Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs]
ilustraciones, diagramas, tablas
- Autores:
-
Bohórquez Villamil, Daniel Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/87036
- Palabra clave:
- 540 - Química y ciencias afines
COMPUESTOS HETEROCICLICOS
ENLACES DE HIDROGENO
Heterocyclic compounds
Hydrogen bonding
Puente de hidrógeno
Efecto anomérico
Hydrogen bond
Anomeric effect
BISBIAs
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b93cf66f6a33561513d8ecc413b87e86 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/87036 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
dc.title.translated.eng.fl_str_mv |
Incidence of intramolecular hydrogen bonds on the anomeric effect in heterocyclic systems of the bis-benzylimidazolidines [BISBIAs] type |
title |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
spellingShingle |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] 540 - Química y ciencias afines COMPUESTOS HETEROCICLICOS ENLACES DE HIDROGENO Heterocyclic compounds Hydrogen bonding Puente de hidrógeno Efecto anomérico Hydrogen bond Anomeric effect BISBIAs |
title_short |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
title_full |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
title_fullStr |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
title_full_unstemmed |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
title_sort |
Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
dc.creator.fl_str_mv |
Bohórquez Villamil, Daniel Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Ríos Motta, Jaime Alberto |
dc.contributor.author.none.fl_str_mv |
Bohórquez Villamil, Daniel Eduardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Síntesis de Heterociclos |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines COMPUESTOS HETEROCICLICOS ENLACES DE HIDROGENO Heterocyclic compounds Hydrogen bonding Puente de hidrógeno Efecto anomérico Hydrogen bond Anomeric effect BISBIAs |
dc.subject.lemb.spa.fl_str_mv |
COMPUESTOS HETEROCICLICOS ENLACES DE HIDROGENO |
dc.subject.lemb.eng.fl_str_mv |
Heterocyclic compounds Hydrogen bonding |
dc.subject.proposal.spa.fl_str_mv |
Puente de hidrógeno Efecto anomérico |
dc.subject.proposal.eng.fl_str_mv |
Hydrogen bond Anomeric effect |
dc.subject.proposal.none.fl_str_mv |
BISBIAs |
description |
ilustraciones, diagramas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-24T00:43:41Z |
dc.date.available.none.fl_str_mv |
2024-10-24T00:43:41Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/87036 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/87036 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Cipcigan F, Sokhan V, Martyna G, Crain J. Structure and hydrogen bonding at the limits of liquid water stability. Sci Rep [Internet]. el 29 de enero de 2018;8(1):1718. Disponible en: https://www.nature.com/articles/s41598-017-18975-7 Desiraju GR. Crystal Engineering: From Molecule to Crystal. J Am Chem Soc [Internet]. el 10 de julio de 2013;135(27):9952–67. Disponible en: https://pubs.acs.org/doi/10.1021/ja403264c Bernstein J, Davis RE, Shimoni L, Chang N. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angewandte Chemie International Edition in English [Internet]. el 18 de agosto de 1995;34(15):1555–73. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/anie.199515551 Aakeröy. C.B., Sinha. A.S. Co-crystals [Internet]. Aakeröy CB, Sinha AS, editores. Cambridge: Royal Society of Chemistry; 2018. (Monographs in Supramolecular Chemistry). Disponible en: http://ebook.rsc.org/?DOI=10.1039/9781788012874 SHAHI A, ARUNAN E. Why are Hydrogen Bonds Directional? Journal of Chemical Sciences [Internet]. el 13 de octubre de 2016;128(10):1571–7. Disponible en: http://link.springer.com/10.1007/s12039-016-1156-3 Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. How Water’s Properties Are Encoded in Its Molecular Structure and Energies. Chem Rev [Internet]. el 11 de octubre de 2017;117(19):12385–414. Disponible en: https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00259 Duarte CJ, Freitas MP. Hydrogen bonding and stereoelectronic effects in the conformational isomerism of trans-2-bromocyclohexanol. J Mol Struct [Internet]. el 30 de julio de 2009;930(1–3):135–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286009002762 Lađarević J, Božić B, Matović L, Nedeljković BB, Mijin D. Role of the bifurcated intramolecular hydrogen bond on the physico-chemical profile of the novel azo pyridone dyes. Dyes and Pigments [Internet]. el 1 de marzo de 2019;162:562–72. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0143720818313421 Imani Z, Mundlapati VR, Goldsztejn G, Brenner V, Gloaguen E, Guillot R, et al. Conformation control through concurrent N–H⋯S and N–H⋯OC hydrogen bonding and hyperconjugation effects. Chem Sci [Internet]. el 14 de septiembre de 2020;11(34):9191–7. Disponible en: http://xlink.rsc.org/?DOI=D0SC03339A Alder RW, Carniero TMG, Mowlam RW, Orpen AG, Petillo PA, Vachon DJ, et al. Evidence for hydrogen-bond enhanced structural anomeric effects from the protonation of two aminals, 5-methyl-1,5,9-triazabicyclo[7.3.1]tridecane and 1,4,8,11-tetraazatricyclo[9.3.1.1 4,8]hexadecane. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1999;(3):1–12. Disponible en: http://xlink.rsc.org/?DOI=a807954d Rivera A, Osorio HJ, Uribe JM, Ríos-Motta J, Bolte M. Crystal structure of the 1,3,6,8-tetraazatricyclo[4.3.1.1 3,8 ]undecane (TATU)–4-nitrophenol (1/2) adduct: the role of anomeric effect in the formation of a second hydrogen-bond interaction. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de noviembre de 2015;71(11):1356–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015019659 Chang Raymond. Chemistry - Quimica (Séptima Edición). Vol. 1. México D.F: Mc Graw-Hill; 2005. Latimer WM, Rodebush WH. POLARITY AND IONIZATION FROM THE STANDPOINT OF THE LEWIS THEORY OF VALENCE. J Am Chem Soc [Internet]. el 1 de julio de 1920;42(7):1419–33. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja01452a015 George C. Pimentel and A.L. McClellan. The Hydrogen Bond. San Francisco: Freeman; 1960. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry [Internet]. el 8 de julio de 2011;83(8):1619–36. Disponible en: https://www.degruyter.com/document/doi/10.1351/PAC-REP-10-01-01/html Triptow J, Meijer G, Fielicke A, Dopfer O, Green M. Comparison of Conventional and Nonconventional Hydrogen Bond Donors in Au – Complexes. J Phys Chem A [Internet]. el 23 de junio de 2022;126(24):3880–92. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.2c02725 Tsuzuki S, Fujii A. Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Physical Chemistry Chemical Physics [Internet]. 2008;10(19):2584. Disponible en: http://xlink.rsc.org/?DOI=b718656h Jabłoński M. Binding of X–H to the lone-pair vacancy: Charge-inverted hydrogen bond. Chem Phys Lett [Internet]. agosto de 2009;477(4–6):374–6. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261409008161 Jabłoński M. Ten years of charge-inverted hydrogen bonds. Struct Chem [Internet]. el 18 de febrero de 2020;31(1):61–80. Disponible en: http://link.springer.com/10.1007/s11224-019-01454-2 Desiraju GR (Gautam R), Steiner T. The weak hydrogen bond : in structural chemistry and biology. Oxford University Press; 1999. 507 p. Shi X, Bao W. Hydrogen-Bonded Conjugated Materials and Their Application in Organic Field-Effect Transistors. Front Chem [Internet]. el 24 de agosto de 2021;9. Disponible en: https://www.frontiersin.org/articles/10.3389/fchem.2021.723718/full Gilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Iuc’s Monographs on Crystallography). New York: Oxford; 2009. Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res [Internet]. el 1 de abril de 1990;23(4):120–6. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ar00172a005 Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem [Internet]. el 1 de junio de 1991;95(12):4601–10. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100165a007 Ton QC, Bolte M. Intra- and intermolecular proton transfer in 2,6-diaminopyridinium 4-hydroxypyridin-1-ium-2,6-dicarboxylate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o2860–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812037580 Morrison. R.T., Boyd. R.N. Química Orgánica. Quinta edición. Wilmington, Delaware, E.U.A.: Addison-Wesley Iberoamericana; 1990. Ismi DP, Pulungan R, Afiahayati. Deep learning for protein secondary structure prediction: Pre and post-AlphaFold. Comput Struct Biotechnol J [Internet]. el 1 de enero de 2022;20:6271–86. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2001037022005062 WATSON JD, CRICK FHC. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature [Internet]. el 25 de abril de 1953;171(4356):737–8. Disponible en: https://www.nature.com/articles/171737a0 Bricogne G. Fourier transforms in crystallography: theory, algorithms and applications. En 2010. p. 24–113. Disponible en: https://xrpp.iucr.org/cgi-bin/itr?url_ver=Z39.88-2003&rft_dat=what%3Dchapter%26volid%3DBb%26chnumo%3D1o3%26chvers%3Dv0001 Ubic R. Crystallography and Crystal Chemistry [Internet]. Crystallography and Crystal Chemistry. Cham: Springer International Publishing; 2024. Disponible en: https://link.springer.com/10.1007/978-3-031-49752-0 Cooper RI, Thompson AL, Watkin DJ. CRYSTALS enhancements: dealing with hydrogen atoms in refinement. J Appl Crystallogr [Internet]. el 1 de octubre de 2010;43(5):1100–7. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0021889810025598 Wendler K, Thar J, Zahn S, Kirchner B. Estimating the Hydrogen Bond Energy. J Phys Chem A [Internet]. el 9 de septiembre de 2010;114(35):9529–36. Disponible en: https://pubs.acs.org/doi/10.1021/jp103470e Lakshmi B, Samuelson AG, Jovan Jose K V., Gadre SR, Arunan E. Is there a hydrogen bond radius? Evidence from microwave spectroscopy, neutron scattering and X-ray diffraction results. New Journal of Chemistry [Internet]. 2005;29(2):371. Disponible en: http://xlink.rsc.org/?DOI=b411815d Jeffrey GA, Saenger W. Hydrogen Bonding in Biological Structures [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. Disponible en: http://link.springer.com/10.1007/978-3-642-85135-3 Brzeziński B, Radziejewski P, Olejnik J, Zundel G. An intramolecular hydrogen-bonded system with large proton polarizability — a model with regard to the proton pathway in bacteriorhodopsin and other systems with collective proton motion. J Mol Struct [Internet]. julio de 1994;323:71–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/0022286094079773 Martinez-Felipe A, Cook AG, Abberley JP, Walker R, Storey JMD, Imrie CT. An FT-IR spectroscopic study of the role of hydrogen bonding in the formation of liquid crystallinity for mixtures containing bipyridines and 4-pentoxybenzoic acid. RSC Adv [Internet]. 2016;6(110):108164–79. Disponible en: http://xlink.rsc.org/?DOI=C6RA17819G Li G, Zhang YY, Li Q, Wang C, Yu Y, Zhang B, et al. Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. Nat Commun [Internet]. el 28 de octubre de 2020;11(1):5449. Disponible en: https://www.nature.com/articles/s41467-020-19226-6 Iogansen A V. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching w(XH) vibration in infrared spectra. Vol. 55, Spectrochimica Acta Part A. 1999. Egorochkin AN, Skobeleva SE. Infrared Spectroscopy of the Hydrogen Bond as a Method for the Investigation of Intramolecular Interactions. Russian Chemical Reviews [Internet]. el 31 de diciembre de 1979;48(12):1198–211. Disponible en: https://iopscience.iop.org/article/10.1070/RC1979v048n12ABEH002438 Gilbert AS. Hydrogen Bonding and Other Physicochemical Interactions Studied by IR and Raman Spectroscopy. En: Encyclopedia of Spectroscopy and Spectrometry [Internet]. Elsevier; 1999. p. 957–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780123744135003390 Silverstein RM and BGC. Spectrometric Identification of Organic Compunds [Internet]. 7a ed. Hoboken, New Jersey: John Wiley & Sons; 2005 [citado el 10 de enero de 2024]. Disponible en: https://bcs.wiley.com/he-bcs/Books?action=index&itemId=0471393622&itemTypeId=BKS&bcsId=2174 Rowlands LJ, Marks A, Sanderson JM, Law R V. 17 O NMR spectroscopy as a tool to study hydrogen bonding of cholesterol in lipid bilayers. Chemical Communications [Internet]. el 28 de noviembre de 2020;56(92):14499–502. Disponible en: http://xlink.rsc.org/?DOI=D0CC05466F Günther Harald. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry [Internet]. 3rd Ed. Weinheim, Germany: John Wiley & Sons; 2013 [citado el 5 de noviembre de 2023]. Disponible en: https://www.wiley.com/en-br/NMR+Spectroscopy%3A+Basic+Principles%2C+Concepts+and+Applications+in+Chemistry%2C+3rd+Edition-p-9783527330003 Aliev AE, Harris KDM. Probing Hydrogen Bonding in Solids Using Solid State NMR Spectroscopy. En 2003. p. 1–53. Disponible en: http://link.springer.com/10.1007/b14136 Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds [Internet]. Structure Determination of Organic Compounds: Tables of Spectral Data. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. 1–433 p. Disponible en: https://link.springer.com/10.1007/978-3-540-93810-1 Schmuck C, Rehm T, Gröhn F, Klein K, Reinhold F. Ion pair driven self-assembly of a flexible bis-zwitterion in polar solution: Formation of discrete nanometer-sized cyclic dimers. J Am Chem Soc. el 8 de febrero de 2006;128(5):1430–1. Desiraju GR. The C−H···O Hydrogen Bond: Structural Implications and Supramolecular Design. Acc Chem Res [Internet]. el 11 de septiembre de 1996;29(9):441–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar950135n Rivera A, Quiroga D, Ríos-Motta J, Fejfarová K, Dušek M. 1,1′-[Imidazolidine-1,3-diylbis(methylene)]bis(1 H -benzotriazole). Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de febrero de 2012;68(2):o312–3. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812000232 Morrison LJ, Chai W, Rosenberg JA, Henkelman G, Brodbelt JS. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Physical Chemistry Chemical Physics [Internet]. 2017;19(30):20057–74. Disponible en: http://xlink.rsc.org/?DOI=C7CP04073C Marcsisin SR, Engen JR. Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem [Internet]. el 1 de junio de 2010;397(3):967–72. Disponible en: http://link.springer.com/10.1007/s00216-010-3556-4 Dannhauser W, Bahe LW. Dielectric Constant of Hydrogen Bonded Liquids. III. Superheated Alcohols. J Chem Phys [Internet]. el 15 de mayo de 1964;40(10):3058–66. Disponible en: https://pubs.aip.org/jcp/article/40/10/3058/78335/Dielectric-Constant-of-Hydrogen-Bonded-Liquids-III Suresh SJ, Naik VM. Hydrogen bond thermodynamic properties of water from dielectric constant data. J Chem Phys [Internet]. el 1 de diciembre de 2000;113(21):9727–32. Disponible en: https://pubs.aip.org/jcp/article/113/21/9727/148686/Hydrogen-bond-thermodynamic-properties-of-water Sprik M. Hydrogen bonding and the static dielectric constant in liquid water. J Chem Phys [Internet]. el 1 de noviembre de 1991;95(9):6762–9. Disponible en: https://pubs.aip.org/jcp/article/95/9/6762/94763/Hydrogen-bonding-and-the-static-dielectric Cañadas O, Casals C. Differential Scanning Calorimetry of Protein–Lipid Interactions. En: Methods in Molecular Biology [Internet]. Humana Press Inc.; 2019. p. 91–106. Disponible en: http://link.springer.com/10.1007/978-1-4939-9512-7_5 Zhou J, Lin S, Zeng H, Liu J, Li B, Xu Y, et al. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels. Mater Horiz [Internet]. el 1 de noviembre de 2020;7(11):2936–43. Disponible en: http://xlink.rsc.org/?DOI=D0MH00735H Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, et al. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers (Basel) [Internet]. el 18 de diciembre de 2019;12(1):5. Disponible en: https://www.mdpi.com/2073-4360/12/1/5 Fillaux F, Cousson A, Archilla JFR, Tomkinson J. A neutron scattering study of strong-symmetric hydrogen bonds in potassium and cesium hydrogen bistrifluoroacetates: Determination of the crystal structures and of the single-well potentials for protons. J Chem Phys [Internet]. el 28 de mayo de 2008;128(20). Disponible en: https://pubs.aip.org/jcp/article/128/20/204502/1003567/A-neutron-scattering-study-of-strong-symmetric Kono F, Tamada T. Neutron crystallography for the elucidation of enzyme catalysis. Curr Opin Struct Biol [Internet]. el 1 de diciembre de 2021;71:36–42. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959440X21000762 Nelson DL, Nelson RD, Cox MM. Lehninger Principles of Biochemistry, Fourth Edition [Internet]. W.H. Freeman; 2004. Disponible en: https://books.google.com.co/books?id=3DvrAQAACAAJ Neuheuser T, Hess BA, Reutel C, Weber E. Ab Initio Calculations of Supramolecular Recognition Modes. Cyclic versus Noncyclic Hydrogen Bonding in the Formic Acid/Formamide System. J Phys Chem [Internet]. el 1 de junio de 1994;98(26):6459–67. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100077a007 Ni J, Pignatello JJ. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids. Environ Sci Process Impacts [Internet]. el 1 de septiembre de 2018;20(9):1225–33. Disponible en: http://xlink.rsc.org/?DOI=C8EM00255J Garcia-Viloca M, González-Lafont A, Lluch JM. Theoretical Study of the Low-Barrier Hydrogen Bond in the Hydrogen Maleate Anion in the Gas Phase. Comparison with Normal Hydrogen Bonds. J Am Chem Soc [Internet]. el 1 de febrero de 1997;119(5):1081–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja962662n Huyskens P, Zeegers-Huyskens T. Associations moléculaires et équilibres acide-base. Journal de Chimie Physique [Internet]. el 28 de mayo de 1964;61:81–6. Disponible en: http://jcp.edpsciences.org/10.1051/jcp/1964610081 Zeegers-Huyskens Th, Huyskens P. Intermolecular Forces. En: Intermolecular Forces [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. p. 1–30. Disponible en: http://link.springer.com/10.1007/978-3-642-76260-4_1 Gilli P, Pretto L, Gilli G. PA/pKa equalization and the prediction of the hydrogen-bond strength: A synergism of classical thermodynamics and structural crystallography. J Mol Struct [Internet]. el 12 de noviembre de 2007;844–845:328–39. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286007003717 Gronert S. Theoretical studies of proton transfers. 1. The potential energy surfaces of the identity reactions of the first- and second-row non-metal hydrides with their conjugate bases. J Am Chem Soc [Internet]. el 1 de noviembre de 1993;115(22):10258–66. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00075a047 Balevicius V, Aidas K, Svoboda I, Fuess H. Hydrogen Bonding in Pyridine N -Oxide/Acid Systems: Proton Transfer and Fine Details Revealed by FTIR, NMR, and X-ray Diffraction. J Phys Chem A [Internet]. el 30 de agosto de 2012;116(34):8753–61. Disponible en: https://pubs.acs.org/doi/10.1021/jp305446n Gilli G, Gilli P. Towards an unified hydrogen-bond theory. J Mol Struct [Internet]. septiembre de 2000;552(1–3):1–15. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286000004543 Rivera A, Uribe JM, Ríos-Motta J, Bolte M. Effect of protonation on the structure of 1,3,6,8-tetraazatricyclo[4.4.1.13,8] dodecane (TATD) adamanzane: Crystal structure and DFT analysis of 3,6,8-triaza-1-azoniatricyclo[4.4.1.13,8]dodecane 4-nitrophenolate 4-nitrophenol. Journal of Structural Chemistry [Internet]. el 15 de julio de 2017;58(4):789–96. Disponible en: http://link.springer.com/10.1134/S0022476617040217 Tahir MN, Khan AH, Shad HA. Crystal structure of ( E )-2-[(4-hydroxybenzylidene)azaniumyl]benzoate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de septiembre de 2014;70(9):o1008–o1008. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814018273 Pakiari AH, Eskandari K. The chemical nature of very strong hydrogen bonds in some categories of compounds. Journal of Molecular Structure: THEOCHEM [Internet]. el 14 de febrero de 2006;759(1–3):51–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0166128005007499 Góra RW, Maj M, Grabowski SJ. Resonance-assisted hydrogen bonds revisited. Resonance stabilization vs. charge delocalization. Physical Chemistry Chemical Physics [Internet]. el 21 de febrero de 2013;15(7):2514. Disponible en: http://xlink.rsc.org/?DOI=c2cp43562d Heydar A. Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on-delocalization. J Chem Chem Eng [Internet]. 2010 [citado el 5 de noviembre de 2023];29(4). Disponible en: https://doaj.org/article/673ac4dae5914ae096467e5ef8468c24 Ferguson G, Marsh WC, Restivo RJ, Lloyd D. Conformational studies of 2,3-diacyl-5-nitrocyclopentadienes: delocalized systems with very short intramolecular O ⋯ H ⋯ O hydrogen bonds. Crystal and molecular structures of 2,3-diacetyl- and 2,3-dibenzoyl-5-nitrocyclopentadiene. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1975;45(10):998. Disponible en: http://xlink.rsc.org/?DOI=p29750000998 Jönsson PG, Hamilton WC. Hydrogen Bond Studies. LX.* A Single Crystal Neutron Diffraction Study of Trichloroacetic Acid Dimer. J Chem Phys [Internet]. el 1 de mayo de 1972;56(9):4433–9. Disponible en: https://pubs.aip.org/jcp/article/56/9/4433/84285/Hydrogen-Bond-Studies-LX-A-Single-Crystal-Neutron Gilli G, Bertolasi V, Ferretti V, Gilli P. Resonance-assisted hydrogen bonding. III. Formation of intermolecular hydrogen-bonded chains in crystals of β-diketone enols and its relevance to molecular association. Acta Crystallogr B [Internet]. el 1 de junio de 1993;49(3):564–76. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768192012278 Wahl M. C-H···O hydrogen bonding in biology. Trends Biochem Sci [Internet]. marzo de 1997;22(3):97–102. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0968000497010049 Horowitz S, Trievel RC. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function. Journal of Biological Chemistry [Internet]. el 7 de diciembre de 2012;287(50):41576–82. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0021925820438086 Ferstandig LL. Carbon as a Hydrogen Bonding Base and Carbon-Hydrogen-Carbon Bonding. J Am Chem Soc [Internet]. el 1 de septiembre de 1962;84(18):3553–7. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00877a027 Krebs B, Henkel G. Untersuchungen über S-H … S‐Wasserstoffbrücken Die Kristallstruktur der Diphenyldithiophosphinsäure bei 140 und 293 K. Z Anorg Allg Chem [Internet]. el 9 de abril de 1981;475(4):143–55. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/zaac.19814750417 Webber AL, Yates JR, Zilka M, Sturniolo S, Uldry AC, Corlett EK, et al. Weak Intermolecular CH···N Hydrogen Bonding: Determination of 13 CH– 15 N Hydrogen-Bond Mediated J Couplings by Solid-State NMR Spectroscopy and First-Principles Calculations. J Phys Chem A [Internet]. el 23 de enero de 2020;124(3):560–72. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.9b10726 Brammer L. Metals and hydrogen bonds. Dalton Transactions [Internet]. el 21 de agosto de 2003;(16):3145. Disponible en: http://xlink.rsc.org/?DOI=b303006g Brammer L, Zhao D, Ladipo FT, Braddock-Wilking J. Hydrogen bonds involving transition metal centres – a brief review. Acta Crystallogr B [Internet]. el 1 de agosto de 1995;51(4):632–40. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768195003673 Fatima S, Mehrafrooz B, Boggs DG, Ali N, Singh S, Thielges MC, et al. Conformation-Dependent Hydrogen-Bonding Interactions in a Switchable Artificial Metalloprotein. Biochemistry [Internet]. el 20 de agosto de 2024;63(16):2040–50. Disponible en: https://pubs.acs.org/doi/10.1021/acs.biochem.4c00209 Gámiz-Hernández AP, Galstyan AS, Knapp EW. Understanding Rubredoxin Redox Potentials: Role of H-Bonds on Model Complexes. J Chem Theory Comput [Internet]. el 13 de octubre de 2009;5(10):2898–908. Disponible en: https://pubs.acs.org/doi/10.1021/ct900328c Husberg C, Ryde U. How are hydrogen bonds modified by metal binding? JBIC Journal of Biological Inorganic Chemistry [Internet]. el 31 de junio de 2013;18(5):499–522. Disponible en: http://link.springer.com/10.1007/s00775-013-0996-2 Schmiedekamp A, Nanda V. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. J Inorg Biochem [Internet]. julio de 2009;103(7):1054–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S016201340900097X Smith JN, Shirin Z, Carrano CJ. Control of Thiolate Nucleophilicity and Specificity in Zinc Metalloproteins by Hydrogen Bonding: Lessons from Model Compound Studies. J Am Chem Soc [Internet]. el 1 de enero de 2003;125(4):868–9. Disponible en: https://pubs.acs.org/doi/10.1021/ja029418i Lipscomb WN. Structures of the Boron Hydrides. J Chem Phys [Internet]. el 1 de junio de 1954;22(6):985–8. Disponible en: https://pubs.aip.org/jcp/article/22/6/985/204318/Structures-of-the-Boron-Hydrides Brookhart M, Green MLH, Parkin G. Agostic interactions in transition metal compounds. Proceedings of the National Academy of Sciences [Internet]. el 24 de abril de 2007;104(17):6908–14. Disponible en: https://pnas.org/doi/full/10.1073/pnas.0610747104 Yadav VK. Steric and Stereoelectronic Effects in Organic Chemistry [Internet]. Cham: Springer International Publishing; 2021. Disponible en: https://link.springer.com/10.1007/978-3-030-75622-2 Alabugin I V. Stereoelectronic effects : a bridge between structure and reactivity. 2016. Kirby AJ. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. (Reactivity and Structure Concepts in Organic Chemistry; vol. 15). Disponible en: http://link.springer.com/10.1007/978-3-642-68676-4 Sovers OJ, Kern CW, Pitzer RM, Karplus M. Bond-Function Analysis of Rotational Barriers: Ethane. J Chem Phys [Internet]. el 15 de septiembre de 1968;49(6):2592–9. Disponible en: https://pubs.aip.org/jcp/article/49/6/2592/84697/Bond-Function-Analysis-of-Rotational-Barriers Díaz Pérez VM, García Moreno MI, Ortiz Mellet C, Fuentes J, Díaz Arribas JC, Cañada FJ, et al. Generalized Anomeric Effect in Action: Synthesis and Evaluation of Stable Reducing Indolizidine Glycomimetics as Glycosidase Inhibitors. J Org Chem [Internet]. el 1 de enero de 2000;65(1):136–43. Disponible en: https://pubs.acs.org/doi/10.1021/jo991242o Sánchez-Fernández EM, Rísquez-Cuadro R, Aguilar-Moncayo M, García-Moreno MI, Mellet CO, García Fernández JM. Generalized Anomeric Effect in gem -Diamines: Stereoselective Synthesis of α- N -Linked Disaccharide Mimics. Org Lett [Internet]. el 6 de agosto de 2009;11(15):3306–9. Disponible en: https://pubs.acs.org/doi/10.1021/ol901125n Mo Y, Gao J. Theoretical Analysis of the Rotational Barrier of Ethane. Acc Chem Res [Internet]. el 1 de febrero de 2007;40(2):113–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar068073w Grossel Martin. Alicyclic Chemistry. 1st Ed. Oxford, New York: Oxford University Press; 1997 Mo Y. A Critical Analysis on the Rotation Barriers in Butane. J Org Chem [Internet]. el 16 de abril de 2010;75(8):2733–6. Disponible en: https://pubs.acs.org/doi/10.1021/jo1001164 Cormanich RA, Freitas MP. A Theoretical View on the Conformer Stabilization of Butane. J Org Chem [Internet]. el 6 de noviembre de 2009;74(21):8384–7. Disponible en: https://pubs.acs.org/doi/10.1021/jo901705p Dragojlovic V. Conformational analysis of cycloalkanes. ChemTexts [Internet]. el 12 de septiembre de 2015;1(3):14. Disponible en: http://link.springer.com/10.1007/s40828-015-0014-0 Lemieux RU. Effects of unshared pairs of electrons and their solvation on conformational equilibria. Pure and Applied Chemistry [Internet]. el 1 de enero de 1971 [citado el 6 de noviembre de 2023];25(3):527–48. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac197125030527/html Booth H, Lemieux RU. The Anomeric Effect: The Conformational Equilibria of Tetrahydro-1,3-oxazines and 1-Methyl-1,3-diazane. Can J Chem [Internet]. el 1 de marzo de 1971;49(5):777–88. Disponible en: http://www.nrcresearchpress.com/doi/10.1139/v71-129 Thatcher GRJ. Anomeric and Associated Stereoelectronic Effects. En 1993. p. 6–25. Disponible en: https://pubs.acs.org/doi/abs/10.1021/bk-1993-0539.ch002 Edward JT. Stability of glycosides to acid hydrolysis. Chem Ind. 1955;1102–4. E. Juaristi and G. Cuevas. The Anomeric Effect. Boca Ratón: CRC Press; 1995. Alabugin I V., dos Passos Gomes G, Abdo MA. Hyperconjugation. WIREs Computational Molecular Science [Internet]. el 6 de marzo de 2019;9(2). Disponible en: https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1389 Deslongchamps G, Deslongchamps P. Bent bonds, the antiperiplanar hypothesis and the theory of resonance. A simple model to understand reactivity in organic chemistry. Org Biomol Chem [Internet]. el 7 de agosto de 2011;9(15):5321. Disponible en: http://xlink.rsc.org/?DOI=c1ob05393k Wang C, Ying F, Wu W, Mo Y. Sensing or No Sensing: Can the Anomeric Effect Be Probed by a Sensing Molecule? J Am Chem Soc [Internet]. el 31 de agosto de 2011;133(34):13731–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja205613x Bertolasi V, Ferretti V, Gilli G, Marchetti P, D’Angeli F. Evidence for the exo-anomeric stereoelectronic effect in cyclic orthoester aminals from X-ray structural data. Crystal structures of three 2-amino-1,3-oxazolidin-4-one derivatives. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1990;2(12):2135. Disponible en: http://xlink.rsc.org/?DOI=p29900002135 Takahashi O, Yamasaki K, Kohno Y, Ohtaki R, Ueda K, Suezawa H, et al. The anomeric effect revisited. A possible role of the CH/n hydrogen bond. Carbohydr Res [Internet]. el 2 de julio de 2007;342(9):1202–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621507001243 Takahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The Origin of the Relative Stability of Axial Conformers of Cyclohexane and Cyclohexanone Derivatives: Importance of the CH/n and CH/π Hydrogen Bonds. Bull Chem Soc Jpn [Internet]. el 15 de febrero de 2009;82(2):272–6. Disponible en: http://www.journal.csj.jp/doi/10.1246/bcsj.82.272 Takahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The origin of the generalized anomeric effect: possibility of CH/n and CH/π hydrogen bonds. Carbohydr Res [Internet]. el 6 de julio de 2009;344(10):1225–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621509001670 Wolfe S, Schlegel HB, Whangbo MH, Bernardi F. On the Origin of the Bohlmann Bands. Can J Chem. el 15 de noviembre de 1974;52(22):3787–92. Perrin CL. Reverse anomeric effect: fact or fiction? Tetrahedron [Internet]. octubre de 1995;51(44):11901–35. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/004040209500560U Perrin CL, Armstrong KB. Conformational analysis of glucopyranosylammonium ions: does the reverse anomeric effect exist? J Am Chem Soc [Internet]. el 1 de julio de 1993;115(15):6825–34. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00068a046 Jones PG, Komarov I V., Wothers PD. A test for the reverse anomeric effect. Chemical Communications [Internet]. 1998;(16):1695–6. Disponible en: http://xlink.rsc.org/?DOI=a804354j Matamoros E, Pérez EMS, Light ME, Cintas P, Martínez RF, Palacios JC. A True Reverse Anomeric Effect Does Exist After All: A Hydrogen Bonding Stereocontrolling Effect in 2-Iminoaldoses. J Org Chem [Internet]. el 7 de junio de 2024;89(11):7877–98. Disponible en: https://pubs.acs.org/doi/10.1021/acs.joc.4c00562 Rivera A, Ríos-Motta J, Quevedo R, Joseph-Nathan P. NUEVOS ASPECTOS DE LA REACCIÓN TIPO MANNICH EN MEDIO BÁSICO DE 1,3,6,8-TETRAZATRICICLO[4.4.1.13,8] DODECANO (TATD) CON FENOLES. Revista Colombiana de Química [Internet]. 2005 [citado el 12 de noviembre de 2023];34(105). Disponible en: https://repositorio.unal.edu.co/handle/unal/22259 Fedorowicz A, Mavri J, Bala P, Koll A. Molecular dynamics study of the tautomeric equilibrium in the Mannich base. Chem Phys Lett [Internet]. junio de 1998;289(5–6):457–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261498004229 MINOR WF, JOHNSON DA, CHENEY LC. A Crystalline Imidazolidine Derivative of Streptomycin. J Org Chem [Internet]. el 1 de mayo de 1956;21(5):528–9. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01111a011 Husain A, Bhutani R, Kumar D, Shin DS. Synthesis and Biological Evaluation of Novel Substituted-Imidazolidine Derivatives. Journal of the Korean Chemical Society [Internet]. el 20 de abril de 2013;57(2):227–33. Disponible en: http://koreascience.or.kr/journal/view.jsp?kj=JCGMDC&py=2013&vnc=v57n2&sp=227 Joullie MM, Slusarczuk GMJ, Dey AS, Venuto PB, Yocum RH. Synthesis and properties of fluorine-containing heterocyclic compounds. IV. N,N-Unsubstituted imidazolidine. J Org Chem [Internet]. el 1 de diciembre de 1967;32(12):4103–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01287a100 Ferm RJ, Riebsomer JL. The Chemistry of the 2-Imidazolines and Imidazolidines. Chem Rev [Internet]. el 1 de agosto de 1954;54(4):593–613. Disponible en: https://pubs.acs.org/doi/abs/10.1021/cr60170a002 Lambert JB, Huseland DE, Wang G tai. Synthesis of 1,3-Disubstituted Diazolidines. Synthesis (Stuttg) [Internet]. 1986;1986(08):657–8. Disponible en: http://www.thieme-connect.de/DOI/DOI?10.1055/s-1986-31737 A. Perillo I, de los Santos C, Salerno A. <sup>1<sup/>H NMR Spectroscopy and Conformational Analysis of N-Benzylimidazolidines. Heterocycles [Internet]. 2003;60(1):89. Disponible en: http://www.heterocycles.jp/newlibrary/libraries/abst/00824 Garcías-Morales C, Martínez-Salas SH, Ariza-Castolo A. The effect of the nitrogen non-bonding electron pair on the NMR and X-ray in 1,3-diazaheterocycles. Tetrahedron Lett [Internet]. el 27 de junio de 2012;53(26):3310–5. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0040403912006740 Rivera A, Nerio LS, Ríos-Motta J, Fejfarová K, Dušek M. 2,2′-[Imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de enero de 2012;68(1):o170–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811053748 Rivera A, Nerio LS, Ríos-Motta J, Kučeraková M, Dušek M. 4,4′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de noviembre de 2012;68(11):o3172–o3172. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812042808 Rivera A, Nerio LS, Bolte M. 6,6′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de marzo de 2014;70(3):o243–o243. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814002128 Rivera A, Sadat-Bernal J, Ríos-Motta J, Pojarová M, Dušek M. 4,4′-Dichloro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2011;67(10):o2581–o2581. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811035677 Rivera A, Nerio LS, Ríos-Motta J, Kučeráková M, Dušek M. 4,4′-Difluoro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o3043–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812040329 Rivera A, Nerio LS, Bolte M. 4,4′-Di- tert -butyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de julio de 2013;69(7):o1166–o1166. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536813017157 Rivera A, Nerio LS, Bolte M. Crystal structure of the di-Mannich base 4,4′-dichloro-3,3′,5,5′-tetramethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):312–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002212 Rivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. A Novel Manich Type Reaction Using Aminals in Alkaline Medium. Synth Commun [Internet]. noviembre de 1993;23(20):2921–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919308012614 Rivera A, Rojas JJ, Ríos-Motta J, Bolte M. Crystal structure of 1,1′-[imidazolidine-1,3-diylbis(methylene)]bis(naphthalen-2-ol). Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):258–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002078 Rivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. 1,3- bis (2’-Hydroxybenzyl)imidazolidines as Novel Precursors of 3,3′-Ethylene- bis (3,4-dihydro-2H-1,3-benzoxazine). Synth Commun [Internet]. julio de 1994;24(14):2081–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919408010219 Roy K, Popelier PLA. Predictive QSPR modeling of the acidic dissociation constant (pKa) of phenols in different solvents. J Phys Org Chem [Internet]. el 21 de marzo de 2009;22(3):186–96. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/poc.1447 Moss GP. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure and Applied Chemistry [Internet]. el 1 de enero de 1996;68(12):2193–222. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac199668122193/html |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 67 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/87036/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/87036/2/1023930130.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/87036/3/1023930130.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a ef22551a9eccf77824e22c15d3105627 bbab146360d34162bc712afa40a9ef48 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089591662051328 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ríos Motta, Jaime Alberto47e061cd8a970b04fc20c3d245c8da41Bohórquez Villamil, Daniel Eduardo0fbafaaf5dac86597738e318c4c4962dSíntesis de Heterociclos2024-10-24T00:43:41Z2024-10-24T00:43:41Z2024https://repositorio.unal.edu.co/handle/unal/87036Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn este trabajo fueron descritas en primer lugar las características generales que definen un puente de hidrógeno, parámetros, clasificación, incidencia en las propiedades fisicoquímicas y su relación con el efecto anomérico a través de la inferencia que en algunas ocasiones ejercen los puentes de hidrógeno sobre la conformación de las moléculas, en especial en los sistemas heterocíclicos del tipo bis-bencilimidazolidina a través del análisis de sus datos espectroscópicos. (Texto tomado de la fuente)In this paper, the general characteristics that define a hydrogen bond, parameters, classification, influence on the physicochemical properties and its relationship with the anomeric effect were first described through the inference that hydrogen bonds sometimes exert on the conformation of molecules, especially in heterocyclic systems of the bisbenzylimidazolidine type through the analysis of their spectroscopic data.MaestríaMagíster en Ciencias - QuímicaSíntesis orgánicaxiv, 67 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesCOMPUESTOS HETEROCICLICOSENLACES DE HIDROGENOHeterocyclic compoundsHydrogen bondingPuente de hidrógenoEfecto anoméricoHydrogen bondAnomeric effectBISBIAsIncidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs]Incidence of intramolecular hydrogen bonds on the anomeric effect in heterocyclic systems of the bis-benzylimidazolidines [BISBIAs] typeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMCipcigan F, Sokhan V, Martyna G, Crain J. Structure and hydrogen bonding at the limits of liquid water stability. Sci Rep [Internet]. el 29 de enero de 2018;8(1):1718. Disponible en: https://www.nature.com/articles/s41598-017-18975-7Desiraju GR. Crystal Engineering: From Molecule to Crystal. J Am Chem Soc [Internet]. el 10 de julio de 2013;135(27):9952–67. Disponible en: https://pubs.acs.org/doi/10.1021/ja403264cBernstein J, Davis RE, Shimoni L, Chang N. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angewandte Chemie International Edition in English [Internet]. el 18 de agosto de 1995;34(15):1555–73. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/anie.199515551Aakeröy. C.B., Sinha. A.S. Co-crystals [Internet]. Aakeröy CB, Sinha AS, editores. Cambridge: Royal Society of Chemistry; 2018. (Monographs in Supramolecular Chemistry). Disponible en: http://ebook.rsc.org/?DOI=10.1039/9781788012874SHAHI A, ARUNAN E. Why are Hydrogen Bonds Directional? Journal of Chemical Sciences [Internet]. el 13 de octubre de 2016;128(10):1571–7. Disponible en: http://link.springer.com/10.1007/s12039-016-1156-3Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. How Water’s Properties Are Encoded in Its Molecular Structure and Energies. Chem Rev [Internet]. el 11 de octubre de 2017;117(19):12385–414. Disponible en: https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00259Duarte CJ, Freitas MP. Hydrogen bonding and stereoelectronic effects in the conformational isomerism of trans-2-bromocyclohexanol. J Mol Struct [Internet]. el 30 de julio de 2009;930(1–3):135–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286009002762Lađarević J, Božić B, Matović L, Nedeljković BB, Mijin D. Role of the bifurcated intramolecular hydrogen bond on the physico-chemical profile of the novel azo pyridone dyes. Dyes and Pigments [Internet]. el 1 de marzo de 2019;162:562–72. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0143720818313421Imani Z, Mundlapati VR, Goldsztejn G, Brenner V, Gloaguen E, Guillot R, et al. Conformation control through concurrent N–H⋯S and N–H⋯OC hydrogen bonding and hyperconjugation effects. Chem Sci [Internet]. el 14 de septiembre de 2020;11(34):9191–7. Disponible en: http://xlink.rsc.org/?DOI=D0SC03339AAlder RW, Carniero TMG, Mowlam RW, Orpen AG, Petillo PA, Vachon DJ, et al. Evidence for hydrogen-bond enhanced structural anomeric effects from the protonation of two aminals, 5-methyl-1,5,9-triazabicyclo[7.3.1]tridecane and 1,4,8,11-tetraazatricyclo[9.3.1.1 4,8]hexadecane. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1999;(3):1–12. Disponible en: http://xlink.rsc.org/?DOI=a807954dRivera A, Osorio HJ, Uribe JM, Ríos-Motta J, Bolte M. Crystal structure of the 1,3,6,8-tetraazatricyclo[4.3.1.1 3,8 ]undecane (TATU)–4-nitrophenol (1/2) adduct: the role of anomeric effect in the formation of a second hydrogen-bond interaction. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de noviembre de 2015;71(11):1356–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015019659Chang Raymond. Chemistry - Quimica (Séptima Edición). Vol. 1. México D.F: Mc Graw-Hill; 2005.Latimer WM, Rodebush WH. POLARITY AND IONIZATION FROM THE STANDPOINT OF THE LEWIS THEORY OF VALENCE. J Am Chem Soc [Internet]. el 1 de julio de 1920;42(7):1419–33. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja01452a015George C. Pimentel and A.L. McClellan. The Hydrogen Bond. San Francisco: Freeman; 1960.Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry [Internet]. el 8 de julio de 2011;83(8):1619–36. Disponible en: https://www.degruyter.com/document/doi/10.1351/PAC-REP-10-01-01/htmlTriptow J, Meijer G, Fielicke A, Dopfer O, Green M. Comparison of Conventional and Nonconventional Hydrogen Bond Donors in Au – Complexes. J Phys Chem A [Internet]. el 23 de junio de 2022;126(24):3880–92. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.2c02725Tsuzuki S, Fujii A. Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Physical Chemistry Chemical Physics [Internet]. 2008;10(19):2584. Disponible en: http://xlink.rsc.org/?DOI=b718656hJabłoński M. Binding of X–H to the lone-pair vacancy: Charge-inverted hydrogen bond. Chem Phys Lett [Internet]. agosto de 2009;477(4–6):374–6. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261409008161Jabłoński M. Ten years of charge-inverted hydrogen bonds. Struct Chem [Internet]. el 18 de febrero de 2020;31(1):61–80. Disponible en: http://link.springer.com/10.1007/s11224-019-01454-2Desiraju GR (Gautam R), Steiner T. The weak hydrogen bond : in structural chemistry and biology. Oxford University Press; 1999. 507 p.Shi X, Bao W. Hydrogen-Bonded Conjugated Materials and Their Application in Organic Field-Effect Transistors. Front Chem [Internet]. el 24 de agosto de 2021;9. Disponible en: https://www.frontiersin.org/articles/10.3389/fchem.2021.723718/fullGilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Iuc’s Monographs on Crystallography). New York: Oxford; 2009.Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res [Internet]. el 1 de abril de 1990;23(4):120–6. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ar00172a005Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem [Internet]. el 1 de junio de 1991;95(12):4601–10. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100165a007Ton QC, Bolte M. Intra- and intermolecular proton transfer in 2,6-diaminopyridinium 4-hydroxypyridin-1-ium-2,6-dicarboxylate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o2860–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812037580Morrison. R.T., Boyd. R.N. Química Orgánica. Quinta edición. Wilmington, Delaware, E.U.A.: Addison-Wesley Iberoamericana; 1990.Ismi DP, Pulungan R, Afiahayati. Deep learning for protein secondary structure prediction: Pre and post-AlphaFold. Comput Struct Biotechnol J [Internet]. el 1 de enero de 2022;20:6271–86. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2001037022005062WATSON JD, CRICK FHC. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature [Internet]. el 25 de abril de 1953;171(4356):737–8. Disponible en: https://www.nature.com/articles/171737a0Bricogne G. Fourier transforms in crystallography: theory, algorithms and applications. En 2010. p. 24–113. Disponible en: https://xrpp.iucr.org/cgi-bin/itr?url_ver=Z39.88-2003&rft_dat=what%3Dchapter%26volid%3DBb%26chnumo%3D1o3%26chvers%3Dv0001Ubic R. Crystallography and Crystal Chemistry [Internet]. Crystallography and Crystal Chemistry. Cham: Springer International Publishing; 2024. Disponible en: https://link.springer.com/10.1007/978-3-031-49752-0Cooper RI, Thompson AL, Watkin DJ. CRYSTALS enhancements: dealing with hydrogen atoms in refinement. J Appl Crystallogr [Internet]. el 1 de octubre de 2010;43(5):1100–7. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0021889810025598Wendler K, Thar J, Zahn S, Kirchner B. Estimating the Hydrogen Bond Energy. J Phys Chem A [Internet]. el 9 de septiembre de 2010;114(35):9529–36. Disponible en: https://pubs.acs.org/doi/10.1021/jp103470eLakshmi B, Samuelson AG, Jovan Jose K V., Gadre SR, Arunan E. Is there a hydrogen bond radius? Evidence from microwave spectroscopy, neutron scattering and X-ray diffraction results. New Journal of Chemistry [Internet]. 2005;29(2):371. Disponible en: http://xlink.rsc.org/?DOI=b411815dJeffrey GA, Saenger W. Hydrogen Bonding in Biological Structures [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. Disponible en: http://link.springer.com/10.1007/978-3-642-85135-3Brzeziński B, Radziejewski P, Olejnik J, Zundel G. An intramolecular hydrogen-bonded system with large proton polarizability — a model with regard to the proton pathway in bacteriorhodopsin and other systems with collective proton motion. J Mol Struct [Internet]. julio de 1994;323:71–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/0022286094079773Martinez-Felipe A, Cook AG, Abberley JP, Walker R, Storey JMD, Imrie CT. An FT-IR spectroscopic study of the role of hydrogen bonding in the formation of liquid crystallinity for mixtures containing bipyridines and 4-pentoxybenzoic acid. RSC Adv [Internet]. 2016;6(110):108164–79. Disponible en: http://xlink.rsc.org/?DOI=C6RA17819GLi G, Zhang YY, Li Q, Wang C, Yu Y, Zhang B, et al. Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. Nat Commun [Internet]. el 28 de octubre de 2020;11(1):5449. Disponible en: https://www.nature.com/articles/s41467-020-19226-6Iogansen A V. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching w(XH) vibration in infrared spectra. Vol. 55, Spectrochimica Acta Part A. 1999.Egorochkin AN, Skobeleva SE. Infrared Spectroscopy of the Hydrogen Bond as a Method for the Investigation of Intramolecular Interactions. Russian Chemical Reviews [Internet]. el 31 de diciembre de 1979;48(12):1198–211. Disponible en: https://iopscience.iop.org/article/10.1070/RC1979v048n12ABEH002438Gilbert AS. Hydrogen Bonding and Other Physicochemical Interactions Studied by IR and Raman Spectroscopy. En: Encyclopedia of Spectroscopy and Spectrometry [Internet]. Elsevier; 1999. p. 957–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780123744135003390Silverstein RM and BGC. Spectrometric Identification of Organic Compunds [Internet]. 7a ed. Hoboken, New Jersey: John Wiley & Sons; 2005 [citado el 10 de enero de 2024]. Disponible en: https://bcs.wiley.com/he-bcs/Books?action=index&itemId=0471393622&itemTypeId=BKS&bcsId=2174Rowlands LJ, Marks A, Sanderson JM, Law R V. 17 O NMR spectroscopy as a tool to study hydrogen bonding of cholesterol in lipid bilayers. Chemical Communications [Internet]. el 28 de noviembre de 2020;56(92):14499–502. Disponible en: http://xlink.rsc.org/?DOI=D0CC05466FGünther Harald. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry [Internet]. 3rd Ed. Weinheim, Germany: John Wiley & Sons; 2013 [citado el 5 de noviembre de 2023]. Disponible en: https://www.wiley.com/en-br/NMR+Spectroscopy%3A+Basic+Principles%2C+Concepts+and+Applications+in+Chemistry%2C+3rd+Edition-p-9783527330003Aliev AE, Harris KDM. Probing Hydrogen Bonding in Solids Using Solid State NMR Spectroscopy. En 2003. p. 1–53. Disponible en: http://link.springer.com/10.1007/b14136Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds [Internet]. Structure Determination of Organic Compounds: Tables of Spectral Data. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. 1–433 p. Disponible en: https://link.springer.com/10.1007/978-3-540-93810-1Schmuck C, Rehm T, Gröhn F, Klein K, Reinhold F. Ion pair driven self-assembly of a flexible bis-zwitterion in polar solution: Formation of discrete nanometer-sized cyclic dimers. J Am Chem Soc. el 8 de febrero de 2006;128(5):1430–1.Desiraju GR. The C−H···O Hydrogen Bond: Structural Implications and Supramolecular Design. Acc Chem Res [Internet]. el 11 de septiembre de 1996;29(9):441–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar950135nRivera A, Quiroga D, Ríos-Motta J, Fejfarová K, Dušek M. 1,1′-[Imidazolidine-1,3-diylbis(methylene)]bis(1 H -benzotriazole). Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de febrero de 2012;68(2):o312–3. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812000232Morrison LJ, Chai W, Rosenberg JA, Henkelman G, Brodbelt JS. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Physical Chemistry Chemical Physics [Internet]. 2017;19(30):20057–74. Disponible en: http://xlink.rsc.org/?DOI=C7CP04073CMarcsisin SR, Engen JR. Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem [Internet]. el 1 de junio de 2010;397(3):967–72. Disponible en: http://link.springer.com/10.1007/s00216-010-3556-4Dannhauser W, Bahe LW. Dielectric Constant of Hydrogen Bonded Liquids. III. Superheated Alcohols. J Chem Phys [Internet]. el 15 de mayo de 1964;40(10):3058–66. Disponible en: https://pubs.aip.org/jcp/article/40/10/3058/78335/Dielectric-Constant-of-Hydrogen-Bonded-Liquids-IIISuresh SJ, Naik VM. Hydrogen bond thermodynamic properties of water from dielectric constant data. J Chem Phys [Internet]. el 1 de diciembre de 2000;113(21):9727–32. Disponible en: https://pubs.aip.org/jcp/article/113/21/9727/148686/Hydrogen-bond-thermodynamic-properties-of-waterSprik M. Hydrogen bonding and the static dielectric constant in liquid water. J Chem Phys [Internet]. el 1 de noviembre de 1991;95(9):6762–9. Disponible en: https://pubs.aip.org/jcp/article/95/9/6762/94763/Hydrogen-bonding-and-the-static-dielectricCañadas O, Casals C. Differential Scanning Calorimetry of Protein–Lipid Interactions. En: Methods in Molecular Biology [Internet]. Humana Press Inc.; 2019. p. 91–106. Disponible en: http://link.springer.com/10.1007/978-1-4939-9512-7_5Zhou J, Lin S, Zeng H, Liu J, Li B, Xu Y, et al. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels. Mater Horiz [Internet]. el 1 de noviembre de 2020;7(11):2936–43. Disponible en: http://xlink.rsc.org/?DOI=D0MH00735HLeyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, et al. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers (Basel) [Internet]. el 18 de diciembre de 2019;12(1):5. Disponible en: https://www.mdpi.com/2073-4360/12/1/5Fillaux F, Cousson A, Archilla JFR, Tomkinson J. A neutron scattering study of strong-symmetric hydrogen bonds in potassium and cesium hydrogen bistrifluoroacetates: Determination of the crystal structures and of the single-well potentials for protons. J Chem Phys [Internet]. el 28 de mayo de 2008;128(20). Disponible en: https://pubs.aip.org/jcp/article/128/20/204502/1003567/A-neutron-scattering-study-of-strong-symmetricKono F, Tamada T. Neutron crystallography for the elucidation of enzyme catalysis. Curr Opin Struct Biol [Internet]. el 1 de diciembre de 2021;71:36–42. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959440X21000762Nelson DL, Nelson RD, Cox MM. Lehninger Principles of Biochemistry, Fourth Edition [Internet]. W.H. Freeman; 2004. Disponible en: https://books.google.com.co/books?id=3DvrAQAACAAJNeuheuser T, Hess BA, Reutel C, Weber E. Ab Initio Calculations of Supramolecular Recognition Modes. Cyclic versus Noncyclic Hydrogen Bonding in the Formic Acid/Formamide System. J Phys Chem [Internet]. el 1 de junio de 1994;98(26):6459–67. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100077a007Ni J, Pignatello JJ. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids. Environ Sci Process Impacts [Internet]. el 1 de septiembre de 2018;20(9):1225–33. Disponible en: http://xlink.rsc.org/?DOI=C8EM00255JGarcia-Viloca M, González-Lafont A, Lluch JM. Theoretical Study of the Low-Barrier Hydrogen Bond in the Hydrogen Maleate Anion in the Gas Phase. Comparison with Normal Hydrogen Bonds. J Am Chem Soc [Internet]. el 1 de febrero de 1997;119(5):1081–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja962662nHuyskens P, Zeegers-Huyskens T. Associations moléculaires et équilibres acide-base. Journal de Chimie Physique [Internet]. el 28 de mayo de 1964;61:81–6. Disponible en: http://jcp.edpsciences.org/10.1051/jcp/1964610081Zeegers-Huyskens Th, Huyskens P. Intermolecular Forces. En: Intermolecular Forces [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. p. 1–30. Disponible en: http://link.springer.com/10.1007/978-3-642-76260-4_1Gilli P, Pretto L, Gilli G. PA/pKa equalization and the prediction of the hydrogen-bond strength: A synergism of classical thermodynamics and structural crystallography. J Mol Struct [Internet]. el 12 de noviembre de 2007;844–845:328–39. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286007003717Gronert S. Theoretical studies of proton transfers. 1. The potential energy surfaces of the identity reactions of the first- and second-row non-metal hydrides with their conjugate bases. J Am Chem Soc [Internet]. el 1 de noviembre de 1993;115(22):10258–66. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00075a047Balevicius V, Aidas K, Svoboda I, Fuess H. Hydrogen Bonding in Pyridine N -Oxide/Acid Systems: Proton Transfer and Fine Details Revealed by FTIR, NMR, and X-ray Diffraction. J Phys Chem A [Internet]. el 30 de agosto de 2012;116(34):8753–61. Disponible en: https://pubs.acs.org/doi/10.1021/jp305446nGilli G, Gilli P. Towards an unified hydrogen-bond theory. J Mol Struct [Internet]. septiembre de 2000;552(1–3):1–15. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286000004543Rivera A, Uribe JM, Ríos-Motta J, Bolte M. Effect of protonation on the structure of 1,3,6,8-tetraazatricyclo[4.4.1.13,8] dodecane (TATD) adamanzane: Crystal structure and DFT analysis of 3,6,8-triaza-1-azoniatricyclo[4.4.1.13,8]dodecane 4-nitrophenolate 4-nitrophenol. Journal of Structural Chemistry [Internet]. el 15 de julio de 2017;58(4):789–96. Disponible en: http://link.springer.com/10.1134/S0022476617040217Tahir MN, Khan AH, Shad HA. Crystal structure of ( E )-2-[(4-hydroxybenzylidene)azaniumyl]benzoate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de septiembre de 2014;70(9):o1008–o1008. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814018273Pakiari AH, Eskandari K. The chemical nature of very strong hydrogen bonds in some categories of compounds. Journal of Molecular Structure: THEOCHEM [Internet]. el 14 de febrero de 2006;759(1–3):51–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0166128005007499Góra RW, Maj M, Grabowski SJ. Resonance-assisted hydrogen bonds revisited. Resonance stabilization vs. charge delocalization. Physical Chemistry Chemical Physics [Internet]. el 21 de febrero de 2013;15(7):2514. Disponible en: http://xlink.rsc.org/?DOI=c2cp43562dHeydar A. Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on-delocalization. J Chem Chem Eng [Internet]. 2010 [citado el 5 de noviembre de 2023];29(4). Disponible en: https://doaj.org/article/673ac4dae5914ae096467e5ef8468c24Ferguson G, Marsh WC, Restivo RJ, Lloyd D. Conformational studies of 2,3-diacyl-5-nitrocyclopentadienes: delocalized systems with very short intramolecular O ⋯ H ⋯ O hydrogen bonds. Crystal and molecular structures of 2,3-diacetyl- and 2,3-dibenzoyl-5-nitrocyclopentadiene. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1975;45(10):998. Disponible en: http://xlink.rsc.org/?DOI=p29750000998Jönsson PG, Hamilton WC. Hydrogen Bond Studies. LX.* A Single Crystal Neutron Diffraction Study of Trichloroacetic Acid Dimer. J Chem Phys [Internet]. el 1 de mayo de 1972;56(9):4433–9. Disponible en: https://pubs.aip.org/jcp/article/56/9/4433/84285/Hydrogen-Bond-Studies-LX-A-Single-Crystal-NeutronGilli G, Bertolasi V, Ferretti V, Gilli P. Resonance-assisted hydrogen bonding. III. Formation of intermolecular hydrogen-bonded chains in crystals of β-diketone enols and its relevance to molecular association. Acta Crystallogr B [Internet]. el 1 de junio de 1993;49(3):564–76. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768192012278Wahl M. C-H···O hydrogen bonding in biology. Trends Biochem Sci [Internet]. marzo de 1997;22(3):97–102. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0968000497010049Horowitz S, Trievel RC. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function. Journal of Biological Chemistry [Internet]. el 7 de diciembre de 2012;287(50):41576–82. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0021925820438086Ferstandig LL. Carbon as a Hydrogen Bonding Base and Carbon-Hydrogen-Carbon Bonding. J Am Chem Soc [Internet]. el 1 de septiembre de 1962;84(18):3553–7. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00877a027Krebs B, Henkel G. Untersuchungen über S-H … S‐Wasserstoffbrücken Die Kristallstruktur der Diphenyldithiophosphinsäure bei 140 und 293 K. Z Anorg Allg Chem [Internet]. el 9 de abril de 1981;475(4):143–55. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/zaac.19814750417Webber AL, Yates JR, Zilka M, Sturniolo S, Uldry AC, Corlett EK, et al. Weak Intermolecular CH···N Hydrogen Bonding: Determination of 13 CH– 15 N Hydrogen-Bond Mediated J Couplings by Solid-State NMR Spectroscopy and First-Principles Calculations. J Phys Chem A [Internet]. el 23 de enero de 2020;124(3):560–72. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.9b10726Brammer L. Metals and hydrogen bonds. Dalton Transactions [Internet]. el 21 de agosto de 2003;(16):3145. Disponible en: http://xlink.rsc.org/?DOI=b303006gBrammer L, Zhao D, Ladipo FT, Braddock-Wilking J. Hydrogen bonds involving transition metal centres – a brief review. Acta Crystallogr B [Internet]. el 1 de agosto de 1995;51(4):632–40. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768195003673Fatima S, Mehrafrooz B, Boggs DG, Ali N, Singh S, Thielges MC, et al. Conformation-Dependent Hydrogen-Bonding Interactions in a Switchable Artificial Metalloprotein. Biochemistry [Internet]. el 20 de agosto de 2024;63(16):2040–50. Disponible en: https://pubs.acs.org/doi/10.1021/acs.biochem.4c00209Gámiz-Hernández AP, Galstyan AS, Knapp EW. Understanding Rubredoxin Redox Potentials: Role of H-Bonds on Model Complexes. J Chem Theory Comput [Internet]. el 13 de octubre de 2009;5(10):2898–908. Disponible en: https://pubs.acs.org/doi/10.1021/ct900328cHusberg C, Ryde U. How are hydrogen bonds modified by metal binding? JBIC Journal of Biological Inorganic Chemistry [Internet]. el 31 de junio de 2013;18(5):499–522. Disponible en: http://link.springer.com/10.1007/s00775-013-0996-2Schmiedekamp A, Nanda V. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. J Inorg Biochem [Internet]. julio de 2009;103(7):1054–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S016201340900097XSmith JN, Shirin Z, Carrano CJ. Control of Thiolate Nucleophilicity and Specificity in Zinc Metalloproteins by Hydrogen Bonding: Lessons from Model Compound Studies. J Am Chem Soc [Internet]. el 1 de enero de 2003;125(4):868–9. Disponible en: https://pubs.acs.org/doi/10.1021/ja029418iLipscomb WN. Structures of the Boron Hydrides. J Chem Phys [Internet]. el 1 de junio de 1954;22(6):985–8. Disponible en: https://pubs.aip.org/jcp/article/22/6/985/204318/Structures-of-the-Boron-HydridesBrookhart M, Green MLH, Parkin G. Agostic interactions in transition metal compounds. Proceedings of the National Academy of Sciences [Internet]. el 24 de abril de 2007;104(17):6908–14. Disponible en: https://pnas.org/doi/full/10.1073/pnas.0610747104Yadav VK. Steric and Stereoelectronic Effects in Organic Chemistry [Internet]. Cham: Springer International Publishing; 2021. Disponible en: https://link.springer.com/10.1007/978-3-030-75622-2Alabugin I V. Stereoelectronic effects : a bridge between structure and reactivity. 2016.Kirby AJ. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. (Reactivity and Structure Concepts in Organic Chemistry; vol. 15). Disponible en: http://link.springer.com/10.1007/978-3-642-68676-4Sovers OJ, Kern CW, Pitzer RM, Karplus M. Bond-Function Analysis of Rotational Barriers: Ethane. J Chem Phys [Internet]. el 15 de septiembre de 1968;49(6):2592–9. Disponible en: https://pubs.aip.org/jcp/article/49/6/2592/84697/Bond-Function-Analysis-of-Rotational-BarriersDíaz Pérez VM, García Moreno MI, Ortiz Mellet C, Fuentes J, Díaz Arribas JC, Cañada FJ, et al. Generalized Anomeric Effect in Action: Synthesis and Evaluation of Stable Reducing Indolizidine Glycomimetics as Glycosidase Inhibitors. J Org Chem [Internet]. el 1 de enero de 2000;65(1):136–43. Disponible en: https://pubs.acs.org/doi/10.1021/jo991242oSánchez-Fernández EM, Rísquez-Cuadro R, Aguilar-Moncayo M, García-Moreno MI, Mellet CO, García Fernández JM. Generalized Anomeric Effect in gem -Diamines: Stereoselective Synthesis of α- N -Linked Disaccharide Mimics. Org Lett [Internet]. el 6 de agosto de 2009;11(15):3306–9. Disponible en: https://pubs.acs.org/doi/10.1021/ol901125nMo Y, Gao J. Theoretical Analysis of the Rotational Barrier of Ethane. Acc Chem Res [Internet]. el 1 de febrero de 2007;40(2):113–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar068073wGrossel Martin. Alicyclic Chemistry. 1st Ed. Oxford, New York: Oxford University Press; 1997Mo Y. A Critical Analysis on the Rotation Barriers in Butane. J Org Chem [Internet]. el 16 de abril de 2010;75(8):2733–6. Disponible en: https://pubs.acs.org/doi/10.1021/jo1001164Cormanich RA, Freitas MP. A Theoretical View on the Conformer Stabilization of Butane. J Org Chem [Internet]. el 6 de noviembre de 2009;74(21):8384–7. Disponible en: https://pubs.acs.org/doi/10.1021/jo901705pDragojlovic V. Conformational analysis of cycloalkanes. ChemTexts [Internet]. el 12 de septiembre de 2015;1(3):14. Disponible en: http://link.springer.com/10.1007/s40828-015-0014-0Lemieux RU. Effects of unshared pairs of electrons and their solvation on conformational equilibria. Pure and Applied Chemistry [Internet]. el 1 de enero de 1971 [citado el 6 de noviembre de 2023];25(3):527–48. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac197125030527/htmlBooth H, Lemieux RU. The Anomeric Effect: The Conformational Equilibria of Tetrahydro-1,3-oxazines and 1-Methyl-1,3-diazane. Can J Chem [Internet]. el 1 de marzo de 1971;49(5):777–88. Disponible en: http://www.nrcresearchpress.com/doi/10.1139/v71-129Thatcher GRJ. Anomeric and Associated Stereoelectronic Effects. En 1993. p. 6–25. Disponible en: https://pubs.acs.org/doi/abs/10.1021/bk-1993-0539.ch002Edward JT. Stability of glycosides to acid hydrolysis. Chem Ind. 1955;1102–4.E. Juaristi and G. Cuevas. The Anomeric Effect. Boca Ratón: CRC Press; 1995.Alabugin I V., dos Passos Gomes G, Abdo MA. Hyperconjugation. WIREs Computational Molecular Science [Internet]. el 6 de marzo de 2019;9(2). Disponible en: https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1389Deslongchamps G, Deslongchamps P. Bent bonds, the antiperiplanar hypothesis and the theory of resonance. A simple model to understand reactivity in organic chemistry. Org Biomol Chem [Internet]. el 7 de agosto de 2011;9(15):5321. Disponible en: http://xlink.rsc.org/?DOI=c1ob05393kWang C, Ying F, Wu W, Mo Y. Sensing or No Sensing: Can the Anomeric Effect Be Probed by a Sensing Molecule? J Am Chem Soc [Internet]. el 31 de agosto de 2011;133(34):13731–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja205613xBertolasi V, Ferretti V, Gilli G, Marchetti P, D’Angeli F. Evidence for the exo-anomeric stereoelectronic effect in cyclic orthoester aminals from X-ray structural data. Crystal structures of three 2-amino-1,3-oxazolidin-4-one derivatives. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1990;2(12):2135. Disponible en: http://xlink.rsc.org/?DOI=p29900002135Takahashi O, Yamasaki K, Kohno Y, Ohtaki R, Ueda K, Suezawa H, et al. The anomeric effect revisited. A possible role of the CH/n hydrogen bond. Carbohydr Res [Internet]. el 2 de julio de 2007;342(9):1202–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621507001243Takahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The Origin of the Relative Stability of Axial Conformers of Cyclohexane and Cyclohexanone Derivatives: Importance of the CH/n and CH/π Hydrogen Bonds. Bull Chem Soc Jpn [Internet]. el 15 de febrero de 2009;82(2):272–6. Disponible en: http://www.journal.csj.jp/doi/10.1246/bcsj.82.272Takahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The origin of the generalized anomeric effect: possibility of CH/n and CH/π hydrogen bonds. Carbohydr Res [Internet]. el 6 de julio de 2009;344(10):1225–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621509001670Wolfe S, Schlegel HB, Whangbo MH, Bernardi F. On the Origin of the Bohlmann Bands. Can J Chem. el 15 de noviembre de 1974;52(22):3787–92.Perrin CL. Reverse anomeric effect: fact or fiction? Tetrahedron [Internet]. octubre de 1995;51(44):11901–35. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/004040209500560UPerrin CL, Armstrong KB. Conformational analysis of glucopyranosylammonium ions: does the reverse anomeric effect exist? J Am Chem Soc [Internet]. el 1 de julio de 1993;115(15):6825–34. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00068a046Jones PG, Komarov I V., Wothers PD. A test for the reverse anomeric effect. Chemical Communications [Internet]. 1998;(16):1695–6. Disponible en: http://xlink.rsc.org/?DOI=a804354jMatamoros E, Pérez EMS, Light ME, Cintas P, Martínez RF, Palacios JC. A True Reverse Anomeric Effect Does Exist After All: A Hydrogen Bonding Stereocontrolling Effect in 2-Iminoaldoses. J Org Chem [Internet]. el 7 de junio de 2024;89(11):7877–98. Disponible en: https://pubs.acs.org/doi/10.1021/acs.joc.4c00562Rivera A, Ríos-Motta J, Quevedo R, Joseph-Nathan P. NUEVOS ASPECTOS DE LA REACCIÓN TIPO MANNICH EN MEDIO BÁSICO DE 1,3,6,8-TETRAZATRICICLO[4.4.1.13,8] DODECANO (TATD) CON FENOLES. Revista Colombiana de Química [Internet]. 2005 [citado el 12 de noviembre de 2023];34(105). Disponible en: https://repositorio.unal.edu.co/handle/unal/22259Fedorowicz A, Mavri J, Bala P, Koll A. Molecular dynamics study of the tautomeric equilibrium in the Mannich base. Chem Phys Lett [Internet]. junio de 1998;289(5–6):457–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261498004229MINOR WF, JOHNSON DA, CHENEY LC. A Crystalline Imidazolidine Derivative of Streptomycin. J Org Chem [Internet]. el 1 de mayo de 1956;21(5):528–9. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01111a011Husain A, Bhutani R, Kumar D, Shin DS. Synthesis and Biological Evaluation of Novel Substituted-Imidazolidine Derivatives. Journal of the Korean Chemical Society [Internet]. el 20 de abril de 2013;57(2):227–33. Disponible en: http://koreascience.or.kr/journal/view.jsp?kj=JCGMDC&py=2013&vnc=v57n2&sp=227Joullie MM, Slusarczuk GMJ, Dey AS, Venuto PB, Yocum RH. Synthesis and properties of fluorine-containing heterocyclic compounds. IV. N,N-Unsubstituted imidazolidine. J Org Chem [Internet]. el 1 de diciembre de 1967;32(12):4103–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01287a100Ferm RJ, Riebsomer JL. The Chemistry of the 2-Imidazolines and Imidazolidines. Chem Rev [Internet]. el 1 de agosto de 1954;54(4):593–613. Disponible en: https://pubs.acs.org/doi/abs/10.1021/cr60170a002Lambert JB, Huseland DE, Wang G tai. Synthesis of 1,3-Disubstituted Diazolidines. Synthesis (Stuttg) [Internet]. 1986;1986(08):657–8. Disponible en: http://www.thieme-connect.de/DOI/DOI?10.1055/s-1986-31737A. Perillo I, de los Santos C, Salerno A. <sup>1<sup/>H NMR Spectroscopy and Conformational Analysis of N-Benzylimidazolidines. Heterocycles [Internet]. 2003;60(1):89. Disponible en: http://www.heterocycles.jp/newlibrary/libraries/abst/00824Garcías-Morales C, Martínez-Salas SH, Ariza-Castolo A. The effect of the nitrogen non-bonding electron pair on the NMR and X-ray in 1,3-diazaheterocycles. Tetrahedron Lett [Internet]. el 27 de junio de 2012;53(26):3310–5. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0040403912006740Rivera A, Nerio LS, Ríos-Motta J, Fejfarová K, Dušek M. 2,2′-[Imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de enero de 2012;68(1):o170–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811053748Rivera A, Nerio LS, Ríos-Motta J, Kučeraková M, Dušek M. 4,4′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de noviembre de 2012;68(11):o3172–o3172. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812042808Rivera A, Nerio LS, Bolte M. 6,6′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de marzo de 2014;70(3):o243–o243. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814002128Rivera A, Sadat-Bernal J, Ríos-Motta J, Pojarová M, Dušek M. 4,4′-Dichloro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2011;67(10):o2581–o2581. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811035677Rivera A, Nerio LS, Ríos-Motta J, Kučeráková M, Dušek M. 4,4′-Difluoro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o3043–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812040329Rivera A, Nerio LS, Bolte M. 4,4′-Di- tert -butyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de julio de 2013;69(7):o1166–o1166. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536813017157Rivera A, Nerio LS, Bolte M. Crystal structure of the di-Mannich base 4,4′-dichloro-3,3′,5,5′-tetramethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):312–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002212Rivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. A Novel Manich Type Reaction Using Aminals in Alkaline Medium. Synth Commun [Internet]. noviembre de 1993;23(20):2921–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919308012614Rivera A, Rojas JJ, Ríos-Motta J, Bolte M. Crystal structure of 1,1′-[imidazolidine-1,3-diylbis(methylene)]bis(naphthalen-2-ol). Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):258–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002078Rivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. 1,3- bis (2’-Hydroxybenzyl)imidazolidines as Novel Precursors of 3,3′-Ethylene- bis (3,4-dihydro-2H-1,3-benzoxazine). Synth Commun [Internet]. julio de 1994;24(14):2081–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919408010219Roy K, Popelier PLA. Predictive QSPR modeling of the acidic dissociation constant (pKa) of phenols in different solvents. J Phys Org Chem [Internet]. el 21 de marzo de 2009;22(3):186–96. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/poc.1447Moss GP. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure and Applied Chemistry [Internet]. el 1 de enero de 1996;68(12):2193–222. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac199668122193/htmlEstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/87036/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1023930130.2024.pdf1023930130.2024.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf1791173https://repositorio.unal.edu.co/bitstream/unal/87036/2/1023930130.2024.pdfef22551a9eccf77824e22c15d3105627MD52THUMBNAIL1023930130.2024.pdf.jpg1023930130.2024.pdf.jpgGenerated Thumbnailimage/jpeg5494https://repositorio.unal.edu.co/bitstream/unal/87036/3/1023930130.2024.pdf.jpgbbab146360d34162bc712afa40a9ef48MD53unal/87036oai:repositorio.unal.edu.co:unal/870362024-10-23 23:48:28.762Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |