Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
ilustraciones
- Autores:
-
Giraldo Galeano, Oscar Iván
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80486
- Palabra clave:
- 510 - Matemáticas
Geometría Euclidiana
Euclidean geometry
Foliations (mathematics)
Foliaciones (Matemáticas
Superficie final periódica
Homeomorfismo final periódico
Homeomorfismo Pseudo-Anosov Generalizado
Entropía cero
End periodic surfaces
End periodic homeomorphisms
Generalized Pseudo-Anosov homeomorphisms
Zero entropy
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_b8df7cbd0694398dd3c4ce5633e6eafb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80486 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. |
dc.title.translated.eng.fl_str_mv |
End periodic homeomorphisms and generalized pseudo-Anosov homeomorphisms |
title |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. |
spellingShingle |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. 510 - Matemáticas Geometría Euclidiana Euclidean geometry Foliations (mathematics) Foliaciones (Matemáticas Superficie final periódica Homeomorfismo final periódico Homeomorfismo Pseudo-Anosov Generalizado Entropía cero End periodic surfaces End periodic homeomorphisms Generalized Pseudo-Anosov homeomorphisms Zero entropy |
title_short |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. |
title_full |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. |
title_fullStr |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. |
title_full_unstemmed |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. |
title_sort |
Homeomorfismos finales periódicos y Pseudo-Anosov generalizados. |
dc.creator.fl_str_mv |
Giraldo Galeano, Oscar Iván |
dc.contributor.advisor.none.fl_str_mv |
Rodríguez Nieto, José Gregorio |
dc.contributor.author.none.fl_str_mv |
Giraldo Galeano, Oscar Iván |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas |
topic |
510 - Matemáticas Geometría Euclidiana Euclidean geometry Foliations (mathematics) Foliaciones (Matemáticas Superficie final periódica Homeomorfismo final periódico Homeomorfismo Pseudo-Anosov Generalizado Entropía cero End periodic surfaces End periodic homeomorphisms Generalized Pseudo-Anosov homeomorphisms Zero entropy |
dc.subject.lem.none.fl_str_mv |
Geometría Euclidiana |
dc.subject.lemb.none.fl_str_mv |
Euclidean geometry Foliations (mathematics) Foliaciones (Matemáticas |
dc.subject.proposal.spa.fl_str_mv |
Superficie final periódica Homeomorfismo final periódico Homeomorfismo Pseudo-Anosov Generalizado Entropía cero |
dc.subject.proposal.eng.fl_str_mv |
End periodic surfaces End periodic homeomorphisms Generalized Pseudo-Anosov homeomorphisms Zero entropy |
description |
ilustraciones |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-11T16:45:38Z |
dc.date.available.none.fl_str_mv |
2021-10-11T16:45:38Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80486 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80486 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[Ahl] Ahlfors L, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co. New York (1973) MR0357743 [Be-Ha] Bestvida M, Handel M. 1995. Train-Tracks for surfacenhomeomorphisms. Topology Vol. 34. No. I, pp. 109-MO,1995 [deC-H1] de Carvalho A, Hall T. 2004. Unimodal generalized pseudo-Anosov maps. Geom Topol 8:1127-1188. [deC2] de Carvalho A. 2005. Extensions, quotients and genelized pseudo-Anosov maps. AMS Proc. Sympos. Pure Math 75:315-338. [deC-P3] de Carvalho A, Patermain M. 2004. Monotone quotients of surface diffeomorphisms. Math. Res. Lett 10:603-619 [deC-H4] de Carvalho A, Hall T. 2010. Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences, arXiv:1010.3448. [Fe1] Fenley S. 1990. Endperiodic surface homeomorphisms and 3-manifolds. Math Z. 224:1-24 [Fe2] Fenley S. 1992. Asymptotic properties of depth one foliations in hyperbolic 3-manifolds. Jour. Diff. Geo. 36:269-313. [Forster] O. Forster, Riemann Surfaces, Springer-Verlag, 1981. [Ca-Bl] Casson A, Bleiler S. 1988. Automorphisms of surface after Nielsen and Thurston. London Math. Soc. student Text 9 Cambridge Univ. Press. [Ca-Co1] Cantwell J, Conlon L. 2011. Handel-Miller theory and finite depth foliations, arXiv:1006.4525. [Ca-Co2] Cantwell J, Conlon L. 2010. Examples of endperiodic maps, arXiv:1008.2549 [Ca-Co3] Cantwell J, Conlon L. 1999. Foliations cones. Geometry and Topology Monographs, Proceedings of the Kirbyfest. 2: 35-86. [Ca-Co4] Cantwell J, Conlon L. 2000. Foliations I. AMS [Ch-Ga-La] Chamanara R, Gardiner F, Lakic N. 2006. A hyperelliptic realization of the horseshoe and baker maps. Ergod. Th. and Dynam. Sys. 26:1749-1768. Fle] Fleming, W. “Nondegenerate surfaces of finite topological type.” Transactions of the American Mathematical Society 90 (1959): 323-335. [Ghys] E. Ghys, Laminations par surfaces de Riemann, Panorames e Synthesis, SMF, 2000. [Ga-La] Gardiner F, Lakic N. 2000. Quasiconformal Teichmuller Theory. AMS. Math. Sur. and Monog. Vol 76. [Ga-Fre] Gardiner F,Frederick P. Measured foliations and the minimal norm property for quadratic differentials. Acta Math., 152(1-2):57-76, 1984. [Gi-Fi] Gilbert H, Ulrich H. Introduction to the geometry of foliations. Part A. Friedr. Vieweg and Sohn, Braunschweig, second edition, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy Gaspard] Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics (Cambridge Nonlinear Science Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511628856 [Hu-Ma] Hubbard J, Masur H. 1979. Quadratic differentials and foliations. Acta Math. 142:221-274. [Mi] Sappala M. Foliations and Quadratic Differentials of Riemann Surface. [St] Strebel K. 1988. On the extremality and unique extremality of certain Teichmuller mappings. Complex Analysis, J. Hersch and A. Huber, eds. Birhhauser, Basel. 225-238. [St] Strebel K, Quadratic Differentials, Springer-Verlag, Berlin, 1984. [Th1] Thurston. W. The geometry and tology of 3-manifolds. Princeton University Notes, 1982. [Th2] Thurston. W. On the geometry and dynamics of diffeomorphisms of surface. Bull. AMS 19. (1988) 417-431 [Th3] Thurston. W. Hyperbolic structures on 3-manifolds II. Surface grups and 3-manifolds that fiber over the circle. Preprint. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
76 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Doctorado en Ciencias - Matemáticas |
dc.publisher.department.spa.fl_str_mv |
Escuela de matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80486/4/70953160.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80486/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/80486/5/70953160.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
7ce5220abe33c79d827bef700eabeb9a cccfe52f796b7c63423298c2d3365fc6 c1f5675a46fb9d9593bb900e4bca3438 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089720981880832 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Nieto, José Gregorio4c18915879d90fd92b2c223df2274819Giraldo Galeano, Oscar Iván47f2e778ce962c17adeb92ab7c83752d2021-10-11T16:45:38Z2021-10-11T16:45:38Z2021https://repositorio.unal.edu.co/handle/unal/80486Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEl objetivo de este trabajo es probar que las laminaciones invariantes bajo un homeomorfismo final periódico f induce una estructura compleja en la superficie. Y para esto, se pasa de laminaciones medibles a foliaciones con singularidades y con medidas transversales. Luego se usa la estructura Euclidiana inducida por las foliaciones para encontrar una estructura conforme. Por último se prueba que f es una función Pseudo Anosov generalizada en el sentido de [deC-H1]. En particular, se prueba que un diferencial cuadrático asociado a las foliaciones tiene área finita. Además se presentan ejemplos particulares del teorema central. (Texto tomado de la fuente)The main result of this paper is to prove that the minimal invariant laminations of an irreducible generalized Pseudo-Anosov homeomorphism isotopic to an endperiodic homeomorphism induces a conformal structure on the singular surface. To have a better understanding of the given theory, three propositions are presented that are original examples, which will give us an idea of the proof of the main theorem.DoctoradoDoctor en Ciencias - Matemáticas76 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en Ciencias - MatemáticasEscuela de matemáticasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín510 - MatemáticasGeometría EuclidianaEuclidean geometryFoliations (mathematics)Foliaciones (MatemáticasSuperficie final periódicaHomeomorfismo final periódicoHomeomorfismo Pseudo-Anosov GeneralizadoEntropía ceroEnd periodic surfacesEnd periodic homeomorphismsGeneralized Pseudo-Anosov homeomorphismsZero entropyHomeomorfismos finales periódicos y Pseudo-Anosov generalizados.End periodic homeomorphisms and generalized pseudo-Anosov homeomorphismsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[Ahl] Ahlfors L, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co. New York (1973) MR0357743[Be-Ha] Bestvida M, Handel M. 1995. Train-Tracks for surfacenhomeomorphisms. Topology Vol. 34. No. I, pp. 109-MO,1995[deC-H1] de Carvalho A, Hall T. 2004. Unimodal generalized pseudo-Anosov maps. Geom Topol 8:1127-1188.[deC2] de Carvalho A. 2005. Extensions, quotients and genelized pseudo-Anosov maps. AMS Proc. Sympos. Pure Math 75:315-338.[deC-P3] de Carvalho A, Patermain M. 2004. Monotone quotients of surface diffeomorphisms. Math. Res. Lett 10:603-619[deC-H4] de Carvalho A, Hall T. 2010. Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences, arXiv:1010.3448.[Fe1] Fenley S. 1990. Endperiodic surface homeomorphisms and 3-manifolds. Math Z. 224:1-24[Fe2] Fenley S. 1992. Asymptotic properties of depth one foliations in hyperbolic 3-manifolds. Jour. Diff. Geo. 36:269-313.[Forster] O. Forster, Riemann Surfaces, Springer-Verlag, 1981.[Ca-Bl] Casson A, Bleiler S. 1988. Automorphisms of surface after Nielsen and Thurston. London Math. Soc. student Text 9 Cambridge Univ. Press.[Ca-Co1] Cantwell J, Conlon L. 2011. Handel-Miller theory and finite depth foliations, arXiv:1006.4525.[Ca-Co2] Cantwell J, Conlon L. 2010. Examples of endperiodic maps, arXiv:1008.2549[Ca-Co3] Cantwell J, Conlon L. 1999. Foliations cones. Geometry and Topology Monographs, Proceedings of the Kirbyfest. 2: 35-86.[Ca-Co4] Cantwell J, Conlon L. 2000. Foliations I. AMS[Ch-Ga-La] Chamanara R, Gardiner F, Lakic N. 2006. A hyperelliptic realization of the horseshoe and baker maps. Ergod. Th. and Dynam. Sys. 26:1749-1768.Fle] Fleming, W. “Nondegenerate surfaces of finite topological type.” Transactions of the American Mathematical Society 90 (1959): 323-335.[Ghys] E. Ghys, Laminations par surfaces de Riemann, Panorames e Synthesis, SMF, 2000.[Ga-La] Gardiner F, Lakic N. 2000. Quasiconformal Teichmuller Theory. AMS. Math. Sur. and Monog. Vol 76.[Ga-Fre] Gardiner F,Frederick P. Measured foliations and the minimal norm property for quadratic differentials. Acta Math., 152(1-2):57-76, 1984.[Gi-Fi] Gilbert H, Ulrich H. Introduction to the geometry of foliations. Part A. Friedr. Vieweg and Sohn, Braunschweig, second edition, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomyGaspard] Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics (Cambridge Nonlinear Science Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511628856[Hu-Ma] Hubbard J, Masur H. 1979. Quadratic differentials and foliations. Acta Math. 142:221-274.[Mi] Sappala M. Foliations and Quadratic Differentials of Riemann Surface.[St] Strebel K. 1988. On the extremality and unique extremality of certain Teichmuller mappings. Complex Analysis, J. Hersch and A. Huber, eds. Birhhauser, Basel. 225-238.[St] Strebel K, Quadratic Differentials, Springer-Verlag, Berlin, 1984.[Th1] Thurston. W. The geometry and tology of 3-manifolds. Princeton University Notes, 1982.[Th2] Thurston. W. On the geometry and dynamics of diffeomorphisms of surface. Bull. AMS 19. (1988) 417-431[Th3] Thurston. W. Hyperbolic structures on 3-manifolds II. Surface grups and 3-manifolds that fiber over the circle. Preprint.InvestigadoresORIGINAL70953160.2021.pdf70953160.2021.pdfTesis de Doctorado en Matemáticas.application/pdf3878839https://repositorio.unal.edu.co/bitstream/unal/80486/4/70953160.2021.pdf7ce5220abe33c79d827bef700eabeb9aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80486/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL70953160.2021.pdf.jpg70953160.2021.pdf.jpgGenerated Thumbnailimage/jpeg4261https://repositorio.unal.edu.co/bitstream/unal/80486/5/70953160.2021.pdf.jpgc1f5675a46fb9d9593bb900e4bca3438MD55unal/80486oai:repositorio.unal.edu.co:unal/804862023-07-29 23:03:58.611Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |