay, Florida. Estuaries and Coasts, 37(6), 1467–1489. https://doi.org/10.1007/s12237-013-9764-3
Hogarth, P. J. (2012). The biology of mangrove and seagrass. Oxford University Press, (2). https://doi.org/10.1007/s13398-014-0173-7.2
Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA., 1–180. Retrieved from thebluecarboninitiative.org
Jr, K. L. H., & Valentine, J. F. (2006). Plant – herbivore interactions in seagrass meadows, 330, 420–436. https://doi.org/10.1016/j.jembe.2005.12.044
Kaldy, J. E., & Dunton, K. H. (2000). Above- and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Marine Ecology Progress Series, 193, 271–283. https://doi.org/10.3354/meps193271
Kenov, I. A., Deus, R., Alves, C. N., & Neves, R. (2013). Modelling Seagrass Biomass and Relative Nutrient Content. Journal of Coastal Research, 292, 1470–1476. https://doi.org/10.2112/JCOASTRES-D-13-00047.1
Kenworthy, W. J., & Fonseca, M. S. (2006). Light Requirements of Seagrasses Halodule wrightii and Syringodium filiforme Derived from the Relationship between Diffuse Light Attenuation and Maximum Depth Distribution. Estuaries. https://doi.org/10.2307/1352533
Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems : A review, 89, 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005
Larkum, A. W. D., Orth, R. J., & Duarte, C. M. (2015). Seagrasses: Biology, Ecology and Conservation. Statewide Agricultural Land Use Baseline 2015 (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004
Larkum, A. W. D., Orth, R. J., & Durarte, C. M. (2006). SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Seagrasses: Biology, Ecology and Conservation. https://doi.org/10.1007/978-1-4020-2983-7
Lau, W. W. Y. (2013). Beyond carbon : Conceptualizing payments for ecosystem services in blue forests on carbon and other marine and coastal ecosystem services. Ocean and Coastal Management, 83, 5–14. https://doi.org/10.1016/j.ocecoaman.2012.03.011
Lee, K., Park, S. R., & Kim, Y. K. (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology, 350, 144–175. https://doi.org/10.1016/j.jembe.2007.06.016
Long, B. G., Skewes, T. D., & Poiner, I. R. (1994). An efficient method for estimating seagrass biomass. Aquatic Botany, 47(3–4), 277–291. https://doi.org/10.1016/0304-3770(94)90058-2
Lonsdale, W. M., & Watkinson, A. R. (1983). Plant Geometry and Self-Thinning. The Journal of Ecology. https://doi.org/10.2307/2259977
Macreadie, P. I., Baird, M. E., Trevathan-tackett, S. M., Larkum, A. W. D., & Ralph, P. J. (n.d.). Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment, 83(2), 430–439. https://doi.org/10.1016/j.marpolbul.2013.07.038
Marbà, N., & Duarte, C. M. (2001). Growth and sediment space occupation by seagrass Cymodocea nodosa roots, 224, 291–298.
Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. (1997). Dynamics of Millenary Organic Deposits Resulting from the Growth of the Mediterranean SeagrassPosidonia oceanica. Estuarine, Coastal and Shelf Science, 44(1), 103–110. https://doi.org/10.1006/ecss.1996.0116
Mcleod, E., Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., & Duarte, C. M. (2017). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, (January). https://doi.org/10.1890/110004
Mtwana, L., Koch, E. W., Barbier, E. B., & Creed, J. C. (2016). Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0163091
Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue carbon. A rapid response assessment. United Nations Environment …, 71 pp. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Blue+carbon:+a+rapid+response+assessment#0%5Cnhttp://www.grida.no/files/publications/blue-carbon/BlueCarbon_screen.pdf
Ralph, P. J., Durako, M. J., Enríquez, S., Collier, C. J., & Doblin, M. A. (2007). Impact of light limitation on seagrasses, 350, 176–193. https://doi.org/10.1016/j.jembe.2007.06.017
Rattanachot, E., & Prathep, A. (2015a). Species-specific effects of seagrass on belowground biomass, redox potential and Pillucina vietnamica (Lucinidae). In Journal of the Marine Biological Association of the United Kingdom. https://doi.org/10.1017/S0025315415000934
Rattanachot, E., & Prathep, A. (2015b). Species specific effects of three morphologically different belowground seagrasses on sediment properties. Estuarine, Coastal and Shelf Science, 167, 427–435. https://doi.org/10.1016/j.ecss.2015.10.019
Ricart, A. M., York, P. H., Rasheed, M. A., Pérez, M., Romero, J., Bryant, C. V., … Bulletin, M. P. (2015). Variability of sedimentary organic carbon in patchy seagrass landscapes. Marine Pollution Bulletin, 100(1), 476–482. https://doi.org/10.1016/j.marpolbul.2015.09.032
Road, A. P. (1987). Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment, 27, 41–57.
Romero, J., Pérez, M., Mateo, M. A., & Sala, E. (1994). The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquatic Botany, 47(1), 13–19. https://doi.org/10.1016/0304-3770(94)90044-2
Serrano, O., Rozaimi, M., & Lavery, P. S. (2013). Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service, 8(9). https://doi.org/10.1371/journal.pone.0073748
Sfriso, A., & Ghetti, P. F. (1998). Seasonal variation in biomass , morphometric parameters and production of seagrasses in the lagoon of Venice, 61, 207–223.
Short, F. T., & Duarte, C. M. (2001). Methods for the measurement of seagrass growth and production. Global Seagrass Research Methods, (December 2001), 155–182. https://doi.org/10.1016/B978-044450891-1/50009-8
Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Sidik, J., … Zieman, J. C. (2011). Extinction risk assessment of the world ’ s seagrass species. Biological Conservation, 144(7), 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010
Short, Frederick, Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity : A bioregional model, 350, 3–20. https://doi.org/10.1016/j.jembe.2007.06.012
Short, FT, Dennison, W., & Capone, D. (1990). Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Marine Ecology Progress Series. https://doi.org/10.3354/meps062169
Smith, R. D., Dennison, W. C., & Alberte, R. S. (1984). Role of Seagrass Photosynthesis in Root Aerobic Processes ’, 1055–1058.
Thomas, S. (2016). Between Tun Mustapha and the deep blue sea : the political ecology of blue carbon in Sabah. Environmental Science and Policy, 55, 20–35. https://doi.org/10.1016/j.envsci.2015.08.017
Tilman, D. (1982). Resource competition and community structure. Monographs in Population Biology. https://doi.org/10.2307/4549
Tomlinson, P. B. (1974). Vegetative morphology and meristem dependence - The foundation of productivity in seagrasses. Aquaculture. https://doi.org/10.1016/0044-8486(74)90027-1
Touchette, B. W. (2007). Seagrass-salinity interactions : Physiological mechanisms used by submersed marine angiosperms for a life at sea, 350, 194–215. https://doi.org/10.1016/j.jembe.2007.05.037
Unesco. (2009). Blue Carbon, the rodel of healthy oceans in binding carbon. (G. (Eds). 2009. Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., Grimsditch, Ed.).
Unsworth, R. K. F., Collier, C. J., Henderson, G. M., & McKenzie, L. J. (2012). Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters, 7(024026), 9. https://doi.org/10.1088/1748-9326/7/2/024026
Vieira, V. M. N. C. S., Lopes, I. E., & Creed, J. C. (2018). The biomass-density relationship in seagrasses and its use as an ecological indicator. BMC Ecology. https://doi.org/10.1186/s12898-018-0200-1
Virnstein, R. W., & Carbonara, P. A. (1985). Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida. Aquatic Botany, 23(1), 67–82. https://doi.org/10.1016/0304-3770(85)90021-X
Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., … Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106
Williams, S. (1990). Experimental studies of caribbean seagrass bed development1. Development, 60(4), 449–469.
Williams, S. L. (1987). Competition between the seagrasses Thalassia testudin um and Syringodium filiforme in a Caribbean lagoon *, 35, 91–98.
Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0126627
Zieman, J. C. (1975). Seasonal variation of turtle grass, Thalassia testudinum König, with reference to temperature and salinity effects. Aquatic Botany. https://doi.org/10.1016/0304-3770(75)90016-9
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 57 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Barú, Caribe
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Caribe - Caribe - Maestría en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Centro de estudios en Ciencias del mar-CECIMAR
dc.publisher.faculty.spa.fl_str_mv Facultad Caribe
dc.publisher.place.spa.fl_str_mv Caribe, Santa Marta
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Nivel Nacional
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80307/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80307/3/1032463879.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/80307/4/1032463879.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
fc7463eec81cde0df39abb9d73cab7ea
71acf17f2fb460a9bbdcdade7e563a11
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885998072692736
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mancera Pineda, Jose Ernesto119bcbf52765e5b9b755eb15bd850fbfVega Rojas, Juan Sebastiána7780edb5341bc066129e7ece52814efModelacion de Ecosistemas Costeros2021-09-25T02:19:45Z2021-09-25T02:19:45Z2020-11-17https://repositorio.unal.edu.co/handle/unal/80307Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías , graficas, ilustraciones, mapas, tablasEste proyecto tuvo como fin indagar sobre la influencia de los mixtaje (combinación de dos especies de pastos marinos sobre una misma área) de praderas marinas de las especies Thalassia testudinum y Syringodium filiforme sobre los valores de biomasa total y sus fracciones radicular (Raíz y Rizoma) y foliar(Hoja), las condiciones físicas (tamaño de las partículas del sedimento) y químicas (contenido de materia orgánica y carbono orgánico) del sedimento, y la producción de raíces mediante una nueva metodología para el estudio in situ de incubación de biomasa radicular mediante bolsas de poli sombra. Se demostró que en la mayoría de las muestras existe una influencia positiva de los mixtajes en los valores de biomasa y que esta varía en torno a la ubicación y las condiciones diferenciales de cada una de las praderas que se analice. Se encontró de igual forma que los entornos con menor disposición de partículas en la columna de agua tienen los valores más altos de biomasa en mixtajes y que pese a eso, la temporada influye considerablemente en la producción de biomasa de la fracción foliar y radicular. La relación entre las fracciones de la biomasa se ve alterada y, tanto la alocación como la relación entre los valores de biomasa foliar y radicular, cambia considerablemente invirtiéndose más hacia la biomasa foliar en temporada de menor lluvia y mayor inversión en biomasa radicular en temporada lluvia. En la biomasa existe un efecto mixto entre la temporada, localidad y composición de la muestra sobre los valores de esta, siendo significativo en la biomasa de hoja y rizoma. Los mixtajes cambian considerablemente las características físicas como el tamaño de las partículas del sedimento significativamente los valores de los tamaños de las partículas más grandes y la temporada parece afectar en gran medida los valores de las partículas más pequeñas del sedimento. Pese a eso, la localidad influye en gran medida las condiciones físicas del sedimento. En cuanto al contenido de materia orgánica y carbono orgánico en el sedimento, los mixtajes parecen no tener efecto significativo en el contenido de Locas características tanto foliar hasta 30 cm de profundidad, a comparación de la temporada y la localidad los cuales si tienen efecto en los valores foliares de estos dos y únicamente la localidad influye sobre los valores a 30 cm de profundidad. En cuanto al crecimiento radicular se demostró que a la par con los valores de biomasa por temporadas, se denota mayor crecimiento radicular en temporada de mayor precipitación, pese a eso, no siempre los mixtajes presentan los mayores valores en Locas temporadas. La temporada seca influye en el crecimiento del S. filiforme con valores más altos que los de los mixtajes en Locas localidades. La especie T. testudinum por otro lado, demuestra ser de lento crecimiento con los valores de biomasa radicular más bajos para un periodo de cinco meses de incubación de pastos. Para Colombia, son los primeros datos que se obtienen del comportamiento de las praderas en cuanto a su crecimiento radicular y la alocación de biomasa en temporada de alta pluviosidad y baja (Texto tomado de la fuente)The purpose of this project was to investigate the influence of the mixted (combination of two species of seagrasses on the same area) in marine seagrass beds of the species Thalassia testudinum and Syringodium filiforme on the values of total biomass and its underground (Root and Rhizome ) and foliar (Leaf) fractions, the physical conditions (size of sediment particles) and chemical conditions (organic matter and organic carbon content) of the sediment, and the production of roots through a new methodology for the in situ study of biomass incubation root through poly shadow bags. We demonstrated that in most of the samples there is a positive influence of the mixages on the biomass values and that this varies around the location and the differential conditions of each one of the seagrass that is analyzed. It was found in the same way that the environments with less particle disposition in the water column have the highest values of biomass in mixages and that despite this, the season has a considerable influence on the biomass production of the foliar and underground fraction. The relationship between the fractions of the biomass is altered and, both the allocation and the relationship between the values of surface and underground biomass, changes considerably by investing more towards leaf biomass in the season of less rain and greater investment in root biomass in rainy season. In the biomass there is a mixed effect between the season, location and composition of the sample on the values of this, being significant in the biomass of leaf and rhizome. Mixed seagrass beds were significantly change the physical characteristics as the size of the sediment particles significantly values the sizes of the larger particles and the season seems to greatly affect the values of the smallest particles of the sediment. Despite this, the locality greatly influences the physical conditions of the sediment. Regarding the content of organic matter and organic carbon in the sediment, the mixtations seem to have no significant effect on the content of both characteristics, both foliarup to 30 cm deep, compared to the season and the locality which do have an effect on the foliarvalues of these two and only the locality influences the values at 30 cm depth. In terms of root growth, it was shown that, along with seasonal biomass values, greater root growth is recorded in the season of greater precipitation, despite this, mixages do not always present the highest values in both seasons. The dry season influences the growth of S. filiforme with higher values than those of the mixtajes in both locations. The species T. testudinum on the other hand, proves to be of slow growth with the lowest values of root biomass for a period of five months of pasture incubation. For Colombia, it is the first data obtained from the behavior of the prairies in terms of root growth and allocation of biomass in high rainfall and low season.MaestríaMagíster en Ciencias - BiologíaEcología de Pastos Marinosx, 57 páginasapplication/pdfspaUniversidad Nacional de ColombiaCaribe - Caribe - Maestría en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad CaribeCaribe, Santa MartaUniversidad Nacional de Colombia - Nivel Nacional570 - BiologíaPastos MarinosThalassia testudinumSyringodium filiformePraderas mixtasCrecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidentalGrowth and allocation of root biomass of Thalassia testudinum and Syringodium filiforme, in monospecific and mixed seagrass beds of the Barú region, southwestern CaribbeanTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBarú, CaribeArmitage, A. R., & Fourqurean, J. W. (2016). Carbon storage in seagrass soils: Long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences, 13(1), 313–321. https://doi.org/10.5194/bg-13-313-2016Bach, S. S., Borum, J., Fortes, M. D., & Duarte, C. M. (1998). Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines. Marine Ecology Progress Series, 174, 247–256. https://doi.org/10.3354/meps174247Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs. https://doi.org/10.1890/10-1510.1Barry, S. C., Jacoby, C. A., & Frazer, T. K. (2017). Environmental influences on growth and morphology of Thalassia testudinum. Marine Ecology Progress Series. https://doi.org/10.3354/meps12112Bay, C. C., Lee, K., & Dunton, K. H. (1996). Production and carbon reserve dynamics of the seagrass Thalassia testudinum in.Bostro, C., Jackson, E. L., & Simenstad, C. A. (2006). Seagrass landscapes and their effects on associated fauna : A review, 68. https://doi.org/10.1016/j.ecss.2006.01.026Brouns, J. J. W. M. (1987). Quantitative and dynamic aspects of a mixed seagrass meadow in Papua New Guinea. Aquatic Botany, 29(1), 33–47. https://doi.org/10.1016/0304-3770(87)90027-1Brouwer, R. (1963). Some aspects of the equilibrium between overground and underground plant parts. Jaarboek van Het Instituut Voor Biologisch En Scheikundig Onderzoek van Landbouwgewassen Wageningen, 31–40.Bulletin, M. P. (2015). Variability of sedimentary organic carbon in patchy seagrass landscapes, (October). https://doi.org/10.1016/j.marpolbul.2015.09.032Caldeira, K., & Wickett, M. E. (2003). Oceanography: Anthropogenic carbon and ocean pH. Nature, 425(6956), 365–365. https://doi.org/10.1038/425365aCostanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., … Van Den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature. https://doi.org/10.1038/387253a0Cousens, R., & Hutchings, M. J. (1983). The relationship between density and mean frond weight in monospecific seaweed stands. Nature. https://doi.org/10.1038/301240a0Creed, J. C. (1997). Morphological variation in the seagrass Halodule wrightii near its southern distributional limit, 59, 163–172.Dawes, C. J., & Lawrence, J. M. (1979). Effects of blade removal on the proximate composition of the rhizome of the seagrass Thalassia testudinum banks ex könig. Aquatic Botany. https://doi.org/10.1016/0304-3770(79)90026-3Dennisonl, C. (1999). Responses of seagrass to nutrients in the Great Barrier Reef, Australia, (Kuhlman 1988).Di Carlo, G., & Kenworthy, W. J. (2008). Evaluation of aboveground and belowground biomass recovery in physically disturbed seagrass beds. Oecologia, 158(2), 285–298. https://doi.org/10.1007/s00442-008-1120-0Díaz, J. M., Barrios, L., & Gomez-López, D. (2003). Las praderas de pastos marinos en Colombia: Estructura y dsitribución de un ecosistema estratégico. https://doi.org/10.13140/2.1.4073.6322Duarte, C. M. (1991). Allometric scaling of seagrass form and productivity. Marine Ecology Progress Series, 77(2–3), 289–300. https://doi.org/10.3354/meps077289Duarte, C M, Savela, R. S., & Fortes, M. D. (2014). Recolonization in a Mixed The Role Dynamics Seagrass Meadow : of Clonal Versus Sexual Processes, 27(5), 770–780.Duarte, Carlos M., Marba, N., Agawin, N., Cebrian, J., Enriquez, S., Fortes, M. D., … Vermaat, J. (1994). Reconstruction of seagrass dynamics - Age determinations and associated tools for the seagrass ecologist. Marine Ecology Progress Series, 107(1–2), 195. https://doi.org/10.3354/meps107195Duarte, Carlos M., Terrados, J., Agawin, N. S. R., Fortes, M. D., Bach, S., & Kenworthy, W. J. (1997). Response of a mixed Philippine seagrass meadow to experimental burial. Marine Ecology Progress Series. https://doi.org/10.3354/meps147285Duarte, Carlos M. (2015). Global Change and the Future Ocean : A Grand Challenge for Marine Sciences Global change and the future ocean : a grand challenge for marine sciences, (August). https://doi.org/10.3389/fmars.2014.00063Duarte, Carlos M, & Chiscano, C. L. (1999). Seagrass biomass and production : a reassessment, 65, 159–174.Duarte, Carlos M, & Gallegos, M. E. (1998). Root production and belowground seagrass biomass, (May 2014). https://doi.org/10.3354/meps171097Duarte, Carlos M, Gallegos, M. E., Gallegos, E., Marba, N., & Hemminga, M. A. (1998). Root production and belowground seagrass biomass, 171(May 2014), 97–108. https://doi.org/10.3354/meps171097Enríquez, S., Marbà, N., Duarte, C. M., & Tussenbroek, B. I. Van. (2001). Effects of seagrass Thalassia testudinum on sediment redox, 219, 149–158.Erftemeijer, P. L. A., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals : A review. Marine Pollution Bulletin, 64(9), 1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008Erftemeijer, P. L. A., Robin, R. R., & Iii, L. (2006). Environmental impacts of dredging on seagrasses : A review, 52, 1553–1572. https://doi.org/10.1016/j.marpolbul.2006.09.006Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., … Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7), 505–509. https://doi.org/10.1038/ngeo1477Fourqurean, J. W., Johnson, B., Kauffman, B. J., Kennedy, H., Lovelock, C. E., Alongi, D. M., … Serrano, O. (2014). Field Sampling of Soil Carbon Pools in Coastal Ecosystems. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves. Tidal Marshes. and Seagrass Meadows, (October), 39–66. https://doi.org/10.13140/2.1.1445.3442Fourqurean, J. W., Powell, G. V. N., Kenworthy, W. J., & Zieman, J. C. (1995). The Effects of Long-Term Manipulation of Nutrient Supply on Competition between the Seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos. https://doi.org/10.2307/3546120Fourqurean, J. W., & Zieman, J. C. (1991). Photosynthesis , respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Marine Ecology Progress Series, 69, 161–170.Fourqurean, J. W., & Zieman, J. C. (2002). Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry, 61(3), 229–245. https://doi.org/10.1023/A:1020293503405Frankignoulle, M., & Bouquegneau, J. (1987). Seasonal variation of the diel carbon budget of a marine macrophyte ecosystem. Marine Ecology Progress Series. https://doi.org/10.3354/meps038197Gallegos, M., Merino, M., Rodriguez, a, Marba, N., & Duarte, C. (1994). Growth patterns and demography of pioneer Caribbean seagrasses Halodule wrightii and Syringodium filiforme. Marine Ecology Progress Series, 109(August 1991), 99–104. https://doi.org/10.3354/meps109099Green, E. P., & Short, F. (2004). World Atlas of Seagrasses. Botanica Marina (Vol. 47). https://doi.org/10.1515/BOT.2004.029Grimsditch, G., Alder, J., & Nakamura, T. (2013). The blue carbon special edition – Introduction and overview. Ocean and Coastal Management, 83, 1–4. https://doi.org/10.1016/j.ocecoaman.2012.04.020Guinotte, J. M., & Fabry, V. J. (2008). Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences. https://doi.org/10.1196/annals.1439.013Gutiérrez-Moreno, C., Marrugo, M., Lozano-Rivera, P., Sierra, P., & Andrade, C. (2011). El Entorno Ambiental del Parque Nacional Natural Corales del Rosario y de San Bernardo.Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Rev. Geophys., 48(4), RG4004. https://doi.org/10.1029/2010RG000345.1.INTRODUCTIONHarlin, M. M. (1981). Nutrient Enrichment of Seagrass Beds in a Rhode Island Coastal Lagoon, 229, 221–229.Hartog, C. Den, & Kuo, J. (2006). Taxonomy and biogeography of seagrasses. In Seagrasses: Biology, Ecology and Conservation (pp. 1–23). https://doi.org/10.1007/978-1-4020-2983-7_1Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. https://doi.org/10.1023/A:1008119611481Hemminga, M. A. (1998). The root = rhizome system of seagrasses : an asset and a burden, 39, 183–196.Hendriks, I. (2013). The role of coastal plant communities for climate change mitigation and adaptation, (November). https://doi.org/10.1038/nclimate1970Hill, V. J., Zimmerman, R. C., Bissett, W. P., Dierssen, H., & Kohler, D. D. R. (2014). Evaluating Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne Remote Sensing in Saint Joseph’s Bay, Florida. Estuaries and Coasts, 37(6), 1467–1489. https://doi.org/10.1007/s12237-013-9764-3Hogarth, P. J. (2012). The biology of mangrove and seagrass. Oxford University Press, (2). https://doi.org/10.1007/s13398-014-0173-7.2Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA., 1–180. Retrieved from thebluecarboninitiative.orgJr, K. L. H., & Valentine, J. F. (2006). Plant – herbivore interactions in seagrass meadows, 330, 420–436. https://doi.org/10.1016/j.jembe.2005.12.044Kaldy, J. E., & Dunton, K. H. (2000). Above- and below-ground production, biomass and reproductive ecology of Thalassia testudinum (turtle grass) in a subtropical coastal lagoon. Marine Ecology Progress Series, 193, 271–283. https://doi.org/10.3354/meps193271Kenov, I. A., Deus, R., Alves, C. N., & Neves, R. (2013). Modelling Seagrass Biomass and Relative Nutrient Content. Journal of Coastal Research, 292, 1470–1476. https://doi.org/10.2112/JCOASTRES-D-13-00047.1Kenworthy, W. J., & Fonseca, M. S. (2006). Light Requirements of Seagrasses Halodule wrightii and Syringodium filiforme Derived from the Relationship between Diffuse Light Attenuation and Maximum Depth Distribution. Estuaries. https://doi.org/10.2307/1352533Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems : A review, 89, 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005Larkum, A. W. D., Orth, R. J., & Duarte, C. M. (2015). Seagrasses: Biology, Ecology and Conservation. Statewide Agricultural Land Use Baseline 2015 (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004Larkum, A. W. D., Orth, R. J., & Durarte, C. M. (2006). SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Seagrasses: Biology, Ecology and Conservation. https://doi.org/10.1007/978-1-4020-2983-7Lau, W. W. Y. (2013). Beyond carbon : Conceptualizing payments for ecosystem services in blue forests on carbon and other marine and coastal ecosystem services. Ocean and Coastal Management, 83, 5–14. https://doi.org/10.1016/j.ocecoaman.2012.03.011Lee, K., Park, S. R., & Kim, Y. K. (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology, 350, 144–175. https://doi.org/10.1016/j.jembe.2007.06.016Long, B. G., Skewes, T. D., & Poiner, I. R. (1994). An efficient method for estimating seagrass biomass. Aquatic Botany, 47(3–4), 277–291. https://doi.org/10.1016/0304-3770(94)90058-2Lonsdale, W. M., & Watkinson, A. R. (1983). Plant Geometry and Self-Thinning. The Journal of Ecology. https://doi.org/10.2307/2259977Macreadie, P. I., Baird, M. E., Trevathan-tackett, S. M., Larkum, A. W. D., & Ralph, P. J. (n.d.). Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment, 83(2), 430–439. https://doi.org/10.1016/j.marpolbul.2013.07.038Marbà, N., & Duarte, C. M. (2001). Growth and sediment space occupation by seagrass Cymodocea nodosa roots, 224, 291–298.Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. (1997). Dynamics of Millenary Organic Deposits Resulting from the Growth of the Mediterranean SeagrassPosidonia oceanica. Estuarine, Coastal and Shelf Science, 44(1), 103–110. https://doi.org/10.1006/ecss.1996.0116Mcleod, E., Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., & Duarte, C. M. (2017). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, (January). https://doi.org/10.1890/110004Mtwana, L., Koch, E. W., Barbier, E. B., & Creed, J. C. (2016). Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0163091Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue carbon. A rapid response assessment. United Nations Environment …, 71 pp. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Blue+carbon:+a+rapid+response+assessment#0%5Cnhttp://www.grida.no/files/publications/blue-carbon/BlueCarbon_screen.pdfRalph, P. J., Durako, M. J., Enríquez, S., Collier, C. J., & Doblin, M. A. (2007). Impact of light limitation on seagrasses, 350, 176–193. https://doi.org/10.1016/j.jembe.2007.06.017Rattanachot, E., & Prathep, A. (2015a). Species-specific effects of seagrass on belowground biomass, redox potential and Pillucina vietnamica (Lucinidae). In Journal of the Marine Biological Association of the United Kingdom. https://doi.org/10.1017/S0025315415000934Rattanachot, E., & Prathep, A. (2015b). Species specific effects of three morphologically different belowground seagrasses on sediment properties. Estuarine, Coastal and Shelf Science, 167, 427–435. https://doi.org/10.1016/j.ecss.2015.10.019Ricart, A. M., York, P. H., Rasheed, M. A., Pérez, M., Romero, J., Bryant, C. V., … Bulletin, M. P. (2015). Variability of sedimentary organic carbon in patchy seagrass landscapes. Marine Pollution Bulletin, 100(1), 476–482. https://doi.org/10.1016/j.marpolbul.2015.09.032Road, A. P. (1987). Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment, 27, 41–57.Romero, J., Pérez, M., Mateo, M. A., & Sala, E. (1994). The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquatic Botany, 47(1), 13–19. https://doi.org/10.1016/0304-3770(94)90044-2Serrano, O., Rozaimi, M., & Lavery, P. S. (2013). Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service, 8(9). https://doi.org/10.1371/journal.pone.0073748Sfriso, A., & Ghetti, P. F. (1998). Seasonal variation in biomass , morphometric parameters and production of seagrasses in the lagoon of Venice, 61, 207–223.Short, F. T., & Duarte, C. M. (2001). Methods for the measurement of seagrass growth and production. Global Seagrass Research Methods, (December 2001), 155–182. https://doi.org/10.1016/B978-044450891-1/50009-8Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Sidik, J., … Zieman, J. C. (2011). Extinction risk assessment of the world ’ s seagrass species. Biological Conservation, 144(7), 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010Short, Frederick, Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity : A bioregional model, 350, 3–20. https://doi.org/10.1016/j.jembe.2007.06.012Short, FT, Dennison, W., & Capone, D. (1990). Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Marine Ecology Progress Series. https://doi.org/10.3354/meps062169Smith, R. D., Dennison, W. C., & Alberte, R. S. (1984). Role of Seagrass Photosynthesis in Root Aerobic Processes ’, 1055–1058.Thomas, S. (2016). Between Tun Mustapha and the deep blue sea : the political ecology of blue carbon in Sabah. Environmental Science and Policy, 55, 20–35. https://doi.org/10.1016/j.envsci.2015.08.017Tilman, D. (1982). Resource competition and community structure. Monographs in Population Biology. https://doi.org/10.2307/4549Tomlinson, P. B. (1974). Vegetative morphology and meristem dependence - The foundation of productivity in seagrasses. Aquaculture. https://doi.org/10.1016/0044-8486(74)90027-1Touchette, B. W. (2007). Seagrass-salinity interactions : Physiological mechanisms used by submersed marine angiosperms for a life at sea, 350, 194–215. https://doi.org/10.1016/j.jembe.2007.05.037Unesco. (2009). Blue Carbon, the rodel of healthy oceans in binding carbon. (G. (Eds). 2009. Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., Grimsditch, Ed.).Unsworth, R. K. F., Collier, C. J., Henderson, G. M., & McKenzie, L. J. (2012). Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters, 7(024026), 9. https://doi.org/10.1088/1748-9326/7/2/024026Vieira, V. M. N. C. S., Lopes, I. E., & Creed, J. C. (2018). The biomass-density relationship in seagrasses and its use as an ecological indicator. BMC Ecology. https://doi.org/10.1186/s12898-018-0200-1Virnstein, R. W., & Carbonara, P. A. (1985). Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian river lagoon, Florida. Aquatic Botany, 23(1), 67–82. https://doi.org/10.1016/0304-3770(85)90021-XWaycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., … Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106Williams, S. (1990). Experimental studies of caribbean seagrass bed development1. Development, 60(4), 449–469.Williams, S. L. (1987). Competition between the seagrasses Thalassia testudin um and Syringodium filiforme in a Caribbean lagoon *, 35, 91–98.Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0126627Zieman, J. C. (1975). Seasonal variation of turtle grass, Thalassia testudinum König, with reference to temperature and salinity effects. Aquatic Botany. https://doi.org/10.1016/0304-3770(75)90016-9Universidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80307/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1032463879.2020.pdf1032463879.2020.pdfTesis de Maestria en Ciencias - Biología - Vega Rojas Juan Sebastian CORREGIDAapplication/pdf2096162https://repositorio.unal.edu.co/bitstream/unal/80307/3/1032463879.2020.pdffc7463eec81cde0df39abb9d73cab7eaMD53THUMBNAIL1032463879.2020.pdf.jpg1032463879.2020.pdf.jpgGenerated Thumbnailimage/jpeg4867https://repositorio.unal.edu.co/bitstream/unal/80307/4/1032463879.2020.pdf.jpg71acf17f2fb460a9bbdcdade7e563a11MD54unal/80307oai:repositorio.unal.edu.co:unal/803072024-07-29 23:12:54.957Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==