Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas

ilustraciones, fotografías, diagramas

Autores:
Palomino Barón, Diana Lucía
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84356
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84356
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::691 - Materiales de construcción
POLIPROPILENO
HORMIGON ARMADO
Polypropylene
Reinforced concrete
FRC
Polypropylene fibres
Tensile
Toughness
Bending
Cyclic loading
Residual stress
Fibras de polipropileno
Tensión
Tenacidad
Flexión
Cargas cíclicas
Esfuerzo residual
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_b96869c5f1d6cb933cf3226766cef80b
oai_identifier_str oai:repositorio.unal.edu.co:unal/84356
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
dc.title.translated.eng.fl_str_mv Flexural behavior of polypropylene fiber reinforced concrete beams subjected to cyclic loading
title Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
spellingShingle Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::691 - Materiales de construcción
POLIPROPILENO
HORMIGON ARMADO
Polypropylene
Reinforced concrete
FRC
Polypropylene fibres
Tensile
Toughness
Bending
Cyclic loading
Residual stress
Fibras de polipropileno
Tensión
Tenacidad
Flexión
Cargas cíclicas
Esfuerzo residual
title_short Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
title_full Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
title_fullStr Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
title_full_unstemmed Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
title_sort Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas
dc.creator.fl_str_mv Palomino Barón, Diana Lucía
dc.contributor.advisor.none.fl_str_mv Lizarazo Marriaga, Juan Manuel
Luna Tamayo, Patricia
dc.contributor.author.none.fl_str_mv Palomino Barón, Diana Lucía
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::691 - Materiales de construcción
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::691 - Materiales de construcción
POLIPROPILENO
HORMIGON ARMADO
Polypropylene
Reinforced concrete
FRC
Polypropylene fibres
Tensile
Toughness
Bending
Cyclic loading
Residual stress
Fibras de polipropileno
Tensión
Tenacidad
Flexión
Cargas cíclicas
Esfuerzo residual
dc.subject.lemb.spa.fl_str_mv POLIPROPILENO
HORMIGON ARMADO
dc.subject.lemb.eng.fl_str_mv Polypropylene
Reinforced concrete
dc.subject.proposal.eng.fl_str_mv FRC
Polypropylene fibres
Tensile
Toughness
Bending
Cyclic loading
Residual stress
dc.subject.proposal.spa.fl_str_mv Fibras de polipropileno
Tensión
Tenacidad
Flexión
Cargas cíclicas
Esfuerzo residual
description ilustraciones, fotografías, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-28T15:34:54Z
dc.date.available.none.fl_str_mv 2023-07-28T15:34:54Z
dc.date.issued.none.fl_str_mv 2023-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84356
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84356
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ACI Committee 211. (1991). Standard practice for selecting proportions for normal heavyweight, and mass concrete. Fermington Hills: American Concrete Institute, Reapproved.
ACI Committee 221. (1998). State-of-the-Art Report on Alkali-Aggregate Reactivity. Fermington Hills: American Concrete Institute, 98(Reapproved), 1–31.
ACI Committee 228.2R. (2013). Report on Nondestructive Test Methods for Evaluation of Concrete in Structures. In Fermington Hills: American Concrete Institute.
ACI Committee 318 (2019). Requisitos de Reglamentos para Concreto Estructural (ACI 318-19), Fermington Hills: American Concrete Institute 683 (2019). https://www.udocz.com/apuntes/53414/aci-318-19-espanol.
ACI Committee 544.1R. (2009). Report on Fiber Reinforced Concrete Reported by ACI Committee 544. In Fermington Hills: American Concrete Institute (Vol. 96, Issue Reapproved).
ACI Committee 544.2R. (2017). Report on the Measurement of Fresh State Properties and Fiber Dispersion of Fiber-Reinforced Concrete. Fermington Hills: American Concrete Institute.
ACI Committee 544.3R. (2008). Guide for Specifying, Proportioning, and Production of Fiber-Reinforced Concrete. Fermington Hills: American Concrete Institute, 1–16.
ACI Committee 544.4R. (2018). Guide to Design with Fiber-Reinforced Concrete. In Fermington Hills: American Concrete Institute.
ACI Committee 544.5R. (2010). Report on the Physical Properties and Durability of Fiber-Reinforced Concrete. In Fermington Hills: American Concrete Institute.
ACI Committee 544.8R. (2016). Report on Indirect Method to Obtain Stress Strain Response of Fiber- Reinforced COncrete (FRC). Fermington Hills: American Concrete Institute.
ASTM A820/A820M. (2011). Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Material., October, 1–4.
ASTM C1116/C1116M. (2010). Standard Specification for Fiber-Reinforced Concrete. American Society for Testing and Material., Reapproved 2015, 1–7.
ASTM C1399/C1399M. (2010). Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete. American Society for Testing and Material., 1–6.
ASTM C1557. (2014). Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. American Society for Testing and Material., 75(Reapproved 1989), 1–5.
ASTM C1609/C1609M. (2010). Standar Test Method for flexural Performance of Fiber - Reinforced Concreten (Using Beam With Third - Point Loading). American Society for Testing and Material.
ASTM C293/C293M. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). American Society for Testing and Material., 1–4.
ASTM C469/C469M. (2022). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. American Society for Testing and Material.
ASTM C597. (2009). Standard Test Method for Pulse Velocity Through Concrete. American Society for Testing and Material., 04(02), 3–6.
Abousnina, R., Premasiri, S., Anise, V., Lokuge, W., Vimonsatit, V., Ferdous, W., & Alajarmeh, O. (2021). Mechanical properties of macro polypropylene fibre-reinforced concrete. Polymers, 13(23), 1–25.
Ali, B., Ali L., Kurda R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437.
Arivalagan, S. (2012). Cyclic behaviour of reinforced cement concrete composite beam made with polypropylene fiber. Journal of Civil Engineering, 40(2), 105–114.
Aslani, F. & Samali, B., (2014). High Strenth Polypropylene Fibre Reinforcement Concrete at High Temperature. Fire Technology, 50, 1229-1247.
Behdouj, Z., Jamshidi, M., Latifi, M., & Halvaei, M. (2013). Effect of cross sectional shape of polypropylene fibers on flexural toughness of composites and fiber-to-cement matrix adhesion. Advanced Materials Research, 687, 485–489.
Benaicha, M., Jalbaud, O., Hafidi Alaoui, A., & Burtschell, Y. (2015). Correlation between the mechanical behavior and the ultrasonic velocity of fiber-reinforced concrete. Construction and Building Materials, 101, 702–709.
Bentur, A., & Mindess, S. (2007). Fibre reinforced cementitious composites. In Modern Concrete Technology Series.
Boulekbache, B., Hamrat, M., Amziane, S. (2016). Behaviour of steel fibre-reinforced concrete under cyclic loading. Construction and Building Materials, 126, 253-262.
Broda, J., & Brachaczek, W. (2015). Influence of polypropylene fibre geometry on the mechanical properties of cement mortars. Fibres and Textiles in Eastern Europe, 23(2), 123–129.
BS-EN-14889-2:2006. (2006). Fibres for concrete - Part 2: Polymer fibres. Definitions, specifications and conformity. In BSI (Vol. 3).
Bunsell, A. R. (2018). Handbook of Properties of Textile and Technical Fibres, Second Edition.
Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25, 2713–2722.
Cáceres, A., Galobardes, I., & De Figueiredo, A. D. (2016). Mechanical characterization of synthetic macrofibres. Materials Research, 19(3), 711–720.
Cáceres, A., Galobardes, I., Rebmann, M. S., Monte, R., & Figueiredo, A. D. de. (2015). Geometric characterization of polymeric macrofibers. Revista IBRACON de Estruturas e Materiais, 8(5), 644–668.
Carmona, S., Aguado De Cea, A., Molins, C., & Contreras, M. (2009). Control de la tenacidad de los hormigones reforzados con fibras usando el ensayo de doble punzonamiento (ensayo Barcelona). Revista Ingenieria de Construccion, 24(2), 119–140.
Carnovale, D. (2013). Behaviour and Analysis of Steel and Macro-Synthetic Fibre Reinforced Concrete Subjected to Reversed Cyclic Loading: A Pilot Investigation. [Thesis of Master, University of Toronto].
Carrillo, J., Aperador, W., & Gonzáles, G. (2012). Correlaciones entre las Propiedades Mecánicas del Concreto Reforzado con Fibras de Acero. Ingeniería Investigación y Tecnología, volumnes XIV (número 3), julio-septiembre 2013: 435-450.
Carrillo, J., Ramirez, J., & Lizarazo, J. (2019). Modulus of Elasticity and Poisson's Ratio of Fiber-Reinforced Concrete in Colombia from Ultrasonic Pulse Velocities. Journal of Building Engineering. 23 (2019) 18-26.
Del Savio, A., La Torre, D., Carrillo, J., & Chi, E. (2022). Determination of Polypropylene Fober-Reinforced Concrete Compressive Strenth and Elasticity Modulus via Ultrasonic Pulse Tests. Appl. Sci. 2022, 12, 10375.
Dopko, M., Najimi, M., Shafei, B., Wang, X., Taylor, P., & Phares, B. M. (2018). Flexural performance evaluation of fiber-reinforced concrete incorporating multiple macro-synthetic fibers. Transportation Research Record, 2672(27), 1–12.
Euclid Chemical Company, (2015). Engineering Guide to Fiber-Reinforced Concrete.
Fib, (2010). Model code for concrete structures 2010. Federation Internationale du Beton.
Figueiredo, A. D. (2008). A nova especificação brasileira das fibras de aço para concreto. Anais Do 50° Congresso Brasileiro Do Concreto, September 2008.
Ghosni, N., Samali, B., & Vessalas, K. (2014). Evaluation of structural behaviour of polypropylene fibre reinforced concrete beam under cyclic loading. 23rd Australasian Conference on the Mechanics of Structures and Materials, 319–326.
Hannant, D.J. (1978). Fiber Cements and Fiber Concretes. John Wiley and Sons.
Método de ensayo para la determinación de la capacidad de absorción de energía (tenacidad) de concreto reforzado con fibra, (2009).
International Atomic Energy Agency. (2002). Guidebook on non-destructive testing of concrete structures. In Industrial Applications and Chemistry Section, IAEA (Vol. 17). http://200.10.161.33/cirsoc/pdf/ensayos/tcs-17_web.pdf
Karaiskos, G., Deraemaeker, A., Aggelis, D. G., & Van Hemelrijck, D. (2015). Monitoring of concrete structures using the ultrasonic pulse velocity method. Smart Materials and Structures, 24(11), 1–31.
Kobayashi, K., & Cho, R. (1981). Flexural behaviour of polyethylene fibre reinforced concrete. The International Journal of Cement Composites and Lightweight Concrete, 3(1), 19–25.
Mohod, M., & Kadam, K. (2016). Behaviour of polypropylene fibre reinforced concrete pavement under static wheel load. Sixth International Congress on Computational Mechanics and Simulation, August.
Naik, T. R., Malhotra, V. M., & Popovics, J. S. (2004). The Ultrasonic Pulse Velocity Method. In Handbook on nondestructive testing of concrete.
Neville, A. M. (2011). Properties of Concrete (Fifth Edit).
Nkem, A., Ige, A. (2014). Optimal polypropylene fiber content for imporved compressive and flexural strength of concrete. Journal of Mechanical and Civil Engineering, 11,3. PP 129-135.
NSR-10, (2010). Reglamento Colombiano de Construcción Sismo Resistente. Asociación de ingeniería Sísmica.
Paegle, L., Fischer, G., Jönsson, J. (2015). Characterization and modeling of fiber reinforced concrete for structural applications in beams and plates.[Tesis Doctoral, Technical University of Denamark]
Pakravan, H. R., Jamshidi, M., & Latifi, M. (2016). The effect of hybridization and geometry of polypropylene fibers on engineered cementitious composites reinforced by polyvinyl alcohol fibers. Journal of Composite Materials, 50(8), 1007–1020.
Pujadas, P., (2013). Caracterización y diseño del hormigón reforzado con fibras plásticas. [Tesis Doctoral, Universitat Politècnica de Catalunya]
Rai, A., & Joshi, Y. P. (2014). Applications and Properties of Fibre Reinforced Concrete. Journal of Engineering Research and Applications, 1, 123–131.
Ramakrishnan, V., Speakman, J., Kakodkar, S., & Sure, V. R. (1994). Performance characteristics of monofilament polypropylene fiber-reinforced concrete. Transportation Research Record, 1458, 48–56.
Ramírez, J. (2014). Evaluación del Proceso de Daño y Deterioro Mecánico del Concreto Reforzado con Fibras Mediante Técnicas Acústicas. Universidad Nacional de Colombia.
RILEM TECHNICAL COMMITTEES. (2001). Rilem TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Uni-axial tension test for steel fibre reinforced concrete. Materials and Structures/Materiaux et Constructions, 34(235), 3–6.
Roman, J. L. (2015). Análisis de las Propiedades del Concreto Reforzado con Fibras Cortas de Acero y Macrofibras de Polipropileno: Influencia del Tipo y Consumo de Fibra Adicionado. Universidad Nacional Autónoma de México.
Rostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., & Abtahi, S. M. (2019). The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cement and Concrete Composites, 97, 118–124.
Segre, N., Tonella, E., & Joekes, I. (1998). Evaluation of the stability of polypropylene fibers in enviroments aggressive to cement based materials. Cement and COncrete Research, 28, 75–81.
Selleck, S. F., Landis, E. N., Peterson, M. L., Shah, S. P., & Achenbach, J. D. (1998). Ultrasonic investigation of concrete with distributed damage. ACI Materials Journal, 95(1), 27–36.
Shin, E. H., Cho, K. S., Seo, M. H., & Kim, H. (2008). Determination of electrospun fiber diameter distributions using image analysis processing. Macromolecular Research, 16(No. 4), 314–319.
Snyder, K. A., Feng, X., Keen, B. D., & Mason, T. O. (2003). Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations. Cement and Concrete Research, 33(6), 793–798.
Suksawang, N. Wtaife, S. & Alsabbagh, A. (2018). Evaluation of Elastic Modulus of Fiber-Reinforced Concrete. ACI Materials Journal, Title No. 115-M22.
Sukontasukkul, P. (2004). Toughness Evaluation of Fibre Reinforced Concrete. Thammasat Int. J. Sc. Tech., 9(3).
Vollpracht, A., Lothenbach, B., Snellings, R., & Haufe, J. (2015). The pore solution of blended cements: a review. Materials and Structures, 49(8).
Wang, Y., Backer, S., & Li, V. C. (1987). An experimental study of synthetic fibre reinforced cementitious composites. Journal of Materials Science, 22(12), 4281–4291.
Wu, Y. A. O. (2002). Flexural Strength and Behavior of Polypropylene Fiber Reinforced Concrete Beams. Journal of Wuhan University of Technology, 17(2), 54–57.
Yadav, M., & Sharma, A. (2020). Comparative Analysis between Use of Polypropylene Fibers and Steel Fibers in Fiber Reinforced Concrete. International Research Journal of Engineering and Technology, 07(08), 2106–2112.
Yazici, Ş., Inan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21, 1250–1253.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 160 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84356/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84356/2/1130601756.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84356/3/1130601756.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a6ebf4d660ba1f22f7d4e160c6a02cb0
fd9893e5cd19fa549c074deb5313d5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886252429967360
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lizarazo Marriaga, Juan Manuel5773f81a6037772a79e67aad79a143d9Luna Tamayo, Patriciaeb0a0c55c0a8abe56c9ad14ce44b590ePalomino Barón, Diana Lucía419688535841a2090bdfea274270df742023-07-28T15:34:54Z2023-07-28T15:34:54Z2023-07https://repositorio.unal.edu.co/handle/unal/84356Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, diagramasLa siguiente investigación presenta los resultados del estudio experimental del comportamiento a flexión y la capacidad de absorción de energía de vigas de concreto reforzado con fibras de polipropileno para cuatro diferentes dosificaciones de fibra 1.8kg/m3, 4.5 kg/m3, 6.0 kg/m3 y 7.5kg/m3, dos mezclas control sin fibras y dos tamaños diferentes de agregado grueso (TMN, 12.7mm y 19mm) después de estar bajo dos patrones de carga de tipo cíclico con 40 y 80 repeticiones (C1 y C2) controlando en ambos casos la amplitud de la carga, la cual se consideró constante e igual al 65% del módulo de ruptura promedio. Para las dosificaciones establecidas y las propiedades mecánicas de las fibras usadas, las probetas presentaron un comportamiento de ablandamiento debido a la caída repentina de la carga después de la fisuración, por lo tanto, los esfuerzos residuales calculados después de la rotura y la tenacidad se vieron significativamente afectados por la aplicación de las cargas externas de naturaleza cíclica ya que las probetas perdieron aún más la capacidad de mantener la carga. Adicional a lo anterior se evaluó la pérdida de resistencia de las fibras después de 110 días de exposición en cuatro concentraciones de iones de alcalinos de sodio y potasio (NaOH y KOH) teniendo en cuenta la composición de la solución de poros que simulan el ambiente de un concreto tradicional con solo cemento denominado 0% y tres concretos con adición de humo de sílice entre 5% y 15%. Las fibras expuestas a una concentración de 0% fueron las que más reaccionaron con el medio alcalino, disminuyendo el esfuerzo último de tensión en 16.17% con respecto a las fibras en estado natural (igual a 510.26MPa). En las fibras con adición de humo de sílice para los grupos de 5% y 10% se disminuyó el esfuerzo último de tensión en 5.11% y 1.74% respectivamente, para el último grupo (15%) el esfuerzo no se vio afectado por la concentración alcalina, incluso se obtuvo un ligero mayor valor de resistencia última de 526.65MPa. (Texto tomado de la fuente)The following experimental study researched the behavior of reinforced concrete beams with four different PP fibre dosages 1.8kg/m3, 4.5 kg/m3, 6 kg/m3 y 7.5kg/m3 subject to cyclic flexural loading. Using two control samples with no fibre dosage, and varying coarse aggregates (TMN, 12.7mm y 19mm), limiting load applications to 65% of average ultimate moment was applied in 40 and 80 cycle tests (C1 y C2). For fiber added beams, there was a stiffness loss after cracking “flexural softening”, hence, residual stress and toughness were significantly affected by the cyclic nature of loading for test samples lost their capacity to withstand loading. PP fiber strength loss was evaluated after 110 days of NaOH and KOH exposure, using four different ion concentrations to simulate the composition of the cement pore solution expected environment of traditional “0%” cement, and three different concentrations of fly ash and silica fume concrete. Fibres from 0% cement had the highest reaction to the alkaline environment, reducing up to 16.77% of tensile strength from unexposed fibres. Fibres with different fly ash concentrations 5% and 10% reducing up to 5.11% to 1.74% respectively tensile strength. In the last one group (15%) the tensile strength was not affected by the alkaline environment their strength in up to 3.21% more than patron group.MaestríaMagíster en Ingeniería - EstructurasMateriales para Estructurasxix, 160 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - EstructurasFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civil690 - Construcción de edificios::691 - Materiales de construcciónPOLIPROPILENOHORMIGON ARMADOPolypropyleneReinforced concreteFRCPolypropylene fibresTensileToughnessBendingCyclic loadingResidual stressFibras de polipropilenoTensiónTenacidadFlexiónCargas cíclicasEsfuerzo residualComportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicasFlexural behavior of polypropylene fiber reinforced concrete beams subjected to cyclic loadingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMACI Committee 211. (1991). Standard practice for selecting proportions for normal heavyweight, and mass concrete. Fermington Hills: American Concrete Institute, Reapproved.ACI Committee 221. (1998). State-of-the-Art Report on Alkali-Aggregate Reactivity. Fermington Hills: American Concrete Institute, 98(Reapproved), 1–31.ACI Committee 228.2R. (2013). Report on Nondestructive Test Methods for Evaluation of Concrete in Structures. In Fermington Hills: American Concrete Institute.ACI Committee 318 (2019). Requisitos de Reglamentos para Concreto Estructural (ACI 318-19), Fermington Hills: American Concrete Institute 683 (2019). https://www.udocz.com/apuntes/53414/aci-318-19-espanol.ACI Committee 544.1R. (2009). Report on Fiber Reinforced Concrete Reported by ACI Committee 544. In Fermington Hills: American Concrete Institute (Vol. 96, Issue Reapproved).ACI Committee 544.2R. (2017). Report on the Measurement of Fresh State Properties and Fiber Dispersion of Fiber-Reinforced Concrete. Fermington Hills: American Concrete Institute.ACI Committee 544.3R. (2008). Guide for Specifying, Proportioning, and Production of Fiber-Reinforced Concrete. Fermington Hills: American Concrete Institute, 1–16.ACI Committee 544.4R. (2018). Guide to Design with Fiber-Reinforced Concrete. In Fermington Hills: American Concrete Institute.ACI Committee 544.5R. (2010). Report on the Physical Properties and Durability of Fiber-Reinforced Concrete. In Fermington Hills: American Concrete Institute.ACI Committee 544.8R. (2016). Report on Indirect Method to Obtain Stress Strain Response of Fiber- Reinforced COncrete (FRC). Fermington Hills: American Concrete Institute.ASTM A820/A820M. (2011). Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Material., October, 1–4.ASTM C1116/C1116M. (2010). Standard Specification for Fiber-Reinforced Concrete. American Society for Testing and Material., Reapproved 2015, 1–7.ASTM C1399/C1399M. (2010). Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete. American Society for Testing and Material., 1–6.ASTM C1557. (2014). Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. American Society for Testing and Material., 75(Reapproved 1989), 1–5.ASTM C1609/C1609M. (2010). Standar Test Method for flexural Performance of Fiber - Reinforced Concreten (Using Beam With Third - Point Loading). American Society for Testing and Material.ASTM C293/C293M. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). American Society for Testing and Material., 1–4.ASTM C469/C469M. (2022). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. American Society for Testing and Material.ASTM C597. (2009). Standard Test Method for Pulse Velocity Through Concrete. American Society for Testing and Material., 04(02), 3–6.Abousnina, R., Premasiri, S., Anise, V., Lokuge, W., Vimonsatit, V., Ferdous, W., & Alajarmeh, O. (2021). Mechanical properties of macro polypropylene fibre-reinforced concrete. Polymers, 13(23), 1–25.Ali, B., Ali L., Kurda R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437.Arivalagan, S. (2012). Cyclic behaviour of reinforced cement concrete composite beam made with polypropylene fiber. Journal of Civil Engineering, 40(2), 105–114.Aslani, F. & Samali, B., (2014). High Strenth Polypropylene Fibre Reinforcement Concrete at High Temperature. Fire Technology, 50, 1229-1247.Behdouj, Z., Jamshidi, M., Latifi, M., & Halvaei, M. (2013). Effect of cross sectional shape of polypropylene fibers on flexural toughness of composites and fiber-to-cement matrix adhesion. Advanced Materials Research, 687, 485–489.Benaicha, M., Jalbaud, O., Hafidi Alaoui, A., & Burtschell, Y. (2015). Correlation between the mechanical behavior and the ultrasonic velocity of fiber-reinforced concrete. Construction and Building Materials, 101, 702–709.Bentur, A., & Mindess, S. (2007). Fibre reinforced cementitious composites. In Modern Concrete Technology Series.Boulekbache, B., Hamrat, M., Amziane, S. (2016). Behaviour of steel fibre-reinforced concrete under cyclic loading. Construction and Building Materials, 126, 253-262.Broda, J., & Brachaczek, W. (2015). Influence of polypropylene fibre geometry on the mechanical properties of cement mortars. Fibres and Textiles in Eastern Europe, 23(2), 123–129.BS-EN-14889-2:2006. (2006). Fibres for concrete - Part 2: Polymer fibres. Definitions, specifications and conformity. In BSI (Vol. 3).Bunsell, A. R. (2018). Handbook of Properties of Textile and Technical Fibres, Second Edition.Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25, 2713–2722.Cáceres, A., Galobardes, I., & De Figueiredo, A. D. (2016). Mechanical characterization of synthetic macrofibres. Materials Research, 19(3), 711–720.Cáceres, A., Galobardes, I., Rebmann, M. S., Monte, R., & Figueiredo, A. D. de. (2015). Geometric characterization of polymeric macrofibers. Revista IBRACON de Estruturas e Materiais, 8(5), 644–668.Carmona, S., Aguado De Cea, A., Molins, C., & Contreras, M. (2009). Control de la tenacidad de los hormigones reforzados con fibras usando el ensayo de doble punzonamiento (ensayo Barcelona). Revista Ingenieria de Construccion, 24(2), 119–140.Carnovale, D. (2013). Behaviour and Analysis of Steel and Macro-Synthetic Fibre Reinforced Concrete Subjected to Reversed Cyclic Loading: A Pilot Investigation. [Thesis of Master, University of Toronto].Carrillo, J., Aperador, W., & Gonzáles, G. (2012). Correlaciones entre las Propiedades Mecánicas del Concreto Reforzado con Fibras de Acero. Ingeniería Investigación y Tecnología, volumnes XIV (número 3), julio-septiembre 2013: 435-450.Carrillo, J., Ramirez, J., & Lizarazo, J. (2019). Modulus of Elasticity and Poisson's Ratio of Fiber-Reinforced Concrete in Colombia from Ultrasonic Pulse Velocities. Journal of Building Engineering. 23 (2019) 18-26.Del Savio, A., La Torre, D., Carrillo, J., & Chi, E. (2022). Determination of Polypropylene Fober-Reinforced Concrete Compressive Strenth and Elasticity Modulus via Ultrasonic Pulse Tests. Appl. Sci. 2022, 12, 10375.Dopko, M., Najimi, M., Shafei, B., Wang, X., Taylor, P., & Phares, B. M. (2018). Flexural performance evaluation of fiber-reinforced concrete incorporating multiple macro-synthetic fibers. Transportation Research Record, 2672(27), 1–12.Euclid Chemical Company, (2015). Engineering Guide to Fiber-Reinforced Concrete.Fib, (2010). Model code for concrete structures 2010. Federation Internationale du Beton.Figueiredo, A. D. (2008). A nova especificação brasileira das fibras de aço para concreto. Anais Do 50° Congresso Brasileiro Do Concreto, September 2008.Ghosni, N., Samali, B., & Vessalas, K. (2014). Evaluation of structural behaviour of polypropylene fibre reinforced concrete beam under cyclic loading. 23rd Australasian Conference on the Mechanics of Structures and Materials, 319–326.Hannant, D.J. (1978). Fiber Cements and Fiber Concretes. John Wiley and Sons.Método de ensayo para la determinación de la capacidad de absorción de energía (tenacidad) de concreto reforzado con fibra, (2009).International Atomic Energy Agency. (2002). Guidebook on non-destructive testing of concrete structures. In Industrial Applications and Chemistry Section, IAEA (Vol. 17). http://200.10.161.33/cirsoc/pdf/ensayos/tcs-17_web.pdfKaraiskos, G., Deraemaeker, A., Aggelis, D. G., & Van Hemelrijck, D. (2015). Monitoring of concrete structures using the ultrasonic pulse velocity method. Smart Materials and Structures, 24(11), 1–31.Kobayashi, K., & Cho, R. (1981). Flexural behaviour of polyethylene fibre reinforced concrete. The International Journal of Cement Composites and Lightweight Concrete, 3(1), 19–25.Mohod, M., & Kadam, K. (2016). Behaviour of polypropylene fibre reinforced concrete pavement under static wheel load. Sixth International Congress on Computational Mechanics and Simulation, August.Naik, T. R., Malhotra, V. M., & Popovics, J. S. (2004). The Ultrasonic Pulse Velocity Method. In Handbook on nondestructive testing of concrete.Neville, A. M. (2011). Properties of Concrete (Fifth Edit).Nkem, A., Ige, A. (2014). Optimal polypropylene fiber content for imporved compressive and flexural strength of concrete. Journal of Mechanical and Civil Engineering, 11,3. PP 129-135.NSR-10, (2010). Reglamento Colombiano de Construcción Sismo Resistente. Asociación de ingeniería Sísmica.Paegle, L., Fischer, G., Jönsson, J. (2015). Characterization and modeling of fiber reinforced concrete for structural applications in beams and plates.[Tesis Doctoral, Technical University of Denamark]Pakravan, H. R., Jamshidi, M., & Latifi, M. (2016). The effect of hybridization and geometry of polypropylene fibers on engineered cementitious composites reinforced by polyvinyl alcohol fibers. Journal of Composite Materials, 50(8), 1007–1020.Pujadas, P., (2013). Caracterización y diseño del hormigón reforzado con fibras plásticas. [Tesis Doctoral, Universitat Politècnica de Catalunya]Rai, A., & Joshi, Y. P. (2014). Applications and Properties of Fibre Reinforced Concrete. Journal of Engineering Research and Applications, 1, 123–131.Ramakrishnan, V., Speakman, J., Kakodkar, S., & Sure, V. R. (1994). Performance characteristics of monofilament polypropylene fiber-reinforced concrete. Transportation Research Record, 1458, 48–56.Ramírez, J. (2014). Evaluación del Proceso de Daño y Deterioro Mecánico del Concreto Reforzado con Fibras Mediante Técnicas Acústicas. Universidad Nacional de Colombia.RILEM TECHNICAL COMMITTEES. (2001). Rilem TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Uni-axial tension test for steel fibre reinforced concrete. Materials and Structures/Materiaux et Constructions, 34(235), 3–6.Roman, J. L. (2015). Análisis de las Propiedades del Concreto Reforzado con Fibras Cortas de Acero y Macrofibras de Polipropileno: Influencia del Tipo y Consumo de Fibra Adicionado. Universidad Nacional Autónoma de México.Rostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., & Abtahi, S. M. (2019). The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cement and Concrete Composites, 97, 118–124.Segre, N., Tonella, E., & Joekes, I. (1998). Evaluation of the stability of polypropylene fibers in enviroments aggressive to cement based materials. Cement and COncrete Research, 28, 75–81.Selleck, S. F., Landis, E. N., Peterson, M. L., Shah, S. P., & Achenbach, J. D. (1998). Ultrasonic investigation of concrete with distributed damage. ACI Materials Journal, 95(1), 27–36.Shin, E. H., Cho, K. S., Seo, M. H., & Kim, H. (2008). Determination of electrospun fiber diameter distributions using image analysis processing. Macromolecular Research, 16(No. 4), 314–319.Snyder, K. A., Feng, X., Keen, B. D., & Mason, T. O. (2003). Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations. Cement and Concrete Research, 33(6), 793–798.Suksawang, N. Wtaife, S. & Alsabbagh, A. (2018). Evaluation of Elastic Modulus of Fiber-Reinforced Concrete. ACI Materials Journal, Title No. 115-M22.Sukontasukkul, P. (2004). Toughness Evaluation of Fibre Reinforced Concrete. Thammasat Int. J. Sc. Tech., 9(3).Vollpracht, A., Lothenbach, B., Snellings, R., & Haufe, J. (2015). The pore solution of blended cements: a review. Materials and Structures, 49(8).Wang, Y., Backer, S., & Li, V. C. (1987). An experimental study of synthetic fibre reinforced cementitious composites. Journal of Materials Science, 22(12), 4281–4291.Wu, Y. A. O. (2002). Flexural Strength and Behavior of Polypropylene Fiber Reinforced Concrete Beams. Journal of Wuhan University of Technology, 17(2), 54–57.Yadav, M., & Sharma, A. (2020). Comparative Analysis between Use of Polypropylene Fibers and Steel Fibers in Fiber Reinforced Concrete. International Research Journal of Engineering and Technology, 07(08), 2106–2112.Yazici, Ş., Inan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21, 1250–1253.EstudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84356/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1130601756.2023.pdf1130601756.2023.pdfTesis de Maestría en Ingeniería - Estructurasapplication/pdf6264950https://repositorio.unal.edu.co/bitstream/unal/84356/2/1130601756.2023.pdfa6ebf4d660ba1f22f7d4e160c6a02cb0MD52THUMBNAIL1130601756.2023.pdf.jpg1130601756.2023.pdf.jpgGenerated Thumbnailimage/jpeg5460https://repositorio.unal.edu.co/bitstream/unal/84356/3/1130601756.2023.pdf.jpgfd9893e5cd19fa549c074deb5313d5f9MD53unal/84356oai:repositorio.unal.edu.co:unal/843562023-08-15 23:04:05.708Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=