Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas
ilustraciones, diagramas
- Autores:
-
Grajales Ríos, Naren Zulamir
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84846
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadas
330 - Economía::333 - Economía de la tierra y de la energía
Conservación de suelos
Soil conservation
MICP
Sporosarcina pasteurii
Bioprecipitation
Bioremediation
Calcite
Copper
Urease
Bioprecipitación
Biorremediación
Calcita
Cobre
Ureasa
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_b95ea45917947e7e2fdf0230774753b3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84846 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas |
dc.title.translated.eng.fl_str_mv |
Biomineralization of calcium carbonate (CaCO3) induced by bacteria for the immobilization of copper ions (Cu2+) with potential for applications in agricultural soils |
title |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas |
spellingShingle |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas 630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadas 330 - Economía::333 - Economía de la tierra y de la energía Conservación de suelos Soil conservation MICP Sporosarcina pasteurii Bioprecipitation Bioremediation Calcite Copper Urease Bioprecipitación Biorremediación Calcita Cobre Ureasa |
title_short |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas |
title_full |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas |
title_fullStr |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas |
title_full_unstemmed |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas |
title_sort |
Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas |
dc.creator.fl_str_mv |
Grajales Ríos, Naren Zulamir |
dc.contributor.advisor.none.fl_str_mv |
Márquez Godoy, Marco Antonio |
dc.contributor.author.none.fl_str_mv |
Grajales Ríos, Naren Zulamir |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Mineralogía Aplicada y Bioprocesos (Gmab) |
dc.contributor.orcid.spa.fl_str_mv |
Grajales Ríos, Naren Zulamir [0009-0002-0869-7984] Márquez Godoy, Marco Antonio [0000-0002-7462-2430] |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadas 330 - Economía::333 - Economía de la tierra y de la energía |
topic |
630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadas 330 - Economía::333 - Economía de la tierra y de la energía Conservación de suelos Soil conservation MICP Sporosarcina pasteurii Bioprecipitation Bioremediation Calcite Copper Urease Bioprecipitación Biorremediación Calcita Cobre Ureasa |
dc.subject.lemb.spa.fl_str_mv |
Conservación de suelos |
dc.subject.lemb.eng.fl_str_mv |
Soil conservation |
dc.subject.proposal.eng.fl_str_mv |
MICP Sporosarcina pasteurii Bioprecipitation Bioremediation Calcite Copper Urease |
dc.subject.proposal.spa.fl_str_mv |
Bioprecipitación Biorremediación Calcita Cobre Ureasa |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-27T20:37:41Z |
dc.date.available.none.fl_str_mv |
2023-10-27T20:37:41Z |
dc.date.issued.none.fl_str_mv |
2023-02-01 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84846 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84846 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201–202, 178–184. https://doi.org/10.1016/j.jhazmat.2011.11.067 Achal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352–1358. https://doi.org/10.1016/j.chemosphere.2013.08.008 Achal, V., Pan, X., & Özyurt, N. (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37(4), 554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009 Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008 Ahmad, F., Mujah, D., Hazarika, H., & Safari, A. (2012). Assessing the potential reuse of recycled glass fibre in problematic soil applications. Journal of Cleaner Production, 35, 102– 107. https://doi.org/10.1016/j.jclepro.2012.05.047 Alloway, B. J. (2013). Heavy Metals in Soils Trace Metals and Metalloids in Soils and their Bioavailability (B. J. Alloway, Ed.; 3rd ed.). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7 Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26. https://doi.org/10.1186/s40064-016-1869-2 Anticó, E., Cot, S., Ribó, A., Rodríguez-Roda, I., & Fontàs, C. (2017). Survey of heavy metal contamination in water sources in the municipality of Torola, El Salvador, through in situ sorbent extraction. Water (Switzerland), 9(11). https://doi.org/10.3390/w9110877 Arias, D., Cisternas, L. A., Miranda, C., & Rivas, M. (2019). Bioprospecting of ureolytic bacteria from Laguna Salada for biomineralization applications. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00209 Arias, J. L., & Fernández, M. S. (2008). Polysaccharides and proteoglycans in calcium carbonate-based Biomineralization. Chemical Reviews, 108(11), 4475–4482. https://doi.org/10.1021/cr078269p Barkouki, T. H., Martinez, B. C., Mortensen, B. M., Weathers, T. S., de Jong, J. D., Ginn, T. R., Spycher, N. F., Smith, R. W., & Fujita, Y. (2011). Forward and Inverse BioGeochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments. Transport in Porous Media, 90(1), 23–39. https://doi.org/10.1007/s11242- 011-9804-z Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J. P. (1999). Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sedimentary Geology, 126(1– 4), 9–23. https://doi.org/10.1016/S0037-0738(99)00028-7 Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6(June), 1–15. https://doi.org/10.3389/fmats.2019.00126 Castro-González, N. P., Calderón-Sánchez, F., Moreno-Rojas, R., Tamariz-Flores, J. V., & Reyes-Cervantes, E. (2019). Heavy metals pollution level in wastewater and soils in the alto balsas sub-basin in Tlaxcala and Puebla, Mexico. Revista Internacional de Contaminacion Ambiental, 35(2), 335–348. https://doi.org/10.20937/RICA.2019.35.02.06 Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium carbonate precipitation for CO2 storage and utilization: A review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, 5(JUL), 1–12. https://doi.org/10.3389/fenrg.2017.00017 Chaparro-Acuña, S. P., Becerra-Jiménez, M. L., Martínez-Zambrano, J. J., & RojasSarmiento, H. A. (2017). Soil bacteria that precipitate calcium carbonate: Mechanism and applications of the process. Acta Agronomica, 67(2), 277–288. https://doi.org/10.15446/acag.v67n2.66109 Chen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368, 705–713. https://doi.org/10.1016/j.jhazmat.2019.01.108 Cheng, L., & Shahin, M. A. (2016). Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385. https://doi.org/10.1139/cgj-2015-0635 Cheng, L., Shahin, M. A., & Mujah, D. (2017). Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), 1–11. https://doi.org/10.1061/(ASCE)GT.1943- 5606.0001586 Colin, V. L., Villegas, L. B., & Abate, C. M. (2012). Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration and Biodegradation, 69, 28–37. https://doi.org/10.1016/j.ibiod.2011.12.001 De Muynck, W., Verbeken, K., de Belie, N., & Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 36(2), 99–111. https://doi.org/10.1016/j.ecoleng.2009.03.025 De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2013). Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology, 97(3), 1335–1347. https://doi.org/10.1007/s00253-012-3997-0 Dhami, N. K., Quirin, M. E. C., & Mukherjee, A. (2017). Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecological Engineering, 103, 106–117. https://doi.org/10.1016/j.ecoleng.2017.03.007 Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. Construction and Building Materials, 104, 198–207. https://doi.org/10.1016/j.conbuildmat.2015.12.023 Dhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4(314). https://doi.org/10.3389/fmicb.2013.00314 Di Benedetto, F., Costagliola, P., Benvenuti, M., Lattanzi, P., Romanelli, M., & Tanelli, G. (2006). Arsenic incorporation in natural calcite lattice: Evidence from electron spin echo spectroscopy. Earth and Planetary Science Letters, 246(3–4), 458–465. https://doi.org/10.1016/j.epsl.2006.03.047 Diels, L., Geets, J., Dejonghe, W., van Roy, S., Vanbroekhoven, K., Szewczyk, A., & Malina, G. (2010). Heavy metal immobilization in groundwater by in situ bioprecipitation: Comments and questions about efficiency and sustain ability of the process. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy (Vol. 11, pp. 99–112). Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland), 7(2), 2189–2212. https://doi.org/10.3390/su7022189 Duarte-Nass, C., Rebolledo, K., Valenzuela, T., Kopp, M., Jeison, D., Rivas, M., Azócar, L., Torres-Aravena, Á., & Ciudad, G. (2020). Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. Journal of Environmental Management, 256. https://doi.org/10.1016/j.jenvman.2019.109938 Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005 Durand, N., Monger, C. H., & Canti, M. G. (2010). Calcium Carbonate Features. In Interpretation of Micromorphological Features of Soils and Regoliths (pp. 149–194). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53156-8.00009-X Fujita, Y., Redden, G. D., Ingram, J. C., Cortez, M. M., Ferris, F. G., & Smith, R. W. (2004). Strontium incorporation into calcite generated by bacterial ureolysis. Geochimica et Cosmochimica Acta, 68(15), 3261–3270. https://doi.org/10.1016/j.gca.2003.12.018 Ghosh, S., Biswas, M., Chattopadhyay, B. D., & Mandal, S. (2009). Microbial activity on the microstructure of bacteria modified mortar. Cement and Concrete Composites, 31(2), 93– 98. https://doi.org/10.1016/j.cemconcomp.2009.01.001 Giachino, A., & Waldron, K. J. (2020). Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular Microbiology, 114(3), 377–390. https://doi.org/10.1111/mmi.14522 Guimarães, R. M. L., Ball, B. C., & Tormena, C. A. (2011). Improvements in the visual evaluation of soil structure. Soil Use and Management, 27(3), 395–403. https://doi.org/10.1111/j.1475-2743.2011.00354.x Hammes, F., Boon, N., Clement, G., De Villiers, J., Siciliano, S. D., & Verstraete, W. (2003). Molecular, biochemical and ecological characterisation of a bio-catalytic calcification reactor. Applied Microbiology and Biotechnology, 62(2–3), 191–201. https://doi.org/10.1007/s00253-003-1287-6 Hammes, F., Seka, A., De Knijf, S., & Verstraete, W. (2003). A novel approach to calcium removal from calcium-rich industrial wastewater. Water Research, 37(3), 699–704. https://doi.org/10.1016/S0043-1354(02)00308-1 He, J., Chen, X., Zhang, Q., & Achal, V. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration and Biodegradation, 140(3), 67–71. https://doi.org/10.1016/j.ibiod.2019.03.012 Helmi, F. M., Elmitwalli, H. R., Elnagdy, S. M., & El-Hagrassy, A. F. (2016). Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecological Engineering, 90, 367–371. https://doi.org/10.1016/j.ecoleng.2016.01.044 Işik, M., Altaş, L., Özcan, S., Şimşek, I., Aĝdaĝ, O. N., & Alaş, A. (2012). Effect of urea concentration on microbial Ca precipitation. Journal of Industrial and Engineering Chemistry, 18(6), 1908–1911. https://doi.org/10.1016/j.jiec.2012.05.002 Jalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2020). Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 20(1), 206–219. https://doi.org/10.1007/s42729-019-00121-z Juan D. Mahecha-Pulido, Juan M. Trujillo-González, & Marco A. Torres-Mora. (2015). Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Orinoquia, 19(1), 118–122. Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements - An environmental issue. Geoderma, 122(2-4 SPEC. IIS.), 143–149. https://doi.org/10.1016/j.geoderma.2004.01.004 Kang, C. H., & So, J. S. (2016). Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecological Engineering, 97, 304–312. https://doi.org/10.1016/j.ecoleng.2016.10.016 Kawaguchi, T., & Decho, A. W. (2002). A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. Journal of Crystal Growth, 240(1–2), 230–235. https://doi.org/10.1016/S0022-0248(02)00918-1 Kumari, D., Pan, X., Lee, D. J., & Achal, V. (2014). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. International Biodeterioration and Biodegradation, 94, 98–102. https://doi.org/10.1016/j.ibiod.2014.07.007 Kumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. In Advances in Applied Microbiology (Vol. 94, pp. 79–108). Elsevier Ltd. https://doi.org/10.1016/bs.aambs.2015.12.002 Lian, B., Hu, Q., Chen, J., Ji, J., & Teng, H. H. (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochimica et Cosmochimica Acta, 70(22), 5522– 5535. https://doi.org/10.1016/j.gca.2006.08.044 Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872. https://doi.org/10.1016/j.chemosphere.2006.03.016 Mugwar, A. J., & Harbottle, M. J. (2016). Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 314, 237–248. https://doi.org/10.1016/j.jhazmat.2016.04.039 Mwandira, W., Nakashima, K., & Kawasaki, S. (2017). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering, 109(July), 57–64. https://doi.org/10.1016/j.ecoleng.2017.09.011 Nava-Ruíz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Arch Neurocien (Mex), 16(3), 140–147. https://doi.org/10.1007/3-540-36080-8_21 Németh, P., Mugnaioli, E., Gemmi, M., Czuppon, G., Demény, A., & Spötl, C. (2018). A nanocrystalline monoclinic CaCO3 precursor of metastable aragonite. Science Advances, 4(12). https://doi.org/10.1126/sciadv.aau6178 Omoregie, A. I., Ngu, L. H., Ong, D. E. L., & Nissom, P. M. (2019). Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatalysis and Agricultural Biotechnology, 17, 247–255. https://doi.org/10.1016/j.bcab.2018.11.030 Osuji, L. C., & Onojake, C. M. (2004). Trace heavy metals associated with crude oil: A case study of ebocha-8 oil-spill-polluted site in niger delta, Nigeria. Chemistry and Biodiversity, 1(11), 1708–1715. https://doi.org/10.1002/cbdv.200490129 Paerl, H. W., Steppe, T. F., & Reid, R. P. (2001). Bacterially mediated precipitation in marine stromatolites. Environmental Microbiology, 3(2), 123–130. https://doi.org/10.1046/j.1462- 2920.2001.00168.x Pérez-González, T., Valverde-Tercedor, C., & Jiménez-López, C. (2004). Biomineralización bacteriana de magnetita y aplicaciones. Seminario SEM, 7(1), 58–74. Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: A review. Biofouling, 29(6), 715–733. https://doi.org/10.1080/08927014.2013.796550 Plassard, F., Winiarski, T., & Petit-Ramel, M. (2000). Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology, 42(2–4), 99–111. https://doi.org/10.1016/S0169-7722(99)00101-1 Portugal, C. R. M. e., Fonyo, C., Machado, C. C., Meganck, R., & Jarvis, T. (2020). Microbiologically Induced Calcite Precipitation biocementation, green alternative for roads – is this the breakthrough? A critical review. Journal of Cleaner Production, 262, 121372. https://doi.org/10.1016/j.jclepro.2020.121372 Bay (Golestan province, Iran). Iranian Journal of Fisheries Sciences, 13(2), 449– 455. Qian, X., Fang, C., Huang, M., & Achal, V. (2017). Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production, 164, 198–208. https://doi.org/10.1016/j.jclepro.2017.06.195 Qiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., Xu, F., & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere, 274, 129661. https://doi.org/10.1016/j.chemosphere.2021.129661 Rajasekar, A., Moy, C. K. S., & Wilkinson, S. (2017). MICP and Advances towards EcoFriendly and Economical Applications. IOP Conference Series: Earth and Environmental Science, 78(1), 1–6. https://doi.org/10.1088/1755-1315/78/1/012016 Saghali, M., Baqraf, R., Patimar, R., Hosseini, S. A., & Baniemam, M. (2014). Determination of heavy metal (Cr, Zn, Cd and Pb) concentrations in water, sediment and benthos of the Gorgan Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials - A review. Applied Biochemistry and Biotechnology, 172(5), 2308–2323. https://doi.org/10.1007/s12010-013- 0686-0 Tang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(94), 1–23. https://doi.org/10.1007/s12665- 020-8840-9 Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology, 101, 133– 164. https://doi.org/10.1007/978-3-7643-8340-4 Umar, M., Kassim, K. A., & Ping Chiet, K. T. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 1–8. https://doi.org/10.1016/j.jrmge.2016.02.004 Warthmann, R., van Lith, Y., Vasconcelos, C., Mckenzie, J. A., & Karpoff, A. M. (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12), 1091–1094. Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46(2), 455–464. https://doi.org/10.1590/S1517-838246220140533 Weiner, S., & Dove, P. M. (2003). An Overview of Biomineralization Processes and the Problem of the Vital Effect. In Reviews in Mineralogy and Geochemistry (Vol. 54, Issue 1, pp. 1–29). https://doi.org/10.2113/0540001 Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. https://doi.org/10.1080/01490450701436505 Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169–182. https://doi.org/10.1007/s10653- 013-9537-8 Yang, J., Pan, X., Zhao, C., Mou, S., Achal, V., Al-Misned, F. A., Mortuza, M. G., & Gadd, G. M. (2016). Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiology Journal, 33(3–4), 261–266. https://doi.org/10.1080/01490451.2015.1068889 Zhang, J., Kumari, D., Fang, C., & Achal, V. (2019). Combining the microbial calcite precipitation process with biochar in order to improve nickel remediation. Applied Geochemistry, 103(February), 68–71. https://doi.org/10.1016/j.apgeochem.2019.02.011 Zhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology, 4(JAN), 1–21. https://doi.org/10.3389/fbioe.2016.00004 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 97 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Biotecnología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84846/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84846/2/1017235688.2023..pdf https://repositorio.unal.edu.co/bitstream/unal/84846/3/1017235688.2023..pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 39bfef221ab1dd700c99686dcdfbc8f2 884ba1780a18b0487d1c96d065d00b8d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089816377131008 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Márquez Godoy, Marco Antonio50146bcaff8cef6053ef23fabfa599b2Grajales Ríos, Naren Zulamire14e73851578518bf1b717a48b474702Grupo de Mineralogía Aplicada y Bioprocesos (Gmab)Grajales Ríos, Naren Zulamir [0009-0002-0869-7984]Márquez Godoy, Marco Antonio [0000-0002-7462-2430]2023-10-27T20:37:41Z2023-10-27T20:37:41Z2023-02-01https://repositorio.unal.edu.co/handle/unal/84846Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasDebido a las diversas actividades industriales y humanas, los metales pesados se han convertido en un contaminante que se ha extendido por todo el medio ambiente, y sus concentraciones superiores a los límites ambientales es un problema grave. La precipitación de carbonatos inducida microbiológicamente (MICP) se ha explorado para la inmovilización de metales pesados en diferentes matrices medioambientales en donde los microorganismos tienen la capacidad de sintetizar biominerales, esto ofrece una manera eficiente de inmovilizar e incorporar metales pesados como el cobre, dentro de fases sólidas estables y cristalinas. Lo expuesto justifica la necesidad de buscar otras alternativas como la MICP como potencial proceso de biorremediación. Para ello, se estudió el efecto de la biomineralización de carbonato inducido por bacterias y la incorporación de cobre (Cu2+) para su inmovilización como base para su aplicación en suelos agrícolas. Se evaluó la tolerancia a cuatro concentraciones de cobre (100, 250, 500 y 1000 mg/l) de 13 bacterias de la Colección Alemana de Microorganismos y Cultivos Celulares reportadas en la literatura con capacidad calcificante. Posterior a la selección de las bacterias tolerantes a dos concentraciones de cobre y con la mayor capacidad de precipitar carbonatos, se seleccionaron tres bacterias para la bioprecipitación e inmovilización de cobre, evaluando seis variables, tanto químicas como biológicas. Los precipitados obtenidos se caracterizaron por medio de las técnicas de Espectroscopía Infrarroja con Transformada de Fourier (FTIR), Difracción de Rayos X (DRX) y Microscopía Electrónica de Barrido acoplada a Espectroscopia de Rayos X (SEM/EDX). Los resultados mostraron que 10 de los 13 microorganismos evaluados son capaces de tolerar las concentraciones de cobre a 100 y 250 mg/l, cabe destacar, que el género Sporosarcina es uno de los más tolerantes y con la mayor producción de carbonatos seguido de Corynebacterium ammoniagenes, S. ureae y Sutcliffiella cohnii. En los tratamientos en suspensión se pudo determinar que S. pasteurii DSM-276, es el microorganismo que tiene mejor eficiencia de eliminación del cobre a pH mayor de 7.5 con valores superiores al 60% y 40% a 100 y 250 mg/l respectivamente. El análisis por DRX de los precipitados mostraron la presencia de calcita y vaterita como los principales fases minerales formadas en todos los tratamientos, acompañados con una pequeña cantidad de weddellita y malaquita, en los tratamientos en presencia de cobre, asimismo, la morfología de los cristales y su porcentaje de composición elemental varió según la presencia o ausencia de este metal pesado. Estos resultados indican que el cobre en el proceso de la MICP puede coprecipitar junto con el carbonato de calcio e incluso, ser inmovilizado en la estructura cristalina a través de reacciones mediadas biológicamente que pueden afectar la mineralogía y morfología de los minerales precipitados. (Texto tomado de la fuente)Due to various industrial and human activities, heavy metals have become a contaminant that has become widespread throughout the environment, and their concentrations above environmental limits is a fundamental problem. Microbiologically induced carbonate precipitation (MICP) has been explored for the immobilization of heavy metals in different environmental matrices where microorganisms have the ability to synthesize biominerals, this offers an efficient way to immobilize and incorporate heavy metals such as copper, within stable and crystalline solid phases. The above justifies the need to look for other alternatives such as MICP as a potential bioremediation process. For this purpose, the effect of bacteria-induced carbonate biomineralization and the incorporation of copper (Cu2+) for its immobilization was studied as a basis for its application in agricultural soils. The tolerance to four copper concentrations (100, 250, 500 and 1000 mg/l) of 13 bacteria from the German Collection of Microorganisms and Cell Cultures reported in the literature with calcifying capacity was evaluated. After the selection of bacteria tolerant to two copper concentrations and with the highest capacity to precipitate carbonates, three bacteria were selected for bioprecipitation and immobilization of copper, evaluating six variables, both chemical and biological. The precipitates obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled to X-Ray Spectroscopy (SEM/EDX). The results showed that 10 of the 13 microorganisms evaluated are able to tolerate copper concentrations at 100 and 250 mg/l, however, the genus Sporosarcina is one of the most tolerant and with the highest production of carbonates followed by Corynebacterium ammoniagenes, S. ureae and Sutcliffiella cohnii. In the suspension treatments, it was determined that S. pasteurii DSM-276 is the microorganism with the best copper removal efficiency at pH greater than 7.5, with values higher than 60% and 40% at 100 and 250 mg/l, respectively. XRD analysis of the precipitates showed the presence of calcite and vaterite as the main mineral phases formed in all treatments, accompanied by a small amount of weddellite and malachite, in the treatments in the presence of copper, also, the morphology of the crystals and their percentage of elemental composition varied according to the presence or absence of this heavy metal. These results indicate that copper in the MICP process can co-precipitate with calcium carbonate and even be immobilized in the crystal structure through biologically mediated reactions that can affect the mineralogy and morphology of the precipitated minerals.MaestríaMagíster en Ciencias - BiotecnologíaBiotecnología AmbientalBiotecnología MicrobianaÁrea Curricular Biotecnologíaxviii, 97 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadas330 - Economía::333 - Economía de la tierra y de la energíaConservación de suelosSoil conservationMICPSporosarcina pasteuriiBioprecipitationBioremediationCalciteCopperUreaseBioprecipitaciónBiorremediaciónCalcitaCobreUreasaBiomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolasBiomineralization of calcium carbonate (CaCO3) induced by bacteria for the immobilization of copper ions (Cu2+) with potential for applications in agricultural soilsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAchal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201–202, 178–184. https://doi.org/10.1016/j.jhazmat.2011.11.067Achal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352–1358. https://doi.org/10.1016/j.chemosphere.2013.08.008Achal, V., Pan, X., & Özyurt, N. (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37(4), 554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008Ahmad, F., Mujah, D., Hazarika, H., & Safari, A. (2012). Assessing the potential reuse of recycled glass fibre in problematic soil applications. Journal of Cleaner Production, 35, 102– 107. https://doi.org/10.1016/j.jclepro.2012.05.047Alloway, B. J. (2013). Heavy Metals in Soils Trace Metals and Metalloids in Soils and their Bioavailability (B. J. Alloway, Ed.; 3rd ed.). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26. https://doi.org/10.1186/s40064-016-1869-2Anticó, E., Cot, S., Ribó, A., Rodríguez-Roda, I., & Fontàs, C. (2017). Survey of heavy metal contamination in water sources in the municipality of Torola, El Salvador, through in situ sorbent extraction. Water (Switzerland), 9(11). https://doi.org/10.3390/w9110877Arias, D., Cisternas, L. A., Miranda, C., & Rivas, M. (2019). Bioprospecting of ureolytic bacteria from Laguna Salada for biomineralization applications. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00209Arias, J. L., & Fernández, M. S. (2008). Polysaccharides and proteoglycans in calcium carbonate-based Biomineralization. Chemical Reviews, 108(11), 4475–4482. https://doi.org/10.1021/cr078269pBarkouki, T. H., Martinez, B. C., Mortensen, B. M., Weathers, T. S., de Jong, J. D., Ginn, T. R., Spycher, N. F., Smith, R. W., & Fujita, Y. (2011). Forward and Inverse BioGeochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments. Transport in Porous Media, 90(1), 23–39. https://doi.org/10.1007/s11242- 011-9804-zCastanier, S., Le Métayer-Levrel, G., & Perthuisot, J. P. (1999). Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sedimentary Geology, 126(1– 4), 9–23. https://doi.org/10.1016/S0037-0738(99)00028-7Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6(June), 1–15. https://doi.org/10.3389/fmats.2019.00126Castro-González, N. P., Calderón-Sánchez, F., Moreno-Rojas, R., Tamariz-Flores, J. V., & Reyes-Cervantes, E. (2019). Heavy metals pollution level in wastewater and soils in the alto balsas sub-basin in Tlaxcala and Puebla, Mexico. Revista Internacional de Contaminacion Ambiental, 35(2), 335–348. https://doi.org/10.20937/RICA.2019.35.02.06Chang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium carbonate precipitation for CO2 storage and utilization: A review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, 5(JUL), 1–12. https://doi.org/10.3389/fenrg.2017.00017Chaparro-Acuña, S. P., Becerra-Jiménez, M. L., Martínez-Zambrano, J. J., & RojasSarmiento, H. A. (2017). Soil bacteria that precipitate calcium carbonate: Mechanism and applications of the process. Acta Agronomica, 67(2), 277–288. https://doi.org/10.15446/acag.v67n2.66109Chen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368, 705–713. https://doi.org/10.1016/j.jhazmat.2019.01.108Cheng, L., & Shahin, M. A. (2016). Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385. https://doi.org/10.1139/cgj-2015-0635Cheng, L., Shahin, M. A., & Mujah, D. (2017). Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), 1–11. https://doi.org/10.1061/(ASCE)GT.1943- 5606.0001586Colin, V. L., Villegas, L. B., & Abate, C. M. (2012). Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration and Biodegradation, 69, 28–37. https://doi.org/10.1016/j.ibiod.2011.12.001De Muynck, W., Verbeken, K., de Belie, N., & Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 36(2), 99–111. https://doi.org/10.1016/j.ecoleng.2009.03.025De Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2013). Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology, 97(3), 1335–1347. https://doi.org/10.1007/s00253-012-3997-0Dhami, N. K., Quirin, M. E. C., & Mukherjee, A. (2017). Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecological Engineering, 103, 106–117. https://doi.org/10.1016/j.ecoleng.2017.03.007Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. Construction and Building Materials, 104, 198–207. https://doi.org/10.1016/j.conbuildmat.2015.12.023Dhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4(314). https://doi.org/10.3389/fmicb.2013.00314Di Benedetto, F., Costagliola, P., Benvenuti, M., Lattanzi, P., Romanelli, M., & Tanelli, G. (2006). Arsenic incorporation in natural calcite lattice: Evidence from electron spin echo spectroscopy. Earth and Planetary Science Letters, 246(3–4), 458–465. https://doi.org/10.1016/j.epsl.2006.03.047Diels, L., Geets, J., Dejonghe, W., van Roy, S., Vanbroekhoven, K., Szewczyk, A., & Malina, G. (2010). Heavy metal immobilization in groundwater by in situ bioprecipitation: Comments and questions about efficiency and sustain ability of the process. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy (Vol. 11, pp. 99–112).Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland), 7(2), 2189–2212. https://doi.org/10.3390/su7022189Duarte-Nass, C., Rebolledo, K., Valenzuela, T., Kopp, M., Jeison, D., Rivas, M., Azócar, L., Torres-Aravena, Á., & Ciudad, G. (2020). Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. Journal of Environmental Management, 256. https://doi.org/10.1016/j.jenvman.2019.109938Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005Durand, N., Monger, C. H., & Canti, M. G. (2010). Calcium Carbonate Features. In Interpretation of Micromorphological Features of Soils and Regoliths (pp. 149–194). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53156-8.00009-XFujita, Y., Redden, G. D., Ingram, J. C., Cortez, M. M., Ferris, F. G., & Smith, R. W. (2004). Strontium incorporation into calcite generated by bacterial ureolysis. Geochimica et Cosmochimica Acta, 68(15), 3261–3270. https://doi.org/10.1016/j.gca.2003.12.018Ghosh, S., Biswas, M., Chattopadhyay, B. D., & Mandal, S. (2009). Microbial activity on the microstructure of bacteria modified mortar. Cement and Concrete Composites, 31(2), 93– 98. https://doi.org/10.1016/j.cemconcomp.2009.01.001Giachino, A., & Waldron, K. J. (2020). Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular Microbiology, 114(3), 377–390. https://doi.org/10.1111/mmi.14522Guimarães, R. M. L., Ball, B. C., & Tormena, C. A. (2011). Improvements in the visual evaluation of soil structure. Soil Use and Management, 27(3), 395–403. https://doi.org/10.1111/j.1475-2743.2011.00354.xHammes, F., Boon, N., Clement, G., De Villiers, J., Siciliano, S. D., & Verstraete, W. (2003). Molecular, biochemical and ecological characterisation of a bio-catalytic calcification reactor. Applied Microbiology and Biotechnology, 62(2–3), 191–201. https://doi.org/10.1007/s00253-003-1287-6Hammes, F., Seka, A., De Knijf, S., & Verstraete, W. (2003). A novel approach to calcium removal from calcium-rich industrial wastewater. Water Research, 37(3), 699–704. https://doi.org/10.1016/S0043-1354(02)00308-1He, J., Chen, X., Zhang, Q., & Achal, V. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration and Biodegradation, 140(3), 67–71. https://doi.org/10.1016/j.ibiod.2019.03.012Helmi, F. M., Elmitwalli, H. R., Elnagdy, S. M., & El-Hagrassy, A. F. (2016). Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecological Engineering, 90, 367–371. https://doi.org/10.1016/j.ecoleng.2016.01.044Işik, M., Altaş, L., Özcan, S., Şimşek, I., Aĝdaĝ, O. N., & Alaş, A. (2012). Effect of urea concentration on microbial Ca precipitation. Journal of Industrial and Engineering Chemistry, 18(6), 1908–1911. https://doi.org/10.1016/j.jiec.2012.05.002Jalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2020). Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 20(1), 206–219. https://doi.org/10.1007/s42729-019-00121-zJuan D. Mahecha-Pulido, Juan M. Trujillo-González, & Marco A. Torres-Mora. (2015). Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Orinoquia, 19(1), 118–122.Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements - An environmental issue. Geoderma, 122(2-4 SPEC. IIS.), 143–149. https://doi.org/10.1016/j.geoderma.2004.01.004Kang, C. H., & So, J. S. (2016). Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecological Engineering, 97, 304–312. https://doi.org/10.1016/j.ecoleng.2016.10.016Kawaguchi, T., & Decho, A. W. (2002). A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. Journal of Crystal Growth, 240(1–2), 230–235. https://doi.org/10.1016/S0022-0248(02)00918-1Kumari, D., Pan, X., Lee, D. J., & Achal, V. (2014). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. International Biodeterioration and Biodegradation, 94, 98–102. https://doi.org/10.1016/j.ibiod.2014.07.007Kumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. In Advances in Applied Microbiology (Vol. 94, pp. 79–108). Elsevier Ltd. https://doi.org/10.1016/bs.aambs.2015.12.002Lian, B., Hu, Q., Chen, J., Ji, J., & Teng, H. H. (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochimica et Cosmochimica Acta, 70(22), 5522– 5535. https://doi.org/10.1016/j.gca.2006.08.044Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872. https://doi.org/10.1016/j.chemosphere.2006.03.016Mugwar, A. J., & Harbottle, M. J. (2016). Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 314, 237–248. https://doi.org/10.1016/j.jhazmat.2016.04.039Mwandira, W., Nakashima, K., & Kawasaki, S. (2017). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering, 109(July), 57–64. https://doi.org/10.1016/j.ecoleng.2017.09.011Nava-Ruíz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Arch Neurocien (Mex), 16(3), 140–147. https://doi.org/10.1007/3-540-36080-8_21Németh, P., Mugnaioli, E., Gemmi, M., Czuppon, G., Demény, A., & Spötl, C. (2018). A nanocrystalline monoclinic CaCO3 precursor of metastable aragonite. Science Advances, 4(12). https://doi.org/10.1126/sciadv.aau6178Omoregie, A. I., Ngu, L. H., Ong, D. E. L., & Nissom, P. M. (2019). Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatalysis and Agricultural Biotechnology, 17, 247–255. https://doi.org/10.1016/j.bcab.2018.11.030Osuji, L. C., & Onojake, C. M. (2004). Trace heavy metals associated with crude oil: A case study of ebocha-8 oil-spill-polluted site in niger delta, Nigeria. Chemistry and Biodiversity, 1(11), 1708–1715. https://doi.org/10.1002/cbdv.200490129Paerl, H. W., Steppe, T. F., & Reid, R. P. (2001). Bacterially mediated precipitation in marine stromatolites. Environmental Microbiology, 3(2), 123–130. https://doi.org/10.1046/j.1462- 2920.2001.00168.xPérez-González, T., Valverde-Tercedor, C., & Jiménez-López, C. (2004). Biomineralización bacteriana de magnetita y aplicaciones. Seminario SEM, 7(1), 58–74.Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: A review. Biofouling, 29(6), 715–733. https://doi.org/10.1080/08927014.2013.796550Plassard, F., Winiarski, T., & Petit-Ramel, M. (2000). Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology, 42(2–4), 99–111. https://doi.org/10.1016/S0169-7722(99)00101-1Portugal, C. R. M. e., Fonyo, C., Machado, C. C., Meganck, R., & Jarvis, T. (2020). Microbiologically Induced Calcite Precipitation biocementation, green alternative for roads – is this the breakthrough? A critical review. Journal of Cleaner Production, 262, 121372. https://doi.org/10.1016/j.jclepro.2020.121372 Bay (Golestan province, Iran). Iranian Journal of Fisheries Sciences, 13(2), 449– 455.Qian, X., Fang, C., Huang, M., & Achal, V. (2017). Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production, 164, 198–208. https://doi.org/10.1016/j.jclepro.2017.06.195Qiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., Xu, F., & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere, 274, 129661. https://doi.org/10.1016/j.chemosphere.2021.129661Rajasekar, A., Moy, C. K. S., & Wilkinson, S. (2017). MICP and Advances towards EcoFriendly and Economical Applications. IOP Conference Series: Earth and Environmental Science, 78(1), 1–6. https://doi.org/10.1088/1755-1315/78/1/012016Saghali, M., Baqraf, R., Patimar, R., Hosseini, S. A., & Baniemam, M. (2014). Determination of heavy metal (Cr, Zn, Cd and Pb) concentrations in water, sediment and benthos of the GorganSarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials - A review. Applied Biochemistry and Biotechnology, 172(5), 2308–2323. https://doi.org/10.1007/s12010-013- 0686-0Tang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(94), 1–23. https://doi.org/10.1007/s12665- 020-8840-9Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology, 101, 133– 164. https://doi.org/10.1007/978-3-7643-8340-4Umar, M., Kassim, K. A., & Ping Chiet, K. T. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 1–8. https://doi.org/10.1016/j.jrmge.2016.02.004Warthmann, R., van Lith, Y., Vasconcelos, C., Mckenzie, J. A., & Karpoff, A. M. (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12), 1091–1094.Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46(2), 455–464. https://doi.org/10.1590/S1517-838246220140533Weiner, S., & Dove, P. M. (2003). An Overview of Biomineralization Processes and the Problem of the Vital Effect. In Reviews in Mineralogy and Geochemistry (Vol. 54, Issue 1, pp. 1–29). https://doi.org/10.2113/0540001Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. https://doi.org/10.1080/01490450701436505Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169–182. https://doi.org/10.1007/s10653- 013-9537-8Yang, J., Pan, X., Zhao, C., Mou, S., Achal, V., Al-Misned, F. A., Mortuza, M. G., & Gadd, G. M. (2016). Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiology Journal, 33(3–4), 261–266. https://doi.org/10.1080/01490451.2015.1068889Zhang, J., Kumari, D., Fang, C., & Achal, V. (2019). Combining the microbial calcite precipitation process with biochar in order to improve nickel remediation. Applied Geochemistry, 103(February), 68–71. https://doi.org/10.1016/j.apgeochem.2019.02.011Zhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology, 4(JAN), 1–21. https://doi.org/10.3389/fbioe.2016.00004BibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84846/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1017235688.2023..pdf1017235688.2023..pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf4420720https://repositorio.unal.edu.co/bitstream/unal/84846/2/1017235688.2023..pdf39bfef221ab1dd700c99686dcdfbc8f2MD52THUMBNAIL1017235688.2023..pdf.jpg1017235688.2023..pdf.jpgGenerated Thumbnailimage/jpeg5686https://repositorio.unal.edu.co/bitstream/unal/84846/3/1017235688.2023..pdf.jpg884ba1780a18b0487d1c96d065d00b8dMD53unal/84846oai:repositorio.unal.edu.co:unal/848462024-08-19 23:10:35.315Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |