A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm
Although scholars have conducted numerous researches on content-based image retrieval and obtained great achievements, they make little progress in studying remote sensing image retrieval. Both theoretical and application systems are immature. Since remote sensing images are characterized by large d...
- Autores:
-
Zeng, Rui
Wang, Yingyan
Wang, Wanliang
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/63561
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/63561
http://bdigital.unal.edu.co/64007/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
Bayesian network
Co-occurrence region
Remote sensing image retrieval
red bayesiana
región de coocurrencia
recuperación de imágenes por teledetección.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b98a298d67309ce9c98c328dc5e1cc99 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/63561 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm |
title |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm |
spellingShingle |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm 55 Ciencias de la tierra / Earth sciences and geology Bayesian network Co-occurrence region Remote sensing image retrieval red bayesiana región de coocurrencia recuperación de imágenes por teledetección. |
title_short |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm |
title_full |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm |
title_fullStr |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm |
title_full_unstemmed |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm |
title_sort |
A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm |
dc.creator.fl_str_mv |
Zeng, Rui Wang, Yingyan Wang, Wanliang |
dc.contributor.author.spa.fl_str_mv |
Zeng, Rui Wang, Yingyan Wang, Wanliang |
dc.subject.ddc.spa.fl_str_mv |
55 Ciencias de la tierra / Earth sciences and geology |
topic |
55 Ciencias de la tierra / Earth sciences and geology Bayesian network Co-occurrence region Remote sensing image retrieval red bayesiana región de coocurrencia recuperación de imágenes por teledetección. |
dc.subject.proposal.spa.fl_str_mv |
Bayesian network Co-occurrence region Remote sensing image retrieval red bayesiana región de coocurrencia recuperación de imágenes por teledetección. |
description |
Although scholars have conducted numerous researches on content-based image retrieval and obtained great achievements, they make little progress in studying remote sensing image retrieval. Both theoretical and application systems are immature. Since remote sensing images are characterized by large data volume, broad coverage, vague themes and rich semantics, the research results on natural images and medical images cannot be directly used in remote sensing image retrieval. Even perfect content-based remote sensing image retrieval systems have many difficulties with data organization, storage and management, feature description and extraction, similarity measurement, relevance feedback, network service mode, and system structure design and implementation. This paper proposes a remote sensing image retrieval algorithm that combines co-occurrence region based Bayesian network image retrieval with average high-frequency signal strength. By Bayesian networks, it establishes correspondence relationships between images and semantics, thereby realizing semantic-based retrieval of remote sensing images. In the meantime, integrated region matching is introduced for iterative retrieval, which effectively improves the precision of semantic retrieval. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T21:54:06Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T21:54:06Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2339-3459 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/63561 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/64007/ |
identifier_str_mv |
ISSN: 2339-3459 |
url |
https://repositorio.unal.edu.co/handle/unal/63561 http://bdigital.unal.edu.co/64007/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/esrj/article/view/66107 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal Earth Sciences Research Journal |
dc.relation.references.spa.fl_str_mv |
Zeng, Rui and Wang, Yingyan and Wang, Wanliang (2018) A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm. Earth Sciences Research Journal, 22 (1). pp. 29-35. ISSN 2339-3459 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/63561/1/66107-380283-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/63561/2/66107-380283-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
b5d439a652b04ccaf6797aab6cc40933 7d5ba5f2f3ff90ff92b8a498ba5a6b20 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089929902260224 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zeng, Ruibd64f46e-40f4-47cd-a3f1-6dca1388a6cd300Wang, Yingyan26b52969-285c-457c-9e4f-bcea3690e436300Wang, Wanliangff0ca174-effb-439b-ab44-56753c63cdfe3002019-07-02T21:54:06Z2019-07-02T21:54:06Z2018-01-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63561http://bdigital.unal.edu.co/64007/Although scholars have conducted numerous researches on content-based image retrieval and obtained great achievements, they make little progress in studying remote sensing image retrieval. Both theoretical and application systems are immature. Since remote sensing images are characterized by large data volume, broad coverage, vague themes and rich semantics, the research results on natural images and medical images cannot be directly used in remote sensing image retrieval. Even perfect content-based remote sensing image retrieval systems have many difficulties with data organization, storage and management, feature description and extraction, similarity measurement, relevance feedback, network service mode, and system structure design and implementation. This paper proposes a remote sensing image retrieval algorithm that combines co-occurrence region based Bayesian network image retrieval with average high-frequency signal strength. By Bayesian networks, it establishes correspondence relationships between images and semantics, thereby realizing semantic-based retrieval of remote sensing images. In the meantime, integrated region matching is introduced for iterative retrieval, which effectively improves the precision of semantic retrieval.A pesar de que muchos investigadores han realizado numerosos trabajos sobre la consulta de imágenes mediante ejemplo y han obtenido grandes logros, poco se ha avanzado en la recuperación de imágenes por teledetección. Tanto la teoría como la aplicación de los sistemas son inmaduros. Ya que las imágenes por teledetección se caracterizan por un gran volumen de información, amplia cobertura, temas difusos y semántica abundante, los resultados de las investigaciones en imágenes naturales e imágenes médicas estos no pueden ser usados directamente en la recuperación de imágenes por teledetección. Incluso en una consulta perfecta de imágenes mediante ejemplo, los sistemas tienen muchas dificultades con la organización de información, almacenamiento y manejo, descripción de características y extracción, medición de similitudes, retroalimentación relevante, modo de servicio de red y diseño e implementación del sistema estructural. Este artículo propone un algoritmo de recuperación de imágenes por teledetección que combina la coocurrencia local de una red bayesiana de recuperación de imagénes con el promedio de potencia de la señal de alta frecuencia. Por las redes bayesianas, se establecen las relaciones de correspondencia entre imágenes y semántica, además de permitir la recuperación de imágenes de teledetección a través de la semántica. Mientras tanto, se desarrolló el módulo de región integrada para la recuperación repetitiva, lo que mejora efectivamente la precisión de la recuperación semántica.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/66107Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalZeng, Rui and Wang, Yingyan and Wang, Wanliang (2018) A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm. Earth Sciences Research Journal, 22 (1). pp. 29-35. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyBayesian networkCo-occurrence regionRemote sensing image retrievalred bayesianaregión de coocurrenciarecuperación de imágenes por teledetección.A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithmArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL66107-380283-1-PB.pdfapplication/pdf1626613https://repositorio.unal.edu.co/bitstream/unal/63561/1/66107-380283-1-PB.pdfb5d439a652b04ccaf6797aab6cc40933MD51THUMBNAIL66107-380283-1-PB.pdf.jpg66107-380283-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7309https://repositorio.unal.edu.co/bitstream/unal/63561/2/66107-380283-1-PB.pdf.jpg7d5ba5f2f3ff90ff92b8a498ba5a6b20MD52unal/63561oai:repositorio.unal.edu.co:unal/635612023-04-22 23:05:12.988Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |