Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica

ilutraciones, graficas

Autores:
Mendoza Mejía, Nicolás
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81715
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81715
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud
ASTROCITOS
INFLAMACION
Astrocytes
Inflammation
Modelo a escala genómica
Astrocito
Datos multi-omicos
Enfermedades neurodegenerativas
Transcriptómica
Proteómica
Genome-scale metabolic model
Astrocyte
Lipotoxicity
Neurodegenerative diseases
Transcriptomics
Proteomics
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_b98f14ca17e55606edd04ffd5311b7db
oai_identifier_str oai:repositorio.unal.edu.co:unal/81715
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
dc.title.translated.eng.fl_str_mv Computational modeling of human astrocyte using transcriptomic and proteomic data
title Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
spellingShingle Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
610 - Medicina y salud
ASTROCITOS
INFLAMACION
Astrocytes
Inflammation
Modelo a escala genómica
Astrocito
Datos multi-omicos
Enfermedades neurodegenerativas
Transcriptómica
Proteómica
Genome-scale metabolic model
Astrocyte
Lipotoxicity
Neurodegenerative diseases
Transcriptomics
Proteomics
title_short Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
title_full Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
title_fullStr Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
title_full_unstemmed Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
title_sort Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica
dc.creator.fl_str_mv Mendoza Mejía, Nicolás
dc.contributor.advisor.none.fl_str_mv Pinzón Velasco, Andrés Mauricio
González Santos, Janet
dc.contributor.author.none.fl_str_mv Mendoza Mejía, Nicolás
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Bioinformática y Biología de Sistemas
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud
topic 610 - Medicina y salud
ASTROCITOS
INFLAMACION
Astrocytes
Inflammation
Modelo a escala genómica
Astrocito
Datos multi-omicos
Enfermedades neurodegenerativas
Transcriptómica
Proteómica
Genome-scale metabolic model
Astrocyte
Lipotoxicity
Neurodegenerative diseases
Transcriptomics
Proteomics
dc.subject.lemb.spa.fl_str_mv ASTROCITOS
INFLAMACION
dc.subject.lemb.eng.fl_str_mv Astrocytes
Inflammation
dc.subject.proposal.spa.fl_str_mv Modelo a escala genómica
Astrocito
Datos multi-omicos
Enfermedades neurodegenerativas
Transcriptómica
Proteómica
dc.subject.proposal.eng.fl_str_mv Genome-scale metabolic model
Astrocyte
Lipotoxicity
Neurodegenerative diseases
Transcriptomics
Proteomics
description ilutraciones, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-19T19:56:11Z
dc.date.available.none.fl_str_mv 2022-07-19T19:56:11Z
dc.date.issued.none.fl_str_mv 2022-07-17
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81715
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81715
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv A, S., W, J., Di, W., Dp, J., & X, D. (2018, mayo 1). ADAP-GC 3.2: Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography-High- Resolution Mass Spectrometry Metabolomics Data. Journal of Proteome Research; J Proteome Res. https://doi.org/10.1021/acs.jproteome.7b00633
Alonso, A., Marsal, S., & Julià, A. (2015). Analytical Methods in Untarget- ed Metabolomics: State of the Art in 2015. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00023
Amadio, S., D’Ambrosi, N., Trincavelli, M. L., Tuscano, D., Sancesario, G., Bernar- di, G., Martini, C., & Volonté, C. (2005). Differences in the neurotoxicity profile induced by ATP and ATP γS in cultured cerebellar granule neurons. Neurochem- istry International, 47 (5), 334–342. https://doi.org/10.1016/j.neuint.2005.05.008
Becker, S. A., & Palsson, B. O. (2008). Context-Specific Metabolic Networks Are Consistent with Experiments. PLOS Computational Biology, 4(5), e1000082. https://doi.org/10.1371/journal.pcbi.1000082
Beleites, C., & Sergo, V. (2020). hyperSpec: A package to handle hyperspectral da- ta sets in R. https://cran.r-project.org/web/packages/hyperSpec/hyperSpec.pdf
Bernstein, D. B., Sulheim, S., Almaas, E., & Segrè, D. (2021). Addressing un- certainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 22 (1), 64. https://doi.org/10.1186/s13059-021-02289-z
Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., & Volterra, A. (2001). CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nature Neuroscience, 4(7), 702-710. https://doi.org/10.1038/89490
Bianchi, M. G., Bardelli, D., Chiu, M., & Bussolati, O. (2014). Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cellular and Molecular Life Sciences: CMLS, 71(11), 2001-2015. https://doi.org/10.1007/s00018-013-1484-0
Bleu Knight, V., & Serrano, E. E. (2017). Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures. PeerJ, 2017(1). Scopus. https://doi.org/10.7717/peerj.2829
Böcker, S., Letzel, M. C., Lipták, Z., & Pervukhin, A. (2009). SIRIUS: Decom- posing isotope patterns for metabolite identification. Bioinformatics, 25(2), 218. https://doi.org/10.1093/bioinformatics/btn603
Bond, N. J., Shliaha, P. V., Lilley, K. S., & Gatto, L. (2013). Improving Qualitative and Quantitative Performance for MSE-based Label-free Proteomics. Journal of Proteome Research, 12(6), 2340-2353. https://doi.org/10.1021/pr300776t
Bragin, D. E., Zhou, B., Ramamoorthy, P., Müller, W. S., Connor, J. A., & Shi, H. (2010). Differential changes of glutathione levels in astrocytes and neurons in ischemic brains by two-photon imaging. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 30(4), 734–738. https://doi.org/10.1038/jcbfm.2010
Branzoi, I. V., Iordoc, M., Branzoi, F., Vasilescu-Mirea, R., & Sbarcea, G. (2010). Influence of diamond-like carbon coating on the corrosion resistance of the NITI- NOL shape memory alloy. Surface and Interface Analysis, 42 (6–7), 502–509. https://doi.org/10.1002/sia.3473
Brunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlić, A., Sastry, A., Danielsdottir, A. D., Heinken, A., Noronha, A., Rose, P. W., Burley, S. K., Fleming, R. M. T., Nielsen, J., . . . Palsson, B. O. (2018). Recon3D enables a three- dimensional view of gene variation in human metabolism. Nature Biotechnology, 36 (3), 272–281. https://doi.org/10.1038/nbt.4072
Ca, S., G, O., Ej, W., C, Q., Sa, T., Tr, B., De, C., R, A., & G, S. (2005, diciembre). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring; Ther Drug Monit. https://doi.org/10.1097/01.ftd.0000179845.53213.39
Carroll, A. J., Badger, M. R., & Harvey Millar, A. (2010). The Metabolome- Express Project: Enabling web-based processing, analysis and transparent dis- semination of GC/MS metabolomics datasets. BMC Bioinformatics, 11(1), 376. https://doi.org/10.1186/1471-2105-11-376
Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D., & Ploix, C. C. (2006). CNS immune privilege: Hiding in plain sight. Immunological Reviews, 213, 48. https://doi.org/10.1111/j.1600-065X.2006.00441.x
Chai, L. E., Law, C. K., Mohamad, M. S., Chong, C. K., Choon, Y. W., Deris, S., & Illias, R. M. (2014). Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data. The Malaysian Journal of Medical Sciences : MJMS, 21 (2), 20.
Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kess- ner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A., Brusniak, M.- Y., Paulse, C., Creasy, D., . . . Mallick, P. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918-920. https://doi.org/10.1038/nbt.2377
Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and inte- grative metabolomics analysis. Nucleic Acids Research, 46(W1), W486-W494. https://doi.org/10.1093/nar/gky310
Conesa, A. (2014). The STATegra project: New statistical tools for anal- ysis and integration of diverse omics data. EMBnet.Journal, 20(A), 768. https://doi.org/10.14806/ej.20.A.768
Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPher- son, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17, 13. https://doi.org/10.1186/s13059-016-0881-8
Costa, C., Maraschin, M., & Rocha, M. (2016). An R package for the integrated analysis of metabolomics and spectral data. Computer Methods and Programs in Biomedicine, 129, 117-124. https://doi.org/10.1016/j.cmpb.2016.01.008
D, S., I, S., Ne, I., A, H., & Cp, P. (2014, febrero). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews. Genetics; Nat Rev Genet. https://doi.org/10.1038/nrg3642
Deutsch, E. W., Albar, J. P., Binz, P.-A., Eisenacher, M., Jones, A. R., Mayer, G., Omenn, G. S., Orchard, S., Vizcaíno, J. A., & Hermjakob, H. (2015). Development of data representation standards by the human proteome organization proteomics standards initiative. Journal of the American Medical Informatics Association : JAMIA, 22(3), 495-506. https://doi.org/10.1093/jamia/ocv001
Diaz-Ortiz, M. E., & Chen-Plotkin, A. S. (2020). Omics in neurodegenerative disease: Hope or hype? Trends in Genetics : TIG, 36 (3), 152. https://doi.org/10.1016/j.tig.2019.12.002
Ds, W., Yd, F., A, M., Ac, G., K, L., R, V.-F., T, S., D, J., C, L., N, K., Z, S., E, L., N, A., M, B., S, S., D, A., Y, L., H, B., J, G., . . . A, S. (2018, abril 1). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research; Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1089
Ebrahim, A., Brunk, E., Tan, J., O’Brien, E. J., Kim, D., Szubin, R., Lerman, J. A., Lechner, A., Sastry, A., Bordbar, A., Feist, A. M., & Palsson, B. O. (2016). Multi-omic data integration enables discovery of hidden biological regularities. Nature Communications, 7(1), 13091. https://doi.org/10.1038/ncomms13091
F, N., Y, G., Ea, C., S, M., L, L., & M, H.-M. (2012, enero 9). MSeasy: Unsuper- vised and untargeted GC-MS data processing. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/bts427
Fang, X., Wallqvist, A., & Reifman, J. (2012). Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia. PLOS Com- putational Biology, 8(9), e1002688. https://doi.org/10.1371/journal.pcbi.1002688
Fang, X., Lloyd, C. J., & Palsson, B. O. (2020). Reconstructing organisms in silico: Genome-scale models and their emerging applications. Nature Reviews Microbiology, 18 (12), 731–743. https://doi.org/10.1038/s41579-020-00440-4
Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpep- per, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., . . . Vos, T. (2019). Global, regional, and nation- al burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459-480. https://doi.org/10.1016/S1474-4422(18)30499-X
Fiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., Sumner, L. W., Goodacre, R., Hardy, N. W., Taylor, C., Fostel, J., Kristal, B., Kaddurah-Daouk, R., Mendes, P., van Ommen, B., Lindon, J. C., & Sansone, S.-A. (2007). The metabolomics standards initiative (MSI). Metabolomics, 3(3), 175-178. https://doi.org/10.1007/s11306-007-0070-6
Finkel, L., Millán Arroyo, Crespo, C., & Garcés, M. (2016). Estudio sobre las enfermedades neurodegenerativas en España y su impacto económico y social. https://doi.org/10.13140/RG.2.1.3269.8009
Flanagan, B., McDaid, L., Wade, J., Wong-Lin, K., & Harkin, J. (2018). A computational study of astrocytic glutamate influence on post- synaptic neuronal excitability. PLOS Computational Biology, 14 (4), e1006040. https://doi.org/10.1371/journal.pcbi.1006040
Fondi, M., & Liò, P. (2015). Multi -omics and metabolic modelling pipelines: Challenges and tools for systems microbiology. Microbiological Research, 171, 52-64. https://doi.org/10.1016/j.micres.2015.01.003
Gatto, L. (2020, abril 27). Human Protein Atlas in R. Bioconductor. https://www.bioconductor.org/packages/release/bioc/vignettes/hpar/inst/doc/hpar.html
Gatto, L., & Christoforou, A. (2014). Using R and Bioconductor for proteomics data analysis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1844(1, Part A), 42-51. https://doi.org/10.1016/j.bbapap.2013.04.032
Gevorgyan, A., Poolman, M. G., & Fell, D. A. (2008). Detection of stoichiomet- ric inconsistencies in biomolecular models. Bioinformatics, 24 (19), 2245–2251. https://doi.org/10.1093/bioinformatics/btn425
Ghazalpour, A., Bennett, B., Petyuk, V. A., Orozco, L., Hagopian, R., Mungrue, I. N., Farber, C. R., Sinsheimer, J., Kang, H. M., Furlotte, N., Park, C. C., Wen, P.-Z., Brewer, H., Weitz, K., Camp, D. G., Pan, C., Yordanova, R., Neuhaus, I., Tilford, C., . . . Lusis, A. J. (2011). Comparative analysis of pro- teome and transcriptome variation in mouse. PLoS Genetics, 7 (6), e1001393. https://doi.org/10.1371/journal.pgen.1001393
González-Giraldo, Y., Forero, D. A., Echeverria, V., Garcia-Segura, L. M., & Barreto, G. E. (2019). Tibolone attenuates inflammatory response by palmitic acid and preserves mitochondrial membrane potential in astrocytic cells through estrogen receptor beta. Molecular and Cellular Endocrinology, 486, 65–78. https://doi.org/10.1016/j.mce.2019.02.017
González, J., Pinzón, A., Angarita-Rodríguez, A., Aristizabal, A. F., Barreto, G. E., & Martín-Jiménez, C. (2020). Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Frontiers in Neuroinformatics, 14. Scopus. https://doi.org/10.3389/fninf.2020.00035
Goodrich, G. S., Kabakov, A. Y., Hameed, M. Q., Dhamne, S. C., Rosenberg, P. A., & Rotenberg, A. (2013). Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. Journal of Neurotrauma, 30(16), 1434-1441. https://doi.org/10.1089/neu.2012.2712
Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019). Current status and applications of genome-scale metabolic models. Genome Biology, 20. https://doi.org/10.1186/s13059-019-1730-3
Guebel, D. V., & Torres, N. V. (2013). Principal Component Analy- sis (PCA). In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yoko- ta (Eds.), Encyclopedia of Systems Biology (pp. 1739–1743). Springer. https://doi.org/10.1007/978-1-4419-9863-7_1276
Haas, R., Zelezniak, A., Iacovacci, J., Kamrad, S., Townsend, S., & Ralser, M. (2017). Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Current Opinion in Systems Biology, 6, 37-45. https://doi.org/10.1016/j.coisb.2017.08.009
Hamby, M. E., Coppola, G., Ao, Y., Geschwind, D. H., Khakh, B. S., & Sofroniew, M. V. (2012). Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(42), 14489-14510. https://doi.org/10.1523/JNEUROSCI.1256-12.2012
Harada, K., Kamiya, T., & Tsuboi, T. (2016). Gliotransmit- ter release from astrocytes: Functional, developmental and patho- logical implications in the brain. Frontiers in Neuroscience, 9. https://www.frontiersin.org/article/10.3389/fnins.2015.00499
Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G., Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., . . . Fleming, R. M. T. (2019). Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nature Protocols, 14 (3), 639–702. https://doi.org/10.1038/s41596-018-0098-2
HmdbQuery. (s. f.). Bioconductor. Recuperado 16 de septiembre de 2020, de http://bioconductor.org/packages/hmdbQuery/
Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., & Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18 (suppl_1), S96–S104. https://doi.org/10.1093/bioinformatics/18.suppl_1.S96
Iglesias, J., Morales, L., & Barreto, G. E. (2017). Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Molecular Neurobiology, 54(4), 2518-2538. Scopus. https://doi.org/10.1007/s12035-016-9833-2
IMAT: an integrative metabolic analysis tool | Bioinformatics | Oxford Academic. (s. f.). Recuperado 20 de agosto de 2020, de https://academic.oup.com/bioinformatics/article/26/24/3140/290045
Jeffrey Kantor (2021). Stoichiometry Tools (https://www.mathworks.com/matlabcentral/fileexchange/29 MATLAB Central File Exchange. Retrieved December 29, 2021.
Jensen, C. J., Massie, A., & De Keyser, J. (2013). Immune players in the CNS: The astrocyte. Journal of Neuroimmune Pharmacology: The Of- ficial Journal of the Society on NeuroImmune Pharmacology, 8(4), 824-839. https://doi.org/10.1007/s11481-013-9480-6
Jerby, L., Shlomi, T., & Ruppin, E. (2010). Computational reconstruction of tissue- specific metabolic models: Application to human liver metabolism. Molecular Systems Biology, 6(1), 401. https://doi.org/10.1038/msb.2010.56
Jha, M. K., Park, D. H., Kook, H., Lee, I.-K., Lee, W.-H., & Suk, K. (2016). Metabolic Control of Glia-Mediated Neuroinflammation. Current Alzheimer Re- search, 13(4), 387-402. https://doi.org/10.2174/1567205013666151116124755
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A re- view and recent developments. Philosophical Transactions of the Royal Soci- ety A: Mathematical, Physical and Engineering Sciences, 374 (2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
Jr, C. E. D. (2014). Optimal Algorithm for Metabolomics Classification and Feature Selection varies by Dataset. International Journal of Biology, 7(1), p100. https://doi.org/10.5539/ijb.v7n1p100
Karahalil, B. (2016, octubre 31). Overview of Systems Bi- ology and Omics Technologies. Current Medicinal Chemistry. https://www.eurekaselect.com/145809/article
Karpievitch, Y. V., Dabney, A. R., & Smith, R. D. (2012). Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinformatics, 13 (16), S5. https://doi.org/10.1186/1471-2105-13-S16-S5
Kim, M., Rai, N., Zorraquino, V., & Tagkopoulos, I. (2016). Multi-omics integra- tion accurately predicts cellular state in unexplored conditions for Escherichia coli. Nature Communications, 7(1), 13090. https://doi.org/10.1038/ncomms13090
Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009
Lange, S. C., Bak, L. K., Waagepetersen, H. S., Schousboe, A., & Norenberg, M. D. (2012). Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease. Neurochemical research, 37(11), 2569-2588. https://doi.org/10.1007/s11064-012-0868-0
Layé, S. (2010). Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukotrienes and Essential Fatty Acids, 82(4-6), 295-303. Scopus. https://doi.org/10.1016/j.plefa.2010.02.006
Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. https://doi.org/10.1186/1471-2105-12-323
Ludvigsen, M., & Honoré, B. (2018). Transcriptomics and Pro- teomics: Integration? In ELS (pp. 1–7). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0006188.pub2
Machado, D., & Herrgård, M. (2014). Systematic Evaluation of Meth- ods for Integration of Transcriptomic Data into Constraint-Based Mod- els of Metabolism. PLOS Computational Biology, 10(4), e1003580. https://doi.org/10.1371/journal.pcbi.1003580
Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt—PubMed. (s. f.). Recuperado 16 de septiembre de 2020, de https://pubmed.ncbi.nlm.nih.gov/19617889/
Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., Walley, A. J., Froguel, P., Carlsson, L. M., Uhlen, M., & Nielsen, J. (2013). Integra- tion of clinical data with a genome-scale metabolic model of the human adipocyte. Molecular Systems Biology, 9, 649. https://doi.org/10.1038/msb.2013.5
Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., & Nielsen, J. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nature Communications, 5, 3083. https://doi.org/10.1038/ncomms4083
Martín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E., & González, J. (2017). Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network. Frontiers in Aging Neuroscience, 9. https://doi.org/10.3389/fnagi.2017.00023
Martin-Jiménez, C., González, J., Vesga, D., Aristizabal, A., & Barreto, G. E. (2020). Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes. Neurotoxicity Research, 38 (3), 585–595. https://doi.org/10.1007/s12640-020-00247-4
Masid, M., Ataman, M., & Hatzimanikatis, V. (2020). Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nature Communications, 11(1), 2821. https://doi.org/10.1038/s41467-020-16549-2
McBean, G. J. (2017). Cysteine, Glutathione, and Thiol Redox Balance in Astro- cytes. Antioxidants, 6 (3). https://doi.org/10.3390/antiox6030062
mixOmics: An R package for ‘omics feature selection and multiple data integration. (s. f.). Recuperado 16 de septiembre de 2020, de https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005752
N, L., Ja, D., Ja, T., V, R., Ai, R., Bm, S., Jd, H., Mn, G., Rm, S., & C, K. (2013, abril 15). EBSeq: An empirical Bayes hierarchical model for infer- ence in RNA-seq experiments. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/btt087
Navid, A., & Almaas, E. (2012). Genome-level transcription data of Yersinia pestis analyzed with a New metabolic constraint-based approach. BMC Systems Biology, 6(1), 150. https://doi.org/10.1186/1752-0509-6-150
Neurodegenerative diseases—Latest research and news | Na- ture. (s. f.). Recuperado 12 de septiembre de 2020, de https://www.nature.com/subjects/neurodegenerative-diseases
Oliveira, A. de A. B., Melo, N. de F. M., Vieira, É. dos S., Nogueira, P. A. S., Coope, A., Velloso, L. A., Dezonne, R. S., Ueira-Vieira, C., Botelho, F. V., Gomes, J. de A. S., & Zanon, R. G. (2018). Palmitate treated-astrocyte conditioned medium contains increased glutathione and interferes in hypotha- lamic synaptic network in vitro. Neurochemistry International, 120, 140-148. https://doi.org/10.1016/j.neuint.2018.08.010
Osorio, D., Pinzón, A., Martín-Jiménez, C., Barreto, G. E., & González, J. (2020). Multiple Pathways Involved in Palmitic Acid-Induced Tox- icity: A System Biology Approach. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.01410
Osorio, D., Botero, K., Gonzalez, J., & Pinzon, A. (2016). “exp2flux” Convert Gene EXPression Data to FBA FLUXes. https://doi.org/10.13140/RG.2.2.14401.56168
Pandey, V., Hadadi, N., & Hatzimanikatis, V. (2019). Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermo- dynamically consistent metabolic models. PLOS Computational Biology, 15(5), e1007036. https://doi.org/10.1371/journal.pcbi.1007036
Pfefferkorn, C., Kallfass, C., Lienenklaus, S., Spanier, J., Kalinke, U., Rieder, M., Conzelmann, K.-K., Michiels, T., & Staeheli, P. (2016). Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain. Journal of Virology, 90(4), 2031-2038. https://doi.org/10.1128/JVI.02979-15
Phatnani, H., & Maniatis, T. (2015a). Astrocytes in Neurodegen- erative Disease. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a020628
Phatnani, H., & Maniatis, T. (2015b). Astrocytes in Neurodegen- erative Disease. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a020628
Prah, J., Winters, A., Chaudhari, K., Hersh, J., Liu, R., & Yang, S.-H. (2019). A Novel Serum Free Primary Astrocyte Culture Method that Mim- ic Quiescent Astrocyte Phenotype. Journal of Neuroscience Methods, 320, 50. https://doi.org/10.1016/j.jneumeth.2019.03.013
R, A., Sg, V.-B., & K, R. (2011, agosto 15). Metab: An R pack- age for high-throughput analysis of metabolomics data generat- ed by GC-MS. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/btr379
R, W., G, W., & F, M. (2014, enero 9). metaMS: An open-source pipeline for GC- MS-based untargeted metabolomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences; J Chromatogr B Analyt Technol Biomed Life Sci. https://doi.org/10.1016/j.jchromb.2014.02.051
Ramus, C., Hovasse, A., Marcellin, M., Hesse, A.-M., Mouton-Barbosa, E., Bouys- sié, D., Vaca, S., Carapito, C., Chaoui, K., Bruley, C., Garin, J., Cianférani, S., Ferro, M., Van Dorssaeler, A., Burlet-Schiltz, O., Schaeffer, C., Couté, Y., & Gonzalez de Peredo, A. (2016). Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. Journal of Proteomics, 132, 51-62. https://doi.org/10.1016/j.jprot.2015.11.011
Robinson, M. (s. f.). flagme: Analysis of Metabolomics GC/MS Data ver- sion 1.44.0 from Bioconductor. Recuperado 16 de septiembre de 2020, de https://rdrr.io/bioc/flagme/
Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. Methuen.
Sajitz-Hermstein, M., Töpfer, N., Kleessen, S., Fernie, A. R., & Nikoloski, Z. (2016). iReMet-flux: Constraint-based approach for integrating relative metabolite levels into a stoichiometric metabolic models. Bioinformatics, 32(17), i755-i762. https://doi.org/10.1093/bioinformatics/btw465
Schellenberger, J., Lewis, N. E., & Palsson, B. Ø. (2011). Elimination of Ther- modynamically Infeasible Loops in Steady-State Metabolic Models. Biophysical Journal, 100 (3), 544–553. https://doi.org/10.1016/j.bpj.2010.12.3707
Schmidt, B. J., Ebrahim, A., Metz, T. O., Adkins, J. N., Palsson, B. Ø., & Hyduke, D. R. (2013). GIM3E: Condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics, 29(22), 2900- 2908. https://doi.org/10.1093/bioinformatics/btt493
Segrè, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences, 99(23), 15112-15117. https://doi.org/10.1073/pnas.232349399
Shinfuku, Y., Sorpitiporn, N., Sono, M., Furusawa, C., Hirasawa, T., & Shimizu, H. (2009). Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microbial Cell Factories, 8 (1), 43. https://doi.org/10.1186/1475-2859-8-43
Skogerson, K., Wohlgemuth, G., Barupal, D. K., & Fiehn, O. (2011). The volatile compound BinBase mass spectral database. BMC Bioinformatics, 12(1), 321. https://doi.org/10.1186/1471-2105-12-321
Stare, T., Stare, K., Weckwerth, W., Wienkoop, S., & Gruden, K. (2017). Com- parison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection. Proteomes, 5 (3). https://doi.org/10.3390/proteomes5030014
Swainston, N., Smallbone, K., Mendes, P., Kell, D. B., & Paton, N. W. (2011). The SuBliMinaL Toolbox: Automating steps in the reconstruction of metabolic networks. Journal of Integrative Bioinformatics, 8 (2), 187–203. https://doi.org/10.1515/jib-2011-186
Swainston, N., Smallbone, K., Hefzi, H., Dobson, P. D., Brewer, J., Hanscho, M., Zielinski, D. C., Ang, K. S., Gardiner, N. J., Gutierrez, J. M., Kyriakopou- los, S., Lakshmanan, M., Li, S., Liu, J. K., Martínez, V. S., Orellana, C. A., Quek, L.-E., Thomas, A., Zanghellini, J., . . . Mendes, P. (2016). Recon 2.2: From reconstruction to model of human metabolism. Metabolomics, 12 (7), 109. https://doi.org/10.1007/s11306-016-1051-4
Tejera, N., Crossman, L., Pearson, B., Stoakes, E., Nasher, F., Djeghout, B., Poolman, M., Wain, J., & Singh, D. (2020). Genome-Scale Metabolic Model Driven Design of a Defined Medium for Campylobacter jejuni M1cam. Frontiers in Microbiology, 11, 1072. https://doi.org/10.3389/fmicb.2020.01072
Thiele, I., Vlassis, N., & Fleming, R. M. T. (2014). fastGapFill: Efficient gap filling in metabolic networks. Bioinformatics (Oxford, England), 30 (17), 2529–2531. https://doi.org/10.1093/bioinformatics/btu321
Välikangas, T., Suomi, T., & Elo, L. L. (2018). A comprehensive evalua- tion of popular proteomics software workflows for label-free proteome quan- tification and imputation. Briefings in Bioinformatics, 19 (6), 1344–1355. https://doi.org/10.1093/bib/bbx054
Väremo, L., Scheele, C., Broholm, C., Mardinoglu, A., Kampf, C., Asplund, A., Nookaew, I., Uhlén, M., Pedersen, B. K., & Nielsen, J. (2015). Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Reports, 11 (6), 921–933. https://doi.org/10.1016/j.celrep.2015.04.010
Vieira, V., Ferreira, J., Rodrigues, R., Liu, F., & Rocha, M. (2019). A Model Integration Pipeline for the Improvement of Human Genome-Scale Metabolic Reconstructions. Journal of Integrative Bioinformatics, 16 (1). https://doi.org/10.1515/jib-2018-0068
Yang, Z., & Xiong, H.-R. (2012). Culture Conditions and Types of Growth Media for Mammalian Cells. In Biomedical Tissue Culture. IntechOpen. https://doi.org/10.5772/52301
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 73 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Bioinformática
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81715/1/1032480535.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81715/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81715/3/1032480535.2022.pdf.jpg
bitstream.checksum.fl_str_mv cbf065207c3bb7086ac052d9fab1b020
8153f7789df02f0a4c9e079953658ab2
510b39845a95cfb83990babd7b709016
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089744236150784
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pinzón Velasco, Andrés Mauricio366c2eddf6aa24434ee55e57da235448González Santos, Janetf00be7494d76326b444918bcbab1c802Mendoza Mejía, Nicolás5231b4fb72ee9c70952bf65ad7fdfb9bGrupo de Investigación en Bioinformática y Biología de Sistemas2022-07-19T19:56:11Z2022-07-19T19:56:11Z2022-07-17https://repositorio.unal.edu.co/handle/unal/81715Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilutraciones, graficasAunque la astrogliosis está relacionada con eventos neuroprotectores; su neurotoxicidad se ha correlacionado con enfermedades neurodegenerativas y otros desórdenes (Sofroniew & Vinters, 2010). Lo que ha aumentado la atención en el estudio de estas células. Sin embargo, los procesos de señalización y actividad metabólica relacionados con la neurotoxicidad aún son poco conocidos (González et al., 2020; Sofroniew, 2015), por lo que se han empleado modelos metabólicos a escala genómica (GEM) de astrocito para estudiar estas respuestas. Por lo tanto, en este trabajo se hace la contextualización de un GEM de astrocito humano integrando datos multiomicos con una nueva aproximación en combinación con el algoritmo iMAT, permitiendo incluir información de diversos procesos biológicos en el modelo (Karahalil, 2016; Vivek-Ananth & Samal, 2016). En consecuencia, el GEM resultante presenta una mayor cobertura del metabolismo y una capacidad predictiva superior en los escenarios simulados coincidiendo con lo reportado en la literatura. Además, durante la reconstrucción de este modelo se generaron dos algoritmos, uno permite integrar el proteoma y transcriptoma, mientras el otro corrige los desbalances estequiométricos presentes en el modelo. Finalmente, este modelo tiene el potencial de acelerar el estudio de la astrogliosis, permitiendo descifrar la relación entre el metabolismo del astrocito y la aparición de enfermedades neurodegenerativas mediante la generación de hipótesis y la predicción del desempeño de fármacos. (Texto tomado de la fuente)Even though astrogliosis is related to neuroprotective events; its neurotoxicity has been correlated with neurodegenerative diseases and other disorders (Sofroniew & Vinters, 2010). Which have shifted the attention towards the study of these cells. However, the related signaling processes and metabolic activity related to the neurotoxicity are still poorly known (González et al., 2020; Sofroniew, 2015), thus genome-scale metabolic models (GEMs) of astrocytes have been used to study this response, as they allow modelling metabolic interac- tions (Martín-Jiménez et al., 2017; Osorio et al., 2020). Therefore, in this work an astrocyte’s GEM is contextualized by integrating multi-omic data with a new approach in combination with the algorithm iMAT, which allows including information from various biological processes in the model (Karahalil, 2016; Vivek-Ananth & Samal, 2016). Thus, the resulting GEM presets a greater coverage of the metabolic net- work and a higher predictive capability in the simulated scenarios, which is in line with the reported data in the literature. In addition, during the reconstruction of this model two algorithms were generated, one integrates the proteome and transcriptome together, meanwhile the other corrects the stoichiometric imbalances present in the model. Finally, this model has the potential to accelerate the study of astrogliosis allowing to decipher the relationship between astrocyte metabolism and the appearance of neurodegenerative diseases by generating hypotheses and predicting drug performance.MaestríaMagíster en BioinformáticaBiología de sistemasxii, 73 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en BioinformáticaDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y saludASTROCITOSINFLAMACIONAstrocytesInflammationModelo a escala genómicaAstrocitoDatos multi-omicosEnfermedades neurodegenerativasTranscriptómicaProteómicaGenome-scale metabolic modelAstrocyteLipotoxicityNeurodegenerative diseasesTranscriptomicsProteomicsModelado computacional de astrocito humano usando datos de transcriptómica y proteómicaComputational modeling of human astrocyte using transcriptomic and proteomic dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA, S., W, J., Di, W., Dp, J., & X, D. (2018, mayo 1). ADAP-GC 3.2: Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography-High- Resolution Mass Spectrometry Metabolomics Data. Journal of Proteome Research; J Proteome Res. https://doi.org/10.1021/acs.jproteome.7b00633Alonso, A., Marsal, S., & Julià, A. (2015). Analytical Methods in Untarget- ed Metabolomics: State of the Art in 2015. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00023Amadio, S., D’Ambrosi, N., Trincavelli, M. L., Tuscano, D., Sancesario, G., Bernar- di, G., Martini, C., & Volonté, C. (2005). Differences in the neurotoxicity profile induced by ATP and ATP γS in cultured cerebellar granule neurons. Neurochem- istry International, 47 (5), 334–342. https://doi.org/10.1016/j.neuint.2005.05.008Becker, S. A., & Palsson, B. O. (2008). Context-Specific Metabolic Networks Are Consistent with Experiments. PLOS Computational Biology, 4(5), e1000082. https://doi.org/10.1371/journal.pcbi.1000082Beleites, C., & Sergo, V. (2020). hyperSpec: A package to handle hyperspectral da- ta sets in R. https://cran.r-project.org/web/packages/hyperSpec/hyperSpec.pdfBernstein, D. B., Sulheim, S., Almaas, E., & Segrè, D. (2021). Addressing un- certainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 22 (1), 64. https://doi.org/10.1186/s13059-021-02289-zBezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., & Volterra, A. (2001). CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nature Neuroscience, 4(7), 702-710. https://doi.org/10.1038/89490Bianchi, M. G., Bardelli, D., Chiu, M., & Bussolati, O. (2014). Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cellular and Molecular Life Sciences: CMLS, 71(11), 2001-2015. https://doi.org/10.1007/s00018-013-1484-0Bleu Knight, V., & Serrano, E. E. (2017). Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures. PeerJ, 2017(1). Scopus. https://doi.org/10.7717/peerj.2829Böcker, S., Letzel, M. C., Lipták, Z., & Pervukhin, A. (2009). SIRIUS: Decom- posing isotope patterns for metabolite identification. Bioinformatics, 25(2), 218. https://doi.org/10.1093/bioinformatics/btn603Bond, N. J., Shliaha, P. V., Lilley, K. S., & Gatto, L. (2013). Improving Qualitative and Quantitative Performance for MSE-based Label-free Proteomics. Journal of Proteome Research, 12(6), 2340-2353. https://doi.org/10.1021/pr300776tBragin, D. E., Zhou, B., Ramamoorthy, P., Müller, W. S., Connor, J. A., & Shi, H. (2010). Differential changes of glutathione levels in astrocytes and neurons in ischemic brains by two-photon imaging. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 30(4), 734–738. https://doi.org/10.1038/jcbfm.2010Branzoi, I. V., Iordoc, M., Branzoi, F., Vasilescu-Mirea, R., & Sbarcea, G. (2010). Influence of diamond-like carbon coating on the corrosion resistance of the NITI- NOL shape memory alloy. Surface and Interface Analysis, 42 (6–7), 502–509. https://doi.org/10.1002/sia.3473Brunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlić, A., Sastry, A., Danielsdottir, A. D., Heinken, A., Noronha, A., Rose, P. W., Burley, S. K., Fleming, R. M. T., Nielsen, J., . . . Palsson, B. O. (2018). Recon3D enables a three- dimensional view of gene variation in human metabolism. Nature Biotechnology, 36 (3), 272–281. https://doi.org/10.1038/nbt.4072Ca, S., G, O., Ej, W., C, Q., Sa, T., Tr, B., De, C., R, A., & G, S. (2005, diciembre). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring; Ther Drug Monit. https://doi.org/10.1097/01.ftd.0000179845.53213.39Carroll, A. J., Badger, M. R., & Harvey Millar, A. (2010). The Metabolome- Express Project: Enabling web-based processing, analysis and transparent dis- semination of GC/MS metabolomics datasets. BMC Bioinformatics, 11(1), 376. https://doi.org/10.1186/1471-2105-11-376Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D., & Ploix, C. C. (2006). CNS immune privilege: Hiding in plain sight. Immunological Reviews, 213, 48. https://doi.org/10.1111/j.1600-065X.2006.00441.xChai, L. E., Law, C. K., Mohamad, M. S., Chong, C. K., Choon, Y. W., Deris, S., & Illias, R. M. (2014). Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data. The Malaysian Journal of Medical Sciences : MJMS, 21 (2), 20.Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kess- ner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A., Brusniak, M.- Y., Paulse, C., Creasy, D., . . . Mallick, P. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918-920. https://doi.org/10.1038/nbt.2377Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and inte- grative metabolomics analysis. Nucleic Acids Research, 46(W1), W486-W494. https://doi.org/10.1093/nar/gky310Conesa, A. (2014). The STATegra project: New statistical tools for anal- ysis and integration of diverse omics data. EMBnet.Journal, 20(A), 768. https://doi.org/10.14806/ej.20.A.768Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPher- son, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17, 13. https://doi.org/10.1186/s13059-016-0881-8Costa, C., Maraschin, M., & Rocha, M. (2016). An R package for the integrated analysis of metabolomics and spectral data. Computer Methods and Programs in Biomedicine, 129, 117-124. https://doi.org/10.1016/j.cmpb.2016.01.008D, S., I, S., Ne, I., A, H., & Cp, P. (2014, febrero). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews. Genetics; Nat Rev Genet. https://doi.org/10.1038/nrg3642Deutsch, E. W., Albar, J. P., Binz, P.-A., Eisenacher, M., Jones, A. R., Mayer, G., Omenn, G. S., Orchard, S., Vizcaíno, J. A., & Hermjakob, H. (2015). Development of data representation standards by the human proteome organization proteomics standards initiative. Journal of the American Medical Informatics Association : JAMIA, 22(3), 495-506. https://doi.org/10.1093/jamia/ocv001Diaz-Ortiz, M. E., & Chen-Plotkin, A. S. (2020). Omics in neurodegenerative disease: Hope or hype? Trends in Genetics : TIG, 36 (3), 152. https://doi.org/10.1016/j.tig.2019.12.002Ds, W., Yd, F., A, M., Ac, G., K, L., R, V.-F., T, S., D, J., C, L., N, K., Z, S., E, L., N, A., M, B., S, S., D, A., Y, L., H, B., J, G., . . . A, S. (2018, abril 1). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research; Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1089Ebrahim, A., Brunk, E., Tan, J., O’Brien, E. J., Kim, D., Szubin, R., Lerman, J. A., Lechner, A., Sastry, A., Bordbar, A., Feist, A. M., & Palsson, B. O. (2016). Multi-omic data integration enables discovery of hidden biological regularities. Nature Communications, 7(1), 13091. https://doi.org/10.1038/ncomms13091F, N., Y, G., Ea, C., S, M., L, L., & M, H.-M. (2012, enero 9). MSeasy: Unsuper- vised and untargeted GC-MS data processing. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/bts427Fang, X., Wallqvist, A., & Reifman, J. (2012). Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia. PLOS Com- putational Biology, 8(9), e1002688. https://doi.org/10.1371/journal.pcbi.1002688Fang, X., Lloyd, C. J., & Palsson, B. O. (2020). Reconstructing organisms in silico: Genome-scale models and their emerging applications. Nature Reviews Microbiology, 18 (12), 731–743. https://doi.org/10.1038/s41579-020-00440-4Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpep- per, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., . . . Vos, T. (2019). Global, regional, and nation- al burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459-480. https://doi.org/10.1016/S1474-4422(18)30499-XFiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., Sumner, L. W., Goodacre, R., Hardy, N. W., Taylor, C., Fostel, J., Kristal, B., Kaddurah-Daouk, R., Mendes, P., van Ommen, B., Lindon, J. C., & Sansone, S.-A. (2007). The metabolomics standards initiative (MSI). Metabolomics, 3(3), 175-178. https://doi.org/10.1007/s11306-007-0070-6Finkel, L., Millán Arroyo, Crespo, C., & Garcés, M. (2016). Estudio sobre las enfermedades neurodegenerativas en España y su impacto económico y social. https://doi.org/10.13140/RG.2.1.3269.8009Flanagan, B., McDaid, L., Wade, J., Wong-Lin, K., & Harkin, J. (2018). A computational study of astrocytic glutamate influence on post- synaptic neuronal excitability. PLOS Computational Biology, 14 (4), e1006040. https://doi.org/10.1371/journal.pcbi.1006040Fondi, M., & Liò, P. (2015). Multi -omics and metabolic modelling pipelines: Challenges and tools for systems microbiology. Microbiological Research, 171, 52-64. https://doi.org/10.1016/j.micres.2015.01.003Gatto, L. (2020, abril 27). Human Protein Atlas in R. Bioconductor. https://www.bioconductor.org/packages/release/bioc/vignettes/hpar/inst/doc/hpar.htmlGatto, L., & Christoforou, A. (2014). Using R and Bioconductor for proteomics data analysis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1844(1, Part A), 42-51. https://doi.org/10.1016/j.bbapap.2013.04.032Gevorgyan, A., Poolman, M. G., & Fell, D. A. (2008). Detection of stoichiomet- ric inconsistencies in biomolecular models. Bioinformatics, 24 (19), 2245–2251. https://doi.org/10.1093/bioinformatics/btn425Ghazalpour, A., Bennett, B., Petyuk, V. A., Orozco, L., Hagopian, R., Mungrue, I. N., Farber, C. R., Sinsheimer, J., Kang, H. M., Furlotte, N., Park, C. C., Wen, P.-Z., Brewer, H., Weitz, K., Camp, D. G., Pan, C., Yordanova, R., Neuhaus, I., Tilford, C., . . . Lusis, A. J. (2011). Comparative analysis of pro- teome and transcriptome variation in mouse. PLoS Genetics, 7 (6), e1001393. https://doi.org/10.1371/journal.pgen.1001393González-Giraldo, Y., Forero, D. A., Echeverria, V., Garcia-Segura, L. M., & Barreto, G. E. (2019). Tibolone attenuates inflammatory response by palmitic acid and preserves mitochondrial membrane potential in astrocytic cells through estrogen receptor beta. Molecular and Cellular Endocrinology, 486, 65–78. https://doi.org/10.1016/j.mce.2019.02.017González, J., Pinzón, A., Angarita-Rodríguez, A., Aristizabal, A. F., Barreto, G. E., & Martín-Jiménez, C. (2020). Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Frontiers in Neuroinformatics, 14. Scopus. https://doi.org/10.3389/fninf.2020.00035Goodrich, G. S., Kabakov, A. Y., Hameed, M. Q., Dhamne, S. C., Rosenberg, P. A., & Rotenberg, A. (2013). Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. Journal of Neurotrauma, 30(16), 1434-1441. https://doi.org/10.1089/neu.2012.2712Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019). Current status and applications of genome-scale metabolic models. Genome Biology, 20. https://doi.org/10.1186/s13059-019-1730-3Guebel, D. V., & Torres, N. V. (2013). Principal Component Analy- sis (PCA). In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yoko- ta (Eds.), Encyclopedia of Systems Biology (pp. 1739–1743). Springer. https://doi.org/10.1007/978-1-4419-9863-7_1276Haas, R., Zelezniak, A., Iacovacci, J., Kamrad, S., Townsend, S., & Ralser, M. (2017). Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Current Opinion in Systems Biology, 6, 37-45. https://doi.org/10.1016/j.coisb.2017.08.009Hamby, M. E., Coppola, G., Ao, Y., Geschwind, D. H., Khakh, B. S., & Sofroniew, M. V. (2012). Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(42), 14489-14510. https://doi.org/10.1523/JNEUROSCI.1256-12.2012Harada, K., Kamiya, T., & Tsuboi, T. (2016). Gliotransmit- ter release from astrocytes: Functional, developmental and patho- logical implications in the brain. Frontiers in Neuroscience, 9. https://www.frontiersin.org/article/10.3389/fnins.2015.00499Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G., Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., . . . Fleming, R. M. T. (2019). Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nature Protocols, 14 (3), 639–702. https://doi.org/10.1038/s41596-018-0098-2HmdbQuery. (s. f.). Bioconductor. Recuperado 16 de septiembre de 2020, de http://bioconductor.org/packages/hmdbQuery/Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., & Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18 (suppl_1), S96–S104. https://doi.org/10.1093/bioinformatics/18.suppl_1.S96Iglesias, J., Morales, L., & Barreto, G. E. (2017). Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Molecular Neurobiology, 54(4), 2518-2538. Scopus. https://doi.org/10.1007/s12035-016-9833-2IMAT: an integrative metabolic analysis tool | Bioinformatics | Oxford Academic. (s. f.). Recuperado 20 de agosto de 2020, de https://academic.oup.com/bioinformatics/article/26/24/3140/290045Jeffrey Kantor (2021). Stoichiometry Tools (https://www.mathworks.com/matlabcentral/fileexchange/29 MATLAB Central File Exchange. Retrieved December 29, 2021.Jensen, C. J., Massie, A., & De Keyser, J. (2013). Immune players in the CNS: The astrocyte. Journal of Neuroimmune Pharmacology: The Of- ficial Journal of the Society on NeuroImmune Pharmacology, 8(4), 824-839. https://doi.org/10.1007/s11481-013-9480-6Jerby, L., Shlomi, T., & Ruppin, E. (2010). Computational reconstruction of tissue- specific metabolic models: Application to human liver metabolism. Molecular Systems Biology, 6(1), 401. https://doi.org/10.1038/msb.2010.56Jha, M. K., Park, D. H., Kook, H., Lee, I.-K., Lee, W.-H., & Suk, K. (2016). Metabolic Control of Glia-Mediated Neuroinflammation. Current Alzheimer Re- search, 13(4), 387-402. https://doi.org/10.2174/1567205013666151116124755Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A re- view and recent developments. Philosophical Transactions of the Royal Soci- ety A: Mathematical, Physical and Engineering Sciences, 374 (2065), 20150202. https://doi.org/10.1098/rsta.2015.0202Jr, C. E. D. (2014). Optimal Algorithm for Metabolomics Classification and Feature Selection varies by Dataset. International Journal of Biology, 7(1), p100. https://doi.org/10.5539/ijb.v7n1p100Karahalil, B. (2016, octubre 31). Overview of Systems Bi- ology and Omics Technologies. Current Medicinal Chemistry. https://www.eurekaselect.com/145809/articleKarpievitch, Y. V., Dabney, A. R., & Smith, R. D. (2012). Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinformatics, 13 (16), S5. https://doi.org/10.1186/1471-2105-13-S16-S5Kim, M., Rai, N., Zorraquino, V., & Tagkopoulos, I. (2016). Multi-omics integra- tion accurately predicts cellular state in unexplored conditions for Escherichia coli. Nature Communications, 7(1), 13090. https://doi.org/10.1038/ncomms13090Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009Lange, S. C., Bak, L. K., Waagepetersen, H. S., Schousboe, A., & Norenberg, M. D. (2012). Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease. Neurochemical research, 37(11), 2569-2588. https://doi.org/10.1007/s11064-012-0868-0Layé, S. (2010). Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukotrienes and Essential Fatty Acids, 82(4-6), 295-303. Scopus. https://doi.org/10.1016/j.plefa.2010.02.006Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. https://doi.org/10.1186/1471-2105-12-323Ludvigsen, M., & Honoré, B. (2018). Transcriptomics and Pro- teomics: Integration? In ELS (pp. 1–7). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0006188.pub2Machado, D., & Herrgård, M. (2014). Systematic Evaluation of Meth- ods for Integration of Transcriptomic Data into Constraint-Based Mod- els of Metabolism. PLOS Computational Biology, 10(4), e1003580. https://doi.org/10.1371/journal.pcbi.1003580Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt—PubMed. (s. f.). Recuperado 16 de septiembre de 2020, de https://pubmed.ncbi.nlm.nih.gov/19617889/Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., Walley, A. J., Froguel, P., Carlsson, L. M., Uhlen, M., & Nielsen, J. (2013). Integra- tion of clinical data with a genome-scale metabolic model of the human adipocyte. Molecular Systems Biology, 9, 649. https://doi.org/10.1038/msb.2013.5Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., & Nielsen, J. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nature Communications, 5, 3083. https://doi.org/10.1038/ncomms4083Martín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E., & González, J. (2017). Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network. Frontiers in Aging Neuroscience, 9. https://doi.org/10.3389/fnagi.2017.00023Martin-Jiménez, C., González, J., Vesga, D., Aristizabal, A., & Barreto, G. E. (2020). Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes. Neurotoxicity Research, 38 (3), 585–595. https://doi.org/10.1007/s12640-020-00247-4Masid, M., Ataman, M., & Hatzimanikatis, V. (2020). Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nature Communications, 11(1), 2821. https://doi.org/10.1038/s41467-020-16549-2McBean, G. J. (2017). Cysteine, Glutathione, and Thiol Redox Balance in Astro- cytes. Antioxidants, 6 (3). https://doi.org/10.3390/antiox6030062mixOmics: An R package for ‘omics feature selection and multiple data integration. (s. f.). Recuperado 16 de septiembre de 2020, de https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005752N, L., Ja, D., Ja, T., V, R., Ai, R., Bm, S., Jd, H., Mn, G., Rm, S., & C, K. (2013, abril 15). EBSeq: An empirical Bayes hierarchical model for infer- ence in RNA-seq experiments. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/btt087Navid, A., & Almaas, E. (2012). Genome-level transcription data of Yersinia pestis analyzed with a New metabolic constraint-based approach. BMC Systems Biology, 6(1), 150. https://doi.org/10.1186/1752-0509-6-150Neurodegenerative diseases—Latest research and news | Na- ture. (s. f.). Recuperado 12 de septiembre de 2020, de https://www.nature.com/subjects/neurodegenerative-diseasesOliveira, A. de A. B., Melo, N. de F. M., Vieira, É. dos S., Nogueira, P. A. S., Coope, A., Velloso, L. A., Dezonne, R. S., Ueira-Vieira, C., Botelho, F. V., Gomes, J. de A. S., & Zanon, R. G. (2018). Palmitate treated-astrocyte conditioned medium contains increased glutathione and interferes in hypotha- lamic synaptic network in vitro. Neurochemistry International, 120, 140-148. https://doi.org/10.1016/j.neuint.2018.08.010Osorio, D., Pinzón, A., Martín-Jiménez, C., Barreto, G. E., & González, J. (2020). Multiple Pathways Involved in Palmitic Acid-Induced Tox- icity: A System Biology Approach. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.01410Osorio, D., Botero, K., Gonzalez, J., & Pinzon, A. (2016). “exp2flux” Convert Gene EXPression Data to FBA FLUXes. https://doi.org/10.13140/RG.2.2.14401.56168Pandey, V., Hadadi, N., & Hatzimanikatis, V. (2019). Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermo- dynamically consistent metabolic models. PLOS Computational Biology, 15(5), e1007036. https://doi.org/10.1371/journal.pcbi.1007036Pfefferkorn, C., Kallfass, C., Lienenklaus, S., Spanier, J., Kalinke, U., Rieder, M., Conzelmann, K.-K., Michiels, T., & Staeheli, P. (2016). Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain. Journal of Virology, 90(4), 2031-2038. https://doi.org/10.1128/JVI.02979-15Phatnani, H., & Maniatis, T. (2015a). Astrocytes in Neurodegen- erative Disease. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a020628Phatnani, H., & Maniatis, T. (2015b). Astrocytes in Neurodegen- erative Disease. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a020628Prah, J., Winters, A., Chaudhari, K., Hersh, J., Liu, R., & Yang, S.-H. (2019). A Novel Serum Free Primary Astrocyte Culture Method that Mim- ic Quiescent Astrocyte Phenotype. Journal of Neuroscience Methods, 320, 50. https://doi.org/10.1016/j.jneumeth.2019.03.013R, A., Sg, V.-B., & K, R. (2011, agosto 15). Metab: An R pack- age for high-throughput analysis of metabolomics data generat- ed by GC-MS. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/btr379R, W., G, W., & F, M. (2014, enero 9). metaMS: An open-source pipeline for GC- MS-based untargeted metabolomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences; J Chromatogr B Analyt Technol Biomed Life Sci. https://doi.org/10.1016/j.jchromb.2014.02.051Ramus, C., Hovasse, A., Marcellin, M., Hesse, A.-M., Mouton-Barbosa, E., Bouys- sié, D., Vaca, S., Carapito, C., Chaoui, K., Bruley, C., Garin, J., Cianférani, S., Ferro, M., Van Dorssaeler, A., Burlet-Schiltz, O., Schaeffer, C., Couté, Y., & Gonzalez de Peredo, A. (2016). Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. Journal of Proteomics, 132, 51-62. https://doi.org/10.1016/j.jprot.2015.11.011Robinson, M. (s. f.). flagme: Analysis of Metabolomics GC/MS Data ver- sion 1.44.0 from Bioconductor. Recuperado 16 de septiembre de 2020, de https://rdrr.io/bioc/flagme/Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. Methuen.Sajitz-Hermstein, M., Töpfer, N., Kleessen, S., Fernie, A. R., & Nikoloski, Z. (2016). iReMet-flux: Constraint-based approach for integrating relative metabolite levels into a stoichiometric metabolic models. Bioinformatics, 32(17), i755-i762. https://doi.org/10.1093/bioinformatics/btw465Schellenberger, J., Lewis, N. E., & Palsson, B. Ø. (2011). Elimination of Ther- modynamically Infeasible Loops in Steady-State Metabolic Models. Biophysical Journal, 100 (3), 544–553. https://doi.org/10.1016/j.bpj.2010.12.3707Schmidt, B. J., Ebrahim, A., Metz, T. O., Adkins, J. N., Palsson, B. Ø., & Hyduke, D. R. (2013). GIM3E: Condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics, 29(22), 2900- 2908. https://doi.org/10.1093/bioinformatics/btt493Segrè, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences, 99(23), 15112-15117. https://doi.org/10.1073/pnas.232349399Shinfuku, Y., Sorpitiporn, N., Sono, M., Furusawa, C., Hirasawa, T., & Shimizu, H. (2009). Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microbial Cell Factories, 8 (1), 43. https://doi.org/10.1186/1475-2859-8-43Skogerson, K., Wohlgemuth, G., Barupal, D. K., & Fiehn, O. (2011). The volatile compound BinBase mass spectral database. BMC Bioinformatics, 12(1), 321. https://doi.org/10.1186/1471-2105-12-321Stare, T., Stare, K., Weckwerth, W., Wienkoop, S., & Gruden, K. (2017). Com- parison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection. Proteomes, 5 (3). https://doi.org/10.3390/proteomes5030014Swainston, N., Smallbone, K., Mendes, P., Kell, D. B., & Paton, N. W. (2011). The SuBliMinaL Toolbox: Automating steps in the reconstruction of metabolic networks. Journal of Integrative Bioinformatics, 8 (2), 187–203. https://doi.org/10.1515/jib-2011-186Swainston, N., Smallbone, K., Hefzi, H., Dobson, P. D., Brewer, J., Hanscho, M., Zielinski, D. C., Ang, K. S., Gardiner, N. J., Gutierrez, J. M., Kyriakopou- los, S., Lakshmanan, M., Li, S., Liu, J. K., Martínez, V. S., Orellana, C. A., Quek, L.-E., Thomas, A., Zanghellini, J., . . . Mendes, P. (2016). Recon 2.2: From reconstruction to model of human metabolism. Metabolomics, 12 (7), 109. https://doi.org/10.1007/s11306-016-1051-4Tejera, N., Crossman, L., Pearson, B., Stoakes, E., Nasher, F., Djeghout, B., Poolman, M., Wain, J., & Singh, D. (2020). Genome-Scale Metabolic Model Driven Design of a Defined Medium for Campylobacter jejuni M1cam. Frontiers in Microbiology, 11, 1072. https://doi.org/10.3389/fmicb.2020.01072Thiele, I., Vlassis, N., & Fleming, R. M. T. (2014). fastGapFill: Efficient gap filling in metabolic networks. Bioinformatics (Oxford, England), 30 (17), 2529–2531. https://doi.org/10.1093/bioinformatics/btu321Välikangas, T., Suomi, T., & Elo, L. L. (2018). A comprehensive evalua- tion of popular proteomics software workflows for label-free proteome quan- tification and imputation. Briefings in Bioinformatics, 19 (6), 1344–1355. https://doi.org/10.1093/bib/bbx054Väremo, L., Scheele, C., Broholm, C., Mardinoglu, A., Kampf, C., Asplund, A., Nookaew, I., Uhlén, M., Pedersen, B. K., & Nielsen, J. (2015). Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Reports, 11 (6), 921–933. https://doi.org/10.1016/j.celrep.2015.04.010Vieira, V., Ferreira, J., Rodrigues, R., Liu, F., & Rocha, M. (2019). A Model Integration Pipeline for the Improvement of Human Genome-Scale Metabolic Reconstructions. Journal of Integrative Bioinformatics, 16 (1). https://doi.org/10.1515/jib-2018-0068Yang, Z., & Xiong, H.-R. (2012). Culture Conditions and Types of Growth Media for Mammalian Cells. In Biomedical Tissue Culture. IntechOpen. https://doi.org/10.5772/52301EstudiantesInvestigadoresORIGINAL1032480535.2022.pdf1032480535.2022.pdfTesis de Maestría en Bioinformáticaapplication/pdf3112760https://repositorio.unal.edu.co/bitstream/unal/81715/1/1032480535.2022.pdfcbf065207c3bb7086ac052d9fab1b020MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81715/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1032480535.2022.pdf.jpg1032480535.2022.pdf.jpgGenerated Thumbnailimage/jpeg4232https://repositorio.unal.edu.co/bitstream/unal/81715/3/1032480535.2022.pdf.jpg510b39845a95cfb83990babd7b709016MD53unal/81715oai:repositorio.unal.edu.co:unal/817152023-08-06 23:03:35.413Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK