Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)

Ilustraciones, tablas, fotografías

Autores:
Fernández Paz, Jessica Alejandra
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81345
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81345
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Absorción
Cadmio
Crecimiento de planta
plant growth
Theobroma cacao
Theobroma cacao
heavy metal
physiological parameters
growth
Metal pesado
Parámetros fisiológicos
Crecimiento
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_b96e639d6ca332498148c19247913805
oai_identifier_str oai:repositorio.unal.edu.co:unal/81345
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
dc.title.translated.eng.fl_str_mv Physiological effect of cadmium (Cd2+) absorption on cocoa accessions (Theobroma cacao L.)
title Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
spellingShingle Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
630 - Agricultura y tecnologías relacionadas
Absorción
Cadmio
Crecimiento de planta
plant growth
Theobroma cacao
Theobroma cacao
heavy metal
physiological parameters
growth
Metal pesado
Parámetros fisiológicos
Crecimiento
title_short Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
title_full Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
title_fullStr Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
title_full_unstemmed Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
title_sort Efecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)
dc.creator.fl_str_mv Fernández Paz, Jessica Alejandra
dc.contributor.advisor.none.fl_str_mv Rodriguez Medina, Caren Dayana
dc.contributor.author.none.fl_str_mv Fernández Paz, Jessica Alejandra
dc.contributor.educationalvalidator.none.fl_str_mv Mejía de Tafur, María Sara
dc.contributor.researchgroup.spa.fl_str_mv Mejoramiento genético de cacao
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Absorción
Cadmio
Crecimiento de planta
plant growth
Theobroma cacao
Theobroma cacao
heavy metal
physiological parameters
growth
Metal pesado
Parámetros fisiológicos
Crecimiento
dc.subject.agrovoc.none.fl_str_mv Absorción
Cadmio
Crecimiento de planta
plant growth
dc.subject.armarc.none.fl_str_mv Theobroma cacao
dc.subject.proposal.eng.fl_str_mv Theobroma cacao
heavy metal
physiological parameters
growth
dc.subject.proposal.spa.fl_str_mv Metal pesado
Parámetros fisiológicos
Crecimiento
description Ilustraciones, tablas, fotografías
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-03-23T22:13:46Z
dc.date.available.none.fl_str_mv 2022-03-23T22:13:46Z
dc.date.issued.none.fl_str_mv 2022-02-23
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81345
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81345
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmad, P., Alyemeni, M. N., Wijaya, L., Alam, P., Ahanger, M. A., & Alamri, S. A. (2017). Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science, 63(13), 1889–1899. https://doi.org/10.1080/03650340.2017.1313406
Aranzazu, F., Martínez, N., Palencia, G., Coronado, R., & Rincon, D. (2009). Mejoramiento genético para incrementar la producción y productividad del sistema de cacao en Colombia.
Arao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Science and Plant Nutrition, 54(4), 555–559. https://doi.org/10.1111/j.1747-0765.2008.00269.x
Arnon, D. & Stout, P. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 1939 Apr;14(2):371-5. doi: 10.1104/pp.14.2.371.
Arvelo, M. A., González, D., Maroto, S., Delgado, T., & Montoya, P. (2017). Manual técnico del cultivo de cacao Buenas prácticas para América Latina. In Instituto Interamericano de Cooperación para la Agricultura (IICA).
Astolfi, S., Zuchi, S., Chiani, A., & Passera, C. (2003). In vivo and in vitro effects of cadmium on H+ATPase activity of plasma membrane vesicles from oat (Avena sativa L.) roots. Journal of Plant Physiology, 160(4), 387–393. https://doi.org/10.1078/0176-1617-00832
Azcon, J, & Talón, M. (2008). Fundamentos de fisiología vegetal. In Journal of Chemical Information and Modeling (Segunda, Vol. 53, Issue 9). McGRAW-HILL. http://www.elsevier.com/locate/scp
Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
Barceló, J., & Poschenrieder, C. (1992). RESPUESTAS DE LAS PLANTAS A LA CONTAMINACION POR METALES PESADOS. Suelo y Plantas, 2, 345–361. https://www.researchgate.net/publication/285841974
Bravo, D., Pardo, S., Benavides, J., Rengifo, G., Braissant, O., & Leon, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698
Bravo, I., Arboleda, C., & Martín, F. (2014). Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agronomica, 63(2), 164–172. https://doi.org/10.15446/acag.v63n2.39569
Carvalho, A., Cannata, M. G., Carvalho, R., Ribeiro Bastos, A. R., Puggina Freitas, M., & dos Santos Augusto, A. (2012). Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: Nutrient contents and translocation. Ecotoxicology and Environmental Safety, 86, 176–181. https://doi.org/10.1016/j.ecoenv.2012.09.011
Chang, Y. Sen, Chang, Y. J., Lin, C. T., Lee, M. C., Wu, C. W., & Lai, Y. H. (2013). Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata. International Biodeterioration and Biodegradation, 85, 709–714. https://doi.org/10.1016/j.ibiod.2013.05.021
Cho, U., & Seo, N. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168, 113–120. https://doi.org/10.1016/j.plantsci.2004.07.021
Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N., & Ok, Y. S. (2014). Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Critical Reviews in Plant Sciences, 33(5), 374–391. https://doi.org/10.1080/07352689.2014.903747
Clemens, S., Palmgren, M., & Kramer, U. (2002). Long way ahead: understanding and engineering plant metal accumulation. Plant Science, 7, 309–315. https://doi.org/10.1016/j.plantsci.2014.12.008
Cooper, J., Bolbot, J. A., Saini, S., & Setford, S. J. (2007). Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water, Air, and Soil Pollution, 179(1–4), 183–195. https://doi.org/10.1007/s11270-006-9223-x
Daymond, A. J., & Hadley, P. (2004). The effects of temperature and light integral on early vegetative growth and chlorophyll fluorescence of four contrasting genotypes of cacao (Theobroma cacao). Ann. Appl. Biol., 145, 257–262.
Degryse, F., Buekers, J., & Smolders, E. (2004). Radio-labile cadmium and zinc in soils as affected by pH and source of contamination. European Journal of Soil Science, 55(1), 113–122. https://doi.org/10.1046/j.1351-0754.2003.0554.x
Dias, M. C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B., & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35(4), 1281–1289. https://doi.org/10.1007/s11738-012-1167-8
Domínguez, M. T., Marañón, T., Murillo, J. M., & Redondo-Gómez, S. (2011). Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Chemosphere, 83(8), 1166–1174. https://doi.org/10.1016/j.chemosphere.2011.01.002
Ekmekçi, Y., Tanyolaç, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611. https://doi.org/10.1016/j.jplph.2007.01.017
Ekmekçi, Y., Tanyolaç, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611. https://doi.org/10.1016/j.jplph.2007.01.017
Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61–68. https://doi.org/10.1016/j.sajb.2015.11.006
Fedecacao. (2012). Guía técnica para el cultivo del cacao.
Fedecacao, F. N. D. C. (2004). Cacaocultura en el Departamento De Cundinamarca. http://www.fedecacao.com.co/portal/images/recourses/pub_doctecnicos/fedecacao-pub-doc_08B.pdf
Fedecacao, (2021). Economia nacional. Federación nacional de cacaoteros. Recuperado de https://www.fedecacao.com.co/economianacional.
Fernández, J. (2018). Estudio del efecto de diferentes líneas monospóricas de Rhizophagus irregularis en la respuesta del cacao al cadmio bajo condiciones de déficit hídrico en vivero. Universidad Nacional de Colombia. Tesis.
Fernández, R., Bertrand, A., Reis, R., Mourato, M. P., Martins, L. L., & González, A. (2013). Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. Journal of Hazardous Materials, 244–245, 555–562. https://doi.org/10.1016/j.jhazmat.2012.10.044
Fuhrer, J. (1982). Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans ( Phaseolus vulgaris L.) . Plant Physiology, 70(1), 162–167. https://doi.org/10.1104/pp.70.1.162
Ge, W., Jiao, Y., Zou, J., Jiang, W., & Liu, D. (2015). Ultrastructural and photosynthetic response of Populus 107 leaves to cadmium stress. Polish Journal of Environmental Studies, 24(2), 519–527. https://doi.org/10.15244/pjoes/27814
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
Gillet, S., Decottignies, P., Chardonnet, S., & Le Maréchal, P. (2006). Cadmium response and redoxin targets in Chlamydomonas reinhardtii: A proteomic approach. Photosynthesis Research, 89(2), 201–211. https://doi.org/10.1007/s11120-006-9108-2
Goldschmidt, E. E. (2014). Plant grafting: New mechanisms, evolutionary implications. Frontiers in Plant Science, 5(DEC), 1–9. https://doi.org/10.3389/fpls.2014.00727
González, S., Perales, H., & Salcedo, M. (2008). LA FLUORESCENCIA DE LA CLOROFILA a COMO HERRAMIENTA EN LA INVESTIGACIÓN DE EFECTOS TÓXICOS EN EL APARATO FOTOSINTÉTICO DE PLANTAS Y ALGAS* (Vol. 27, Issue 4).
Guerinot ML. The ZIP family of metal transporters. Biochim Biophys Acta.1;1465(1-2):190-8. doi: 10.1016/s0005-2736(00)00138-3.
Hassan, W., Bano, R., Bashir, S., & Aslam, Z. (2016). Cadmium toxicity and soil biological index under potato (Solanum tuberosum L.) cultivation. Soil Research, 54(4), 460–468. https://doi.org/10.1071/SR14360
He, J. Y., Zhu, C., Ren, Y. F., Yan, Y. P., Chang, C., Jiang, D. A., & Sun, Z. X. (2008). Uptake, Subcellular Distribution, and Chemical Forms of Cadmium in Wild-Type and Mutant Rice1 1 Project supported by the National Natural Science Foundation of China (No. 30671255), the National Key Technologies R&D Program of China during the 11th Five-Y. Pedosphere, 18(3), 371–377. https://doi.org/10.1016/S1002-0160(08)60027-2
He, J, Ren, Y., Zhu, C., Yan, Y., & Jiang, D. (2008). Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica, 46(3), 466–470. https://doi.org/10.1007/s11099-008-0080-2
He, Jiali, Zhou, J., Wan, H., Zhuang, X., Li, H., Qin, S., & Lyu, D. (2020). Rootstock–Scion Interaction Affects Cadmium Accumulation and Tolerance of Malus. Frontiers in Plant Science, 11(August), 1–14. https://doi.org/10.3389/fpls.2020.01264
He, S., Yang, X., He, Z., & Baligar, V. (2017). Morphological and Physiological Responses of Plants to Cadmium Toxicity: A Review. Pedosphere, 27(3), 421–438. https://doi.org/10.1016/S1002-0160(17)60339-4
Hernández, L., & Cooke, D. (1997). Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. Journal of Experimental Botany, 48(312), 1375–1381. https://doi.org/10.1093/jxb/48.7.1375
Huang, B., Xin, J., Dai, H., Liu, A., Zhou, W., Yi, Y., & Liao, K. (2015). Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environmental Science and Pollution Research, 22(2), 1151–1159. https://doi.org/10.1007/s11356-014-3405-7
Hussain, A., Ali, S., Rizwan, M., Rehman, M. Z. ur, Qayyum, M. F., Wang, H., & Rinklebe, J. (2019). Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and Environmental Safety, 173(August 2018), 156–164. https://doi.org/10.1016/j.ecoenv.2019.01.118
Hussain, A., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Yasmeen, T., Hayat, M. T., Hussain, I., Ali, Q., & Hussain, S. M. (2018). Morphological and Physiological Responses of Plants to Cadmium Toxicity. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814864-8.00003-6
ICCO. (2019). Quarterly Bulletin of Cocoa Statistics. Production of cocoa (Vol. XLV). https://doi.org/.1037//0033-2909.I26.1.78
IICA. (2006). Guía técnica Cultivo de Cacao. In Plan De Agricultura Familiar.
Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20(1), 1–10. https://doi.org/10.1016/j.sjbs.2012.11.004
Jácome, D. (2017). Efecto de la inoculación de hongos formadores de micorrizas arbusculares (HFMA) sobre un sistema suelo-planta de cacao en suelos contaminados con cadmio en etapa de vivero. Universidad Nacional de Colombia.
Jaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades del cacao. In Corporación Colombiana de Investigafación Agropecuaria AGROSAVIA. Colombia
Jiao, Y., Zou, J., Ge, W., Jiang, W., & Liu, D. (2015). Physiological and ultrastructural effects of cadmium on poplar (Populus x euramericana) leaves. Baltic Forestry, 21(1), 106–113.
Jimenez, C. (2015). Global legal status of cadmium in cacao (Theobroma cacao): a fantasy or a reality Estado legal mundial do cádmio em cacau (Theobroma cacau): fantasia ou realidade (Vol. 10, Issue 1).
Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920–931. https://doi.org/10.1016/j.jplph.2006.11.014
León, A. M., Palma, J. M., Corpas, F. J., Gómez, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., Del Río, L. A., & Sandalio, L. M. (2002). Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiology and Biochemistry, 40(10), 813–820. https://doi.org/10.1016/S0981-9428(02)01444-4
Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365
Li, X., Zhou, Q., Sun, X., & Ren, W. (2016). Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chemistry, 194, 101–110. https://doi.org/10.1016/j.foodchem.2015.07.114
Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology (Vol. 148, Issue C). https://doi.org/10.1016/0076-6879(87)48036-1
Lin, L., Yang, D., Wang, X., Liao, M., Wang, Z., Lv, X., Tang, F., Liang, D., Xia, H., Lai, Y., & Tang, Y. (2016). Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum. Environmental Monitoring and Assessment, 188(2), 1–11. https://doi.org/10.1007/s10661-015-5084-3
Liu, J. G., Liang, J. S., Li, K. Q., Zhang, Z. J., Yu, B. Y., Lu, X. L., Yang, J. C., & Zhu, Q. S. (2003). Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 52(9), 1467–1473. https://doi.org/10.1016/S0045-6535(03)00484-3
Liu, J., Yu, G., Jiang, P., Zhang, X., Meng, D., Chen, Z., Baker, A. J. M., & Qiu, R. (2020). Interaction of Mn and Cd during their uptake in Celosia argentea differs between hydroponic and soil systems. Plant and Soil, 450(1–2), 323–336. https://doi.org/10.1007/s11104-020-04514-3
Liu, W., Sun, L., Zhong, M., Zhou, Q., Gong, Z., Li, P., Tai, P., & Li, X. (2012). Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting. Chemosphere, 89(9), 1048–1055. https://doi.org/10.1016/j.chemosphere.2012.05.068
Liu, Z., He, X., & Chen, W. (2011). Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 20(4), 698–705. https://doi.org/10.1007/s10646-011-0609-1
López, A. F., Sagardoy, R., Solanas, M., Abadía, A., & Abadía, J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65(2–3), 376–385. https://doi.org/10.1016/j.envexpbot.2008.11.010
Lu, Z., Zhang, Z., Su, Y., Liu, C., & Shi, G. (2013). Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicology and Environmental Safety, 91, 147–155. https://doi.org/10.1016/j.ecoenv.2013.01.017
Ma, Y. L., Wang, H. F., Wang, P., Yu, C. G., Luo, S. Q., Zhang, Y. F., & Xie, Y. F. (2018). Effects of cadmium stress on the antioxidant system and chlorophyll fluorescence characteristics of two Taxodium clones. Plant Cell Reports, 37(11), 1547–1555. https://doi.org/10.1007/s00299-018-2327-0
Martinez, R. (2014). Caracterización de parámetros fisiológicos y bioquímicos en plantas de fresa (Fragaria x ananassa Duch.) variedad Albin. [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/42989/
McLaughlin, M. J. (2016). Heavy metals in agriculture with a focus on Cd. In CSIRO Land and Water.
MADR. (2021). Cadena del cacao. Dirección de cadenas agrícolas y forestales. Ministerio de agricultura y desarrollo rural. Recuperado de https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03 31%20Cifras%20Sectoriales.pdf
Melgarejo, L. M., Romero, M., Hernández, S., Jaime, S. M. E., Suárez, D., and Pérez, W. (2010). Experimentos en Fisiología Vegetal Lab Físiol Bioquímica Veg. Bogotá: Universidad Nacional de Colombia. Available online at: https://www.uv.mx/personal/tcarmona/files/2019/02/Melgarejo-2010.pdf
Metwally, A., Safronova, V. I., Belimov, A. A., & Dietz, K. J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56(409), 167–178. https://doi.org/10.1093/jxb/eri017
Mobin, M., & Khan, N. A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164(5), 601–610. https://doi.org/10.1016/j.jplph.2006.03.003
Monteiro, M., Santos, C., Soares, A., & Mann, R. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental Safety, 72(3), 811–818. https://doi.org/10.1016/j.ecoenv.2008.08.002
Mori, S., Uraguchi, S., Ishikawa, S., & Arao, T. (2009). Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environmental and Experimental Botany, 67(1), 127–132. https://doi.org/10.1016/j.envexpbot.2009.05.006
Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311
Myśliwa-Kurdziel, B., & Strzałka, K. (2002). Influence of Metals on Biosynthesis of Photosynthetic Pigments. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. https://doi.org/10.1007/978-94-017-2660-3_8
Nada, E., Ferjani, B. A., Ali, R., Bechir, B. R., Imed, M., & Makki, B. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiologiae Plantarum, 29(1), 57–62. https://doi.org/10.1007/s11738-006-0009-y
Nazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., & Khan, N. A. (2012). Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. American Journal of Plant Sciences, 03(10), 1476–1489. https://doi.org/10.4236/ajps.2012.310178
Nedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora: Morphology, Distribution, Functional Ecology of Plants, 204(4), 316–324. https://doi.org/10.1016/j.flora.2008.03.004
Nguyen, N. T., McInturf, S. A., & Mendoza-Cózatl, D. G. (2016). Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. Journal of Visualized Experiments, 2016(113), 1–9. https://doi.org/10.3791/54317
Nouairi, I., Ammar, W. Ben, Youssef, N. Ben, Daoud, D. B. M., Ghorbal, M. H., & Zarrouk, M. (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170(3), 511–519. https://doi.org/10.1016/j.plantsci.2005.10.003
Nováková, M., Matějova, E., & Sofrová, D. (2004). Cd 2+ Effect on photosynthetic apparatus in synechococcus elongatus and spinach (Spinacia oleracea L.). Photosynthetica, 42(3), 425–430. https://doi.org/10.1023/B:PHOT.0000046162.87918.98
Parmar, P., Kumari, N., & Sharma, V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies, 54(1), 1–6. https://doi.org/10.1186/1999-3110-54-45
Paunov, M., Koleva, L., Vassilev, A., Vangronsveld, J., & Goltsev, V. (2018). Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. International Journal of Molecular Sciences, 19(3). https://doi.org/10.3390/ijms19030787
Pena, L., Pasquini, L., Tomaro, M., & Gallego, S. (2006). Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Science, 171(4), 531–537. https://doi.org/10.1016/j.plantsci.2006.06.003
Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4956–4960. https://doi.org/10.1073/pnas.97.9.4956
Pereira de Araujo, R., Furtado de Almeida, A. A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148–157. https://doi.org/10.1016/j.ecoenv.2017.06.006
Perfus, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal, 32(4), 539–548. https://doi.org/10.1046/j.1365-313X.2002.01442.x
Pietrini, F., Iannelli, M. A., Pasqualini, S., & Massacci, A. (2003). Interaction of Cadmium with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiology, 133(2), 829–837. https://doi.org/10.1104/pp.103.026518
Pinto, E., Sigaud-Kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39(6), 1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x
Popova, L., Maslenkova, L., Yordanova, R., Ivanova, A., Krantev, A., Szalai, G., & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47(3), 224–231. https://doi.org/10.1016/j.plaphy.2008.11.007
Qin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168–180. https://doi.org/10.1016/S1002-0160(20)60002-9
Ramos, I., Esteban, E., Lucena, J. J., & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162, 761–767. https://doi.org/PII: S 0 1 6 8 - 9 4 5 2 ( 0 2 ) 0 0 0 1 7 - 1
Ramos, I., Esteban, E., Lucena, J. J., & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162, 761–767. https://doi.org/PII: S 0 1 6 8 - 9 4 5 2 ( 0 2 ) 0 0 0 1 7 - 1
Rasool, A., Mansoor, S., Bhat, K. M., Hassan, G. I., Baba, T. R., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., & Ahmad, P. (2020). Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Frontiers in Plant Science, 11(December). https://doi.org/10.3389/fpls.2020.590847
Reichman, S. M. A. (2002). The Response Of Plant To Metal Toxicity: A Review Of Focusing On Copper, Magnase And Zinc. In Australian Minerals and Energy Environment Foundation (Issue January 2002).
Rodriguez, H. (2017). Dinámica del cadmio en suelos con niveles altos del elemento, en zonas productoras de cacao de Nilo y Yacopí, Cundinamarca. Universidad Nacional de Colombia.
Rodríguez, M., Martínez, N., Romero, M. C., Del Río, L. A., & Sandalio, L. M. (2008). Toxicidad del Cadmio en Plantas. Ecosistemas, 17(3), 139–146. http://www.revistaecosistemas.net/articulo.asp?Id=558
Rodriguez, M., Romero, M., Pazmino, D., Testillano, P., Risueno, M., Del Río, L., & Sandalio, L. (2009). Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology, 150(1), 229–243. https://doi.org/10.1104/pp.108.131524
Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63(1–3), 49–58. https://doi.org/10.1016/j.envexpbot.2007.10.015
Rueda, G., Rodríguez, J., & Madriñán, R. (2011). Metodologías para establecer valores de referencia de metales pesados en suelos agrícolas: Perspectivas para Colombia Methods for establishing baseline values for heavy metals in agricultural soils: Prospects for Colombia. Acta Agronomica, 60(3), 203–218.
Saidi, I., Chtourou, Y., & Djebali, W. (2014). Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. Journal of Plant Physiology, 171(5), 85–91. https://doi.org/10.1016/j.jplph.2013.09.024
Sandalio, L., Dalurzo, H., Gomez, M., Romero-Puertas, M., & del Río, L. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52(364), 2115–2126. http://jxb.oxfordjournals.org/content/52/364/2115.full.pdf
Sandoval, F. (2019). Efecto de las comunidades locales de hongos formadores de micorrizas arbusculares y patrones de injertación en la fisiologia de plantulas de cacao sometidas a estres por cadmio y zinc. Universidad Nacional de Colombia.
Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. In Scientia Horticulturae (Vol. 127, Issue 2, pp. 156–161). https://doi.org/10.1016/j.scienta.2010.09.011
Shah, K., Kumar, R. G., Verma, S., & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6), 1135–1144. https://doi.org/10.1016/S0168-9452(01)00517-9
Sharma, R. K., Agrawal, M., & Agrawal, S. B. (2010). Physiological, biochemical and growth responses of lady’s finger (Abelmoschus esculentus L.) Plants as affected by Cd contaminated soil. Bulletin of Environmental Contamination and Toxicology, 84(6), 765–770. https://doi.org/10.1007/s00128-010-0032-y
Singh, P. K., & Tewari, R. K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassicajuncea L. plants. Journal of Environmental Biology, 24(1), 107–112.
Skrebsky, E. C., Tabaldi, L. A., Pereira, L. B., Rauber, R., Maldaner, J., Cargnelutti, D., Gonçalves, J. F., Castro, G. Y., Shetinger, M. R. C., & Nicoloso, F. T. (2008). Effect of cadmium on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of Pfaffia glomerata. Brazilian Journal of Plant Physiology, 20(4), 285–294. https://doi.org/10.1590/s1677-04202008000400004
Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133–141. https://doi.org/10.1080/15226514.2016.1207598
Souza, V., De Almeida, A., Lima, S., Carcardio, J., Silva, D., Mangabeira, P., & Gomes, F. (2011). Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). BioMetals, 24(1), 59–71. https://doi.org/10.1007/s10534-010-9374-5
Sterckeman, T., & Thomine, S. (2020). Mechanisms of Cadmium Accumulation in Plants. Critical Reviews in Plant Sciences, 39(4), 322–359. https://doi.org/10.1080/07352689.2020.1792179
Taiz, L., & Zeiger, E. (2002). Plant physiology. In Science progress (3rd ed.). https://doi.org/10.1017/9781108486392
Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Plant Biology, 12, 364–372. https://doi.org/10.1016/j.pbi.2009.05.001
Wang, F. Y., Lin, X. G., & Yin, R. (2007). Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia, 51(2), 99–109. https://doi.org/10.1016/j.pedobi.2007.02.003
Wang, H., Zhao, S. C., Liu, R. L., Zhou, W., & Jin, J. Y. (2009). Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica, 47(2), 277–283. https://doi.org/10.1007/s11099-009-0043-2
Wang, P., Deng, X., Huang, Y., Fang, X., Zhang, J., Wan, H., & Yang, C. (2016). Root morphological responses of five soybean [Glycine max (L.) Merr] cultivars to cadmium stress at young seedlings. Environmental Science and Pollution Research, 23(2), 1860–1872. https://doi.org/10.1007/s11356-015-5424-4
Williams, L. E., Pittman, J. K., & Hall, J. L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Bi, 1465, 104–126. www.elsevier.com/locate/bba
Ying, R. R., Qiu, R. L., Tang, Y. T., Hu, P. J., Qiu, H., Chen, H. R., Shi, T. H., & Morel, J. L. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 167(2), 81–87. https://doi.org/10.1016/j.jplph.2009.07.005
Zhang, S., Zhang, H., Qin, R., Jiang, W., & Liu, D. (2009). Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology, 18(7), 814–823. https://doi.org/10.1007/s10646-009-0324-3
Zhao, F.-J., Hamon, R. E., Lombi, E., Mclaughlin, M. J., & Mcgrath, S. P. (2002). Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53(368), 535–543.
Zhi, Y., He, K., Sun, T., Zhu, Y., Zhou, Q., & Glycine, L. (2015). Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils. Journal of Environmental Sciences, 35, 108–114. https://doi.org/10.1016/j.jes.2015.01.031
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 65 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Palmira
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.spa.fl_str_mv Palmira
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Nivel Nacional
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81345/1/Efecto%20fisiologico%20de%20la%20absorci%c3%b3n%20cadmio%20en%20cacao.%20Fern%c3%a1ndez%20J.A%2022032022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81345/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81345/3/Efecto%20fisiologico%20de%20la%20absorci%c3%b3n%20cadmio%20en%20cacao.%20Fern%c3%a1ndez%20J.A%2022032022.pdf.jpg
bitstream.checksum.fl_str_mv b739650059d49b7e6f012095c2fbc12b
8153f7789df02f0a4c9e079953658ab2
b34c575cfe4766940ce4a51a7fd3ee8c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089903111143424
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodriguez Medina, Caren Dayanac14325b1c1ff564357776c9e7681c4a0Fernández Paz, Jessica Alejandrad9da34fa6f8e89fc3f7f371967d07e6fMejía de Tafur, María SaraMejoramiento genético de cacao2022-03-23T22:13:46Z2022-03-23T22:13:46Z2022-02-23https://repositorio.unal.edu.co/handle/unal/81345Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablas, fotografíasEl cadmio es un elemento altamente tóxico y sin función biológica conocida, para la mayoría de los seres vivos. Diversos estudios han demostrado un efecto tóxico del cadmio en el desarrollo fisiológico y crecimiento de las plantas. Un efecto del portainjerto en la acumulación de cadmio en la parte aérea de la planta ha sido observado en combinaciones copa × portainjerto de algunas especies vegetales. El objetivo de la presente investigación fue evaluar el efecto fisiológico de la absorción de cadmio sobre dos de los portainjertos de cacao más comúnmente sembrados en Colombia: IMC67 y PA121, y sobre combinaciones copa × portainjerto, utilizando como copa, dos de los cultivares más comunes en el país: ICS95 y CCN51. El estudio fue realizado bajo condiciones de vivero en el Centro de Investigación de Agrosavia en la ciudad de Palmira (Valle del Cauca, Colombia). Parámetros fisiológicos y de crecimiento fueron evaluados en portainjertos cinco meses después de su establecimiento en sustrato conteniendo suelo enriquecido con cadmio, posteriormente, ramas porta yemas de ICS95 y CCN51 fueron injertadas en los portainjertos. Las combinaciones copa × portainjerto fueron evaluadas dos y cuatro meses después de la injertación, utilizando los mismos parámetros fisiológicos y de crecimiento empleados para la evaluación de los portainjertos. El análisis de los datos se realizó mediante un modelo lineal mixto (MLM). Los resultados mostraron mayor acumulación de Cd en tejido foliar, además de un efecto del cadmio en la longitud y peso de raíces, área foliar, rendimiento cuántico del fotosistema II medido por la fluorescencia de la clorofila, disminución de fotosíntesis neta y uso eficiente del agua, afectación en la concentración foliar de elementos nutricionales como N, K, Mn, Zn, Cu y B, contenido de pigmentos fotosintéticos, pérdida de electrolitos y concentración de proteína total soluble en hojas. En conclusión, el cadmio redujo significativamente el crecimiento de hojas y raíces, afecto la tasa de fotosíntesis y el uso eficiente del agua en los portainjertos y la fluorescencia de la clorofila en las combinaciones copa x portainjerto, altero la toma de elementos nutriciones esenciales para el normal desarrollo de la planta, disminuyó las concentraciones de proteína total soluble y aumento la perdida de electrolitos. La mayor acumulación del metal pesado fue en parte aérea, tanto en los portainjertos como en las combinaciones copa × portainjerto generando un efecto nocivo sobre parámetros fisiológicos y de crecimiento. (Texto tomado de la fuente)Cadmium is a highly toxic element with no known biological function for most living beings. Various studies have shown a toxic effect of cadmium on the physiological development and growth of plants. An effect of the rootstock on the accumulation of cadmium in the aerial part of the plant has been observed in scion × rootstock combinations of some plant species. The objective of this research was to evaluate the physiological effect of cadmium absorption on two of the most commonly planted cocoa rootstocks in Colombia: IMC67 and PA121, and on scion × rootstock combinations, using two of the most common cultivars as scion in the country: ICS95 and CCN51. The study was carried out under greenhouse conditions at the Agrosavia Research Center in the city of Palmira (Valle del Cauca, Colombia). Physiological and growth parameters were evaluated on rootstocks five months after their establishment in substrate containing cadmium-enriched soil, later, ICS95 and CCN51 bud-bearing branches were grafted onto the rootstocks. The scion × rootstock combinations were evaluated two and four months after grafting, using the same physiological and growth parameters used for the evaluation of the rootstocks. Data analysis was performed using a linear mixed model (MLM). The results showed a greater accumulation of Cd in leaf tissue, in addition to an effect of cadmium on the length and weight of roots, leaf area, quantum efficiency of photosystem II measured by chlorophyll fluorescence, decrease in net photosynthesis and efficient use of water, affectation in the foliar concentration of nutritional elements such as N, K, Mn, Zn, Cu and B, content of photosynthetic pigments, loss of electrolytes and concentration of total soluble protein in leaves. In conclusion, cadmium significantly reduced the growth of leaves and roots, affected the rate of photosynthesis and the efficient use of water in the rootstocks and the fluorescence of chlorophyll in the scion x rootstock combinations, altering the uptake of essential nutritional elements for the normal development of the plant, decreased the concentrations of total soluble protein and increased the loss of electrolytes. The greatest accumulation of heavy metal was partly aerial, both in the rootstocks and in the scion × rootstock combinations, generating a harmful effect on physiological and growth parametersMaestríaMagíster en Ciencias AgrariasEn el banco de germoplasma de cacao, del C.I Palmira, se colectaron frutos obtenidos de polinización abierta de IMC67 y PA121, materiales genéticos avalados por el Consejo Nacional Cacaotero para ser utilizados como portainjertos en el país. Además de los frutos obtenidos de libre polinización, se llevaron a cabo cruzamientos dirigidos entre IMC67 y PA121 siguiendo la metodología descrita por Royaert et al. (2011). Los botones florales de árboles escogidos como parentales fueron cubiertos con tubos plásticos transparentes, conteniendo plastilina en el extremo adherido al árbol mientras que el otro extremo fue sellado con muselina para evitar la entrada de insectos. Las flores seleccionadas como madre o receptoras se identificaron por su aspecto abultado indicando que estaban próximas a abrir. Al día siguiente, entre las 7 y 10 de la mañana, se procedió a emascular las flores del genotipo materno para lo cual se retiraron los estambres de la flor seleccionada como receptora, además de dos o tres estaminodios para facilitar el acceso al estilo. La preparación de la flor seleccionada como donadora o padre consistió en la remoción de los pétalos dejando de este modo libre los estambres con sus anteras. La coloración blanca del polen, indicativo de su viabilidad, fue confirmada antes de la polinización. Finalmente, se procedió a frotar las anteras sobre el estigma y se cubrió nuevamente la flor receptora o madre. Las flores polinizadas se marcaron con láminas plásticas indicando la fecha de polinización y el cruzamiento dirigido. También fueron evaluadas progenies de los mismos genotipos obtenidas a partir de polinización libre. Una vez obtenidos los frutos, tanto de cruzamientos dirigidos como de libre polinización (LP), las almendras se extrajeron de las mazorcas, se eliminó el mucilago con arena y se sembraron en bolsas de polietileno de 20 cm de diámetro x 30 cm de alto, conteniendo arena lavada de rio donde permanecieron por dos meses.Fisiología de cultivosxv, 65 páginas + anexosapplication/pdfspaUniversidad Nacional de Colombia Sede PalmiraPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgropecuariasPalmiraUniversidad Nacional de Colombia - Nivel Nacional630 - Agricultura y tecnologías relacionadasAbsorciónCadmioCrecimiento de plantaplant growthTheobroma cacaoTheobroma cacaoheavy metalphysiological parametersgrowthMetal pesadoParámetros fisiológicosCrecimientoEfecto fisiológico de la absorción de cadmio (Cd2+) sobre accesiones de cacao (Theobroma cacao L.)Physiological effect of cadmium (Cd2+) absorption on cocoa accessions (Theobroma cacao L.)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhmad, P., Alyemeni, M. N., Wijaya, L., Alam, P., Ahanger, M. A., & Alamri, S. A. (2017). Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science, 63(13), 1889–1899. https://doi.org/10.1080/03650340.2017.1313406Aranzazu, F., Martínez, N., Palencia, G., Coronado, R., & Rincon, D. (2009). Mejoramiento genético para incrementar la producción y productividad del sistema de cacao en Colombia.Arao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Science and Plant Nutrition, 54(4), 555–559. https://doi.org/10.1111/j.1747-0765.2008.00269.xArnon, D. & Stout, P. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 1939 Apr;14(2):371-5. doi: 10.1104/pp.14.2.371.Arvelo, M. A., González, D., Maroto, S., Delgado, T., & Montoya, P. (2017). Manual técnico del cultivo de cacao Buenas prácticas para América Latina. In Instituto Interamericano de Cooperación para la Agricultura (IICA).Astolfi, S., Zuchi, S., Chiani, A., & Passera, C. (2003). In vivo and in vitro effects of cadmium on H+ATPase activity of plasma membrane vesicles from oat (Avena sativa L.) roots. Journal of Plant Physiology, 160(4), 387–393. https://doi.org/10.1078/0176-1617-00832Azcon, J, & Talón, M. (2008). Fundamentos de fisiología vegetal. In Journal of Chemical Information and Modeling (Segunda, Vol. 53, Issue 9). McGRAW-HILL. http://www.elsevier.com/locate/scpBaker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759Barceló, J., & Poschenrieder, C. (1992). RESPUESTAS DE LAS PLANTAS A LA CONTAMINACION POR METALES PESADOS. Suelo y Plantas, 2, 345–361. https://www.researchgate.net/publication/285841974Bravo, D., Pardo, S., Benavides, J., Rengifo, G., Braissant, O., & Leon, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698Bravo, I., Arboleda, C., & Martín, F. (2014). Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agronomica, 63(2), 164–172. https://doi.org/10.15446/acag.v63n2.39569Carvalho, A., Cannata, M. G., Carvalho, R., Ribeiro Bastos, A. R., Puggina Freitas, M., & dos Santos Augusto, A. (2012). Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: Nutrient contents and translocation. Ecotoxicology and Environmental Safety, 86, 176–181. https://doi.org/10.1016/j.ecoenv.2012.09.011Chang, Y. Sen, Chang, Y. J., Lin, C. T., Lee, M. C., Wu, C. W., & Lai, Y. H. (2013). Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata. International Biodeterioration and Biodegradation, 85, 709–714. https://doi.org/10.1016/j.ibiod.2013.05.021Cho, U., & Seo, N. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168, 113–120. https://doi.org/10.1016/j.plantsci.2004.07.021Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N., & Ok, Y. S. (2014). Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Critical Reviews in Plant Sciences, 33(5), 374–391. https://doi.org/10.1080/07352689.2014.903747Clemens, S., Palmgren, M., & Kramer, U. (2002). Long way ahead: understanding and engineering plant metal accumulation. Plant Science, 7, 309–315. https://doi.org/10.1016/j.plantsci.2014.12.008Cooper, J., Bolbot, J. A., Saini, S., & Setford, S. J. (2007). Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water, Air, and Soil Pollution, 179(1–4), 183–195. https://doi.org/10.1007/s11270-006-9223-xDaymond, A. J., & Hadley, P. (2004). The effects of temperature and light integral on early vegetative growth and chlorophyll fluorescence of four contrasting genotypes of cacao (Theobroma cacao). Ann. Appl. Biol., 145, 257–262.Degryse, F., Buekers, J., & Smolders, E. (2004). Radio-labile cadmium and zinc in soils as affected by pH and source of contamination. European Journal of Soil Science, 55(1), 113–122. https://doi.org/10.1046/j.1351-0754.2003.0554.xDias, M. C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B., & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35(4), 1281–1289. https://doi.org/10.1007/s11738-012-1167-8Domínguez, M. T., Marañón, T., Murillo, J. M., & Redondo-Gómez, S. (2011). Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Chemosphere, 83(8), 1166–1174. https://doi.org/10.1016/j.chemosphere.2011.01.002Ekmekçi, Y., Tanyolaç, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611. https://doi.org/10.1016/j.jplph.2007.01.017Ekmekçi, Y., Tanyolaç, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611. https://doi.org/10.1016/j.jplph.2007.01.017Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61–68. https://doi.org/10.1016/j.sajb.2015.11.006Fedecacao. (2012). Guía técnica para el cultivo del cacao.Fedecacao, F. N. D. C. (2004). Cacaocultura en el Departamento De Cundinamarca. http://www.fedecacao.com.co/portal/images/recourses/pub_doctecnicos/fedecacao-pub-doc_08B.pdfFedecacao, (2021). Economia nacional. Federación nacional de cacaoteros. Recuperado de https://www.fedecacao.com.co/economianacional.Fernández, J. (2018). Estudio del efecto de diferentes líneas monospóricas de Rhizophagus irregularis en la respuesta del cacao al cadmio bajo condiciones de déficit hídrico en vivero. Universidad Nacional de Colombia. Tesis.Fernández, R., Bertrand, A., Reis, R., Mourato, M. P., Martins, L. L., & González, A. (2013). Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. Journal of Hazardous Materials, 244–245, 555–562. https://doi.org/10.1016/j.jhazmat.2012.10.044Fuhrer, J. (1982). Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans ( Phaseolus vulgaris L.) . Plant Physiology, 70(1), 162–167. https://doi.org/10.1104/pp.70.1.162Ge, W., Jiao, Y., Zou, J., Jiang, W., & Liu, D. (2015). Ultrastructural and photosynthetic response of Populus 107 leaves to cadmium stress. Polish Journal of Environmental Studies, 24(2), 519–527. https://doi.org/10.15244/pjoes/27814Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016Gillet, S., Decottignies, P., Chardonnet, S., & Le Maréchal, P. (2006). Cadmium response and redoxin targets in Chlamydomonas reinhardtii: A proteomic approach. Photosynthesis Research, 89(2), 201–211. https://doi.org/10.1007/s11120-006-9108-2Goldschmidt, E. E. (2014). Plant grafting: New mechanisms, evolutionary implications. Frontiers in Plant Science, 5(DEC), 1–9. https://doi.org/10.3389/fpls.2014.00727González, S., Perales, H., & Salcedo, M. (2008). LA FLUORESCENCIA DE LA CLOROFILA a COMO HERRAMIENTA EN LA INVESTIGACIÓN DE EFECTOS TÓXICOS EN EL APARATO FOTOSINTÉTICO DE PLANTAS Y ALGAS* (Vol. 27, Issue 4).Guerinot ML. The ZIP family of metal transporters. Biochim Biophys Acta.1;1465(1-2):190-8. doi: 10.1016/s0005-2736(00)00138-3.Hassan, W., Bano, R., Bashir, S., & Aslam, Z. (2016). Cadmium toxicity and soil biological index under potato (Solanum tuberosum L.) cultivation. Soil Research, 54(4), 460–468. https://doi.org/10.1071/SR14360He, J. Y., Zhu, C., Ren, Y. F., Yan, Y. P., Chang, C., Jiang, D. A., & Sun, Z. X. (2008). Uptake, Subcellular Distribution, and Chemical Forms of Cadmium in Wild-Type and Mutant Rice1 1 Project supported by the National Natural Science Foundation of China (No. 30671255), the National Key Technologies R&D Program of China during the 11th Five-Y. Pedosphere, 18(3), 371–377. https://doi.org/10.1016/S1002-0160(08)60027-2He, J, Ren, Y., Zhu, C., Yan, Y., & Jiang, D. (2008). Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica, 46(3), 466–470. https://doi.org/10.1007/s11099-008-0080-2He, Jiali, Zhou, J., Wan, H., Zhuang, X., Li, H., Qin, S., & Lyu, D. (2020). Rootstock–Scion Interaction Affects Cadmium Accumulation and Tolerance of Malus. Frontiers in Plant Science, 11(August), 1–14. https://doi.org/10.3389/fpls.2020.01264He, S., Yang, X., He, Z., & Baligar, V. (2017). Morphological and Physiological Responses of Plants to Cadmium Toxicity: A Review. Pedosphere, 27(3), 421–438. https://doi.org/10.1016/S1002-0160(17)60339-4Hernández, L., & Cooke, D. (1997). Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. Journal of Experimental Botany, 48(312), 1375–1381. https://doi.org/10.1093/jxb/48.7.1375Huang, B., Xin, J., Dai, H., Liu, A., Zhou, W., Yi, Y., & Liao, K. (2015). Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environmental Science and Pollution Research, 22(2), 1151–1159. https://doi.org/10.1007/s11356-014-3405-7Hussain, A., Ali, S., Rizwan, M., Rehman, M. Z. ur, Qayyum, M. F., Wang, H., & Rinklebe, J. (2019). Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and Environmental Safety, 173(August 2018), 156–164. https://doi.org/10.1016/j.ecoenv.2019.01.118Hussain, A., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Yasmeen, T., Hayat, M. T., Hussain, I., Ali, Q., & Hussain, S. M. (2018). Morphological and Physiological Responses of Plants to Cadmium Toxicity. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814864-8.00003-6ICCO. (2019). Quarterly Bulletin of Cocoa Statistics. Production of cocoa (Vol. XLV). https://doi.org/.1037//0033-2909.I26.1.78IICA. (2006). Guía técnica Cultivo de Cacao. In Plan De Agricultura Familiar.Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20(1), 1–10. https://doi.org/10.1016/j.sjbs.2012.11.004Jácome, D. (2017). Efecto de la inoculación de hongos formadores de micorrizas arbusculares (HFMA) sobre un sistema suelo-planta de cacao en suelos contaminados con cadmio en etapa de vivero. Universidad Nacional de Colombia.Jaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades del cacao. In Corporación Colombiana de Investigafación Agropecuaria AGROSAVIA. ColombiaJiao, Y., Zou, J., Ge, W., Jiang, W., & Liu, D. (2015). Physiological and ultrastructural effects of cadmium on poplar (Populus x euramericana) leaves. Baltic Forestry, 21(1), 106–113.Jimenez, C. (2015). Global legal status of cadmium in cacao (Theobroma cacao): a fantasy or a reality Estado legal mundial do cádmio em cacau (Theobroma cacau): fantasia ou realidade (Vol. 10, Issue 1).Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920–931. https://doi.org/10.1016/j.jplph.2006.11.014León, A. M., Palma, J. M., Corpas, F. J., Gómez, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., Del Río, L. A., & Sandalio, L. M. (2002). Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiology and Biochemistry, 40(10), 813–820. https://doi.org/10.1016/S0981-9428(02)01444-4Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of the Total Environment, 696–703. https://doi.org/10.1016/j.scitotenv.2018.05.365Li, X., Zhou, Q., Sun, X., & Ren, W. (2016). Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chemistry, 194, 101–110. https://doi.org/10.1016/j.foodchem.2015.07.114Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology (Vol. 148, Issue C). https://doi.org/10.1016/0076-6879(87)48036-1Lin, L., Yang, D., Wang, X., Liao, M., Wang, Z., Lv, X., Tang, F., Liang, D., Xia, H., Lai, Y., & Tang, Y. (2016). Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum. Environmental Monitoring and Assessment, 188(2), 1–11. https://doi.org/10.1007/s10661-015-5084-3Liu, J. G., Liang, J. S., Li, K. Q., Zhang, Z. J., Yu, B. Y., Lu, X. L., Yang, J. C., & Zhu, Q. S. (2003). Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 52(9), 1467–1473. https://doi.org/10.1016/S0045-6535(03)00484-3Liu, J., Yu, G., Jiang, P., Zhang, X., Meng, D., Chen, Z., Baker, A. J. M., & Qiu, R. (2020). Interaction of Mn and Cd during their uptake in Celosia argentea differs between hydroponic and soil systems. Plant and Soil, 450(1–2), 323–336. https://doi.org/10.1007/s11104-020-04514-3Liu, W., Sun, L., Zhong, M., Zhou, Q., Gong, Z., Li, P., Tai, P., & Li, X. (2012). Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting. Chemosphere, 89(9), 1048–1055. https://doi.org/10.1016/j.chemosphere.2012.05.068Liu, Z., He, X., & Chen, W. (2011). Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 20(4), 698–705. https://doi.org/10.1007/s10646-011-0609-1López, A. F., Sagardoy, R., Solanas, M., Abadía, A., & Abadía, J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65(2–3), 376–385. https://doi.org/10.1016/j.envexpbot.2008.11.010Lu, Z., Zhang, Z., Su, Y., Liu, C., & Shi, G. (2013). Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicology and Environmental Safety, 91, 147–155. https://doi.org/10.1016/j.ecoenv.2013.01.017Ma, Y. L., Wang, H. F., Wang, P., Yu, C. G., Luo, S. Q., Zhang, Y. F., & Xie, Y. F. (2018). Effects of cadmium stress on the antioxidant system and chlorophyll fluorescence characteristics of two Taxodium clones. Plant Cell Reports, 37(11), 1547–1555. https://doi.org/10.1007/s00299-018-2327-0Martinez, R. (2014). Caracterización de parámetros fisiológicos y bioquímicos en plantas de fresa (Fragaria x ananassa Duch.) variedad Albin. [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/42989/McLaughlin, M. J. (2016). Heavy metals in agriculture with a focus on Cd. In CSIRO Land and Water.MADR. (2021). Cadena del cacao. Dirección de cadenas agrícolas y forestales. Ministerio de agricultura y desarrollo rural. Recuperado de https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03 31%20Cifras%20Sectoriales.pdfMelgarejo, L. M., Romero, M., Hernández, S., Jaime, S. M. E., Suárez, D., and Pérez, W. (2010). Experimentos en Fisiología Vegetal Lab Físiol Bioquímica Veg. Bogotá: Universidad Nacional de Colombia. Available online at: https://www.uv.mx/personal/tcarmona/files/2019/02/Melgarejo-2010.pdfMetwally, A., Safronova, V. I., Belimov, A. A., & Dietz, K. J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56(409), 167–178. https://doi.org/10.1093/jxb/eri017Mobin, M., & Khan, N. A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 164(5), 601–610. https://doi.org/10.1016/j.jplph.2006.03.003Monteiro, M., Santos, C., Soares, A., & Mann, R. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental Safety, 72(3), 811–818. https://doi.org/10.1016/j.ecoenv.2008.08.002Mori, S., Uraguchi, S., Ishikawa, S., & Arao, T. (2009). Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environmental and Experimental Botany, 67(1), 127–132. https://doi.org/10.1016/j.envexpbot.2009.05.006Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311Myśliwa-Kurdziel, B., & Strzałka, K. (2002). Influence of Metals on Biosynthesis of Photosynthetic Pigments. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. https://doi.org/10.1007/978-94-017-2660-3_8Nada, E., Ferjani, B. A., Ali, R., Bechir, B. R., Imed, M., & Makki, B. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiologiae Plantarum, 29(1), 57–62. https://doi.org/10.1007/s11738-006-0009-yNazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., & Khan, N. A. (2012). Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. American Journal of Plant Sciences, 03(10), 1476–1489. https://doi.org/10.4236/ajps.2012.310178Nedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora: Morphology, Distribution, Functional Ecology of Plants, 204(4), 316–324. https://doi.org/10.1016/j.flora.2008.03.004Nguyen, N. T., McInturf, S. A., & Mendoza-Cózatl, D. G. (2016). Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. Journal of Visualized Experiments, 2016(113), 1–9. https://doi.org/10.3791/54317Nouairi, I., Ammar, W. Ben, Youssef, N. Ben, Daoud, D. B. M., Ghorbal, M. H., & Zarrouk, M. (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170(3), 511–519. https://doi.org/10.1016/j.plantsci.2005.10.003Nováková, M., Matějova, E., & Sofrová, D. (2004). Cd 2+ Effect on photosynthetic apparatus in synechococcus elongatus and spinach (Spinacia oleracea L.). Photosynthetica, 42(3), 425–430. https://doi.org/10.1023/B:PHOT.0000046162.87918.98Parmar, P., Kumari, N., & Sharma, V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies, 54(1), 1–6. https://doi.org/10.1186/1999-3110-54-45Paunov, M., Koleva, L., Vassilev, A., Vangronsveld, J., & Goltsev, V. (2018). Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. International Journal of Molecular Sciences, 19(3). https://doi.org/10.3390/ijms19030787Pena, L., Pasquini, L., Tomaro, M., & Gallego, S. (2006). Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Science, 171(4), 531–537. https://doi.org/10.1016/j.plantsci.2006.06.003Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4956–4960. https://doi.org/10.1073/pnas.97.9.4956Pereira de Araujo, R., Furtado de Almeida, A. A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148–157. https://doi.org/10.1016/j.ecoenv.2017.06.006Perfus, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal, 32(4), 539–548. https://doi.org/10.1046/j.1365-313X.2002.01442.xPietrini, F., Iannelli, M. A., Pasqualini, S., & Massacci, A. (2003). Interaction of Cadmium with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiology, 133(2), 829–837. https://doi.org/10.1104/pp.103.026518Pinto, E., Sigaud-Kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39(6), 1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.xPopova, L., Maslenkova, L., Yordanova, R., Ivanova, A., Krantev, A., Szalai, G., & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47(3), 224–231. https://doi.org/10.1016/j.plaphy.2008.11.007Qin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168–180. https://doi.org/10.1016/S1002-0160(20)60002-9Ramos, I., Esteban, E., Lucena, J. J., & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162, 761–767. https://doi.org/PII: S 0 1 6 8 - 9 4 5 2 ( 0 2 ) 0 0 0 1 7 - 1Ramos, I., Esteban, E., Lucena, J. J., & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162, 761–767. https://doi.org/PII: S 0 1 6 8 - 9 4 5 2 ( 0 2 ) 0 0 0 1 7 - 1Rasool, A., Mansoor, S., Bhat, K. M., Hassan, G. I., Baba, T. R., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., & Ahmad, P. (2020). Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Frontiers in Plant Science, 11(December). https://doi.org/10.3389/fpls.2020.590847Reichman, S. M. A. (2002). The Response Of Plant To Metal Toxicity: A Review Of Focusing On Copper, Magnase And Zinc. In Australian Minerals and Energy Environment Foundation (Issue January 2002).Rodriguez, H. (2017). Dinámica del cadmio en suelos con niveles altos del elemento, en zonas productoras de cacao de Nilo y Yacopí, Cundinamarca. Universidad Nacional de Colombia.Rodríguez, M., Martínez, N., Romero, M. C., Del Río, L. A., & Sandalio, L. M. (2008). Toxicidad del Cadmio en Plantas. Ecosistemas, 17(3), 139–146. http://www.revistaecosistemas.net/articulo.asp?Id=558Rodriguez, M., Romero, M., Pazmino, D., Testillano, P., Risueno, M., Del Río, L., & Sandalio, L. (2009). Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology, 150(1), 229–243. https://doi.org/10.1104/pp.108.131524Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63(1–3), 49–58. https://doi.org/10.1016/j.envexpbot.2007.10.015Rueda, G., Rodríguez, J., & Madriñán, R. (2011). Metodologías para establecer valores de referencia de metales pesados en suelos agrícolas: Perspectivas para Colombia Methods for establishing baseline values for heavy metals in agricultural soils: Prospects for Colombia. Acta Agronomica, 60(3), 203–218.Saidi, I., Chtourou, Y., & Djebali, W. (2014). Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. Journal of Plant Physiology, 171(5), 85–91. https://doi.org/10.1016/j.jplph.2013.09.024Sandalio, L., Dalurzo, H., Gomez, M., Romero-Puertas, M., & del Río, L. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52(364), 2115–2126. http://jxb.oxfordjournals.org/content/52/364/2115.full.pdfSandoval, F. (2019). Efecto de las comunidades locales de hongos formadores de micorrizas arbusculares y patrones de injertación en la fisiologia de plantulas de cacao sometidas a estres por cadmio y zinc. Universidad Nacional de Colombia.Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. In Scientia Horticulturae (Vol. 127, Issue 2, pp. 156–161). https://doi.org/10.1016/j.scienta.2010.09.011Shah, K., Kumar, R. G., Verma, S., & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6), 1135–1144. https://doi.org/10.1016/S0168-9452(01)00517-9Sharma, R. K., Agrawal, M., & Agrawal, S. B. (2010). Physiological, biochemical and growth responses of lady’s finger (Abelmoschus esculentus L.) Plants as affected by Cd contaminated soil. Bulletin of Environmental Contamination and Toxicology, 84(6), 765–770. https://doi.org/10.1007/s00128-010-0032-ySingh, P. K., & Tewari, R. K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassicajuncea L. plants. Journal of Environmental Biology, 24(1), 107–112.Skrebsky, E. C., Tabaldi, L. A., Pereira, L. B., Rauber, R., Maldaner, J., Cargnelutti, D., Gonçalves, J. F., Castro, G. Y., Shetinger, M. R. C., & Nicoloso, F. T. (2008). Effect of cadmium on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of Pfaffia glomerata. Brazilian Journal of Plant Physiology, 20(4), 285–294. https://doi.org/10.1590/s1677-04202008000400004Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133–141. https://doi.org/10.1080/15226514.2016.1207598Souza, V., De Almeida, A., Lima, S., Carcardio, J., Silva, D., Mangabeira, P., & Gomes, F. (2011). Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). BioMetals, 24(1), 59–71. https://doi.org/10.1007/s10534-010-9374-5Sterckeman, T., & Thomine, S. (2020). Mechanisms of Cadmium Accumulation in Plants. Critical Reviews in Plant Sciences, 39(4), 322–359. https://doi.org/10.1080/07352689.2020.1792179Taiz, L., & Zeiger, E. (2002). Plant physiology. In Science progress (3rd ed.). https://doi.org/10.1017/9781108486392Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Plant Biology, 12, 364–372. https://doi.org/10.1016/j.pbi.2009.05.001Wang, F. Y., Lin, X. G., & Yin, R. (2007). Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia, 51(2), 99–109. https://doi.org/10.1016/j.pedobi.2007.02.003Wang, H., Zhao, S. C., Liu, R. L., Zhou, W., & Jin, J. Y. (2009). Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica, 47(2), 277–283. https://doi.org/10.1007/s11099-009-0043-2Wang, P., Deng, X., Huang, Y., Fang, X., Zhang, J., Wan, H., & Yang, C. (2016). Root morphological responses of five soybean [Glycine max (L.) Merr] cultivars to cadmium stress at young seedlings. Environmental Science and Pollution Research, 23(2), 1860–1872. https://doi.org/10.1007/s11356-015-5424-4Williams, L. E., Pittman, J. K., & Hall, J. L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Bi, 1465, 104–126. www.elsevier.com/locate/bbaYing, R. R., Qiu, R. L., Tang, Y. T., Hu, P. J., Qiu, H., Chen, H. R., Shi, T. H., & Morel, J. L. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 167(2), 81–87. https://doi.org/10.1016/j.jplph.2009.07.005Zhang, S., Zhang, H., Qin, R., Jiang, W., & Liu, D. (2009). Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology, 18(7), 814–823. https://doi.org/10.1007/s10646-009-0324-3Zhao, F.-J., Hamon, R. E., Lombi, E., Mclaughlin, M. J., & Mcgrath, S. P. (2002). Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53(368), 535–543.Zhi, Y., He, K., Sun, T., Zhu, Y., Zhou, Q., & Glycine, L. (2015). Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils. Journal of Environmental Sciences, 35, 108–114. https://doi.org/10.1016/j.jes.2015.01.031Patrones cacaoCorporación Colombiana de Investigación Agropecuaria AgrosaviaEstudiantesInvestigadoresMaestrosPúblico generalORIGINALEfecto fisiologico de la absorción cadmio en cacao. Fernández J.A 22032022.pdfEfecto fisiologico de la absorción cadmio en cacao. Fernández J.A 22032022.pdfTesis de Maestría cadmio en cacaoapplication/pdf2625919https://repositorio.unal.edu.co/bitstream/unal/81345/1/Efecto%20fisiologico%20de%20la%20absorci%c3%b3n%20cadmio%20en%20cacao.%20Fern%c3%a1ndez%20J.A%2022032022.pdfb739650059d49b7e6f012095c2fbc12bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81345/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAILEfecto fisiologico de la absorción cadmio en cacao. Fernández J.A 22032022.pdf.jpgEfecto fisiologico de la absorción cadmio en cacao. Fernández J.A 22032022.pdf.jpgGenerated Thumbnailimage/jpeg4953https://repositorio.unal.edu.co/bitstream/unal/81345/3/Efecto%20fisiologico%20de%20la%20absorci%c3%b3n%20cadmio%20en%20cacao.%20Fern%c3%a1ndez%20J.A%2022032022.pdf.jpgb34c575cfe4766940ce4a51a7fd3ee8cMD53unal/81345oai:repositorio.unal.edu.co:unal/813452023-08-03 23:04:17.614Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK