Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.

ilustraciones

Autores:
Giraldo Galeano, Oscar Iván
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80486
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80486
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
Geometría Euclidiana
Euclidean geometry
Foliations (mathematics)
Foliaciones (Matemáticas
Superficie final periódica
Homeomorfismo final periódico
Homeomorfismo Pseudo-Anosov Generalizado
Entropía cero
End periodic surfaces
End periodic homeomorphisms
Generalized Pseudo-Anosov homeomorphisms
Zero entropy
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_b8df7cbd0694398dd3c4ce5633e6eafb
oai_identifier_str oai:repositorio.unal.edu.co:unal/80486
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
dc.title.translated.eng.fl_str_mv End periodic homeomorphisms and generalized pseudo-Anosov homeomorphisms
title Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
spellingShingle Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
510 - Matemáticas
Geometría Euclidiana
Euclidean geometry
Foliations (mathematics)
Foliaciones (Matemáticas
Superficie final periódica
Homeomorfismo final periódico
Homeomorfismo Pseudo-Anosov Generalizado
Entropía cero
End periodic surfaces
End periodic homeomorphisms
Generalized Pseudo-Anosov homeomorphisms
Zero entropy
title_short Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
title_full Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
title_fullStr Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
title_full_unstemmed Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
title_sort Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.
dc.creator.fl_str_mv Giraldo Galeano, Oscar Iván
dc.contributor.advisor.none.fl_str_mv Rodríguez Nieto, José Gregorio
dc.contributor.author.none.fl_str_mv Giraldo Galeano, Oscar Iván
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
topic 510 - Matemáticas
Geometría Euclidiana
Euclidean geometry
Foliations (mathematics)
Foliaciones (Matemáticas
Superficie final periódica
Homeomorfismo final periódico
Homeomorfismo Pseudo-Anosov Generalizado
Entropía cero
End periodic surfaces
End periodic homeomorphisms
Generalized Pseudo-Anosov homeomorphisms
Zero entropy
dc.subject.lem.none.fl_str_mv Geometría Euclidiana
dc.subject.lemb.none.fl_str_mv Euclidean geometry
Foliations (mathematics)
Foliaciones (Matemáticas
dc.subject.proposal.spa.fl_str_mv Superficie final periódica
Homeomorfismo final periódico
Homeomorfismo Pseudo-Anosov Generalizado
Entropía cero
dc.subject.proposal.eng.fl_str_mv End periodic surfaces
End periodic homeomorphisms
Generalized Pseudo-Anosov homeomorphisms
Zero entropy
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-11T16:45:38Z
dc.date.available.none.fl_str_mv 2021-10-11T16:45:38Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80486
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80486
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [Ahl] Ahlfors L, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co. New York (1973) MR0357743
[Be-Ha] Bestvida M, Handel M. 1995. Train-Tracks for surfacenhomeomorphisms. Topology Vol. 34. No. I, pp. 109-MO,1995
[deC-H1] de Carvalho A, Hall T. 2004. Unimodal generalized pseudo-Anosov maps. Geom Topol 8:1127-1188.
[deC2] de Carvalho A. 2005. Extensions, quotients and genelized pseudo-Anosov maps. AMS Proc. Sympos. Pure Math 75:315-338.
[deC-P3] de Carvalho A, Patermain M. 2004. Monotone quotients of surface diffeomorphisms. Math. Res. Lett 10:603-619
[deC-H4] de Carvalho A, Hall T. 2010. Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences, arXiv:1010.3448.
[Fe1] Fenley S. 1990. Endperiodic surface homeomorphisms and 3-manifolds. Math Z. 224:1-24
[Fe2] Fenley S. 1992. Asymptotic properties of depth one foliations in hyperbolic 3-manifolds. Jour. Diff. Geo. 36:269-313.
[Forster] O. Forster, Riemann Surfaces, Springer-Verlag, 1981.
[Ca-Bl] Casson A, Bleiler S. 1988. Automorphisms of surface after Nielsen and Thurston. London Math. Soc. student Text 9 Cambridge Univ. Press.
[Ca-Co1] Cantwell J, Conlon L. 2011. Handel-Miller theory and finite depth foliations, arXiv:1006.4525.
[Ca-Co2] Cantwell J, Conlon L. 2010. Examples of endperiodic maps, arXiv:1008.2549
[Ca-Co3] Cantwell J, Conlon L. 1999. Foliations cones. Geometry and Topology Monographs, Proceedings of the Kirbyfest. 2: 35-86.
[Ca-Co4] Cantwell J, Conlon L. 2000. Foliations I. AMS
[Ch-Ga-La] Chamanara R, Gardiner F, Lakic N. 2006. A hyperelliptic realization of the horseshoe and baker maps. Ergod. Th. and Dynam. Sys. 26:1749-1768.
Fle] Fleming, W. “Nondegenerate surfaces of finite topological type.” Transactions of the American Mathematical Society 90 (1959): 323-335.
[Ghys] E. Ghys, Laminations par surfaces de Riemann, Panorames e Synthesis, SMF, 2000.
[Ga-La] Gardiner F, Lakic N. 2000. Quasiconformal Teichmuller Theory. AMS. Math. Sur. and Monog. Vol 76.
[Ga-Fre] Gardiner F,Frederick P. Measured foliations and the minimal norm property for quadratic differentials. Acta Math., 152(1-2):57-76, 1984.
[Gi-Fi] Gilbert H, Ulrich H. Introduction to the geometry of foliations. Part A. Friedr. Vieweg and Sohn, Braunschweig, second edition, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy
Gaspard] Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics (Cambridge Nonlinear Science Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511628856
[Hu-Ma] Hubbard J, Masur H. 1979. Quadratic differentials and foliations. Acta Math. 142:221-274.
[Mi] Sappala M. Foliations and Quadratic Differentials of Riemann Surface.
[St] Strebel K. 1988. On the extremality and unique extremality of certain Teichmuller mappings. Complex Analysis, J. Hersch and A. Huber, eds. Birhhauser, Basel. 225-238.
[St] Strebel K, Quadratic Differentials, Springer-Verlag, Berlin, 1984.
[Th1] Thurston. W. The geometry and tology of 3-manifolds. Princeton University Notes, 1982.
[Th2] Thurston. W. On the geometry and dynamics of diffeomorphisms of surface. Bull. AMS 19. (1988) 417-431
[Th3] Thurston. W. Hyperbolic structures on 3-manifolds II. Surface grups and 3-manifolds that fiber over the circle. Preprint.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 76 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Escuela de matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80486/4/70953160.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80486/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80486/5/70953160.2021.pdf.jpg
bitstream.checksum.fl_str_mv 7ce5220abe33c79d827bef700eabeb9a
cccfe52f796b7c63423298c2d3365fc6
c1f5675a46fb9d9593bb900e4bca3438
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089720981880832
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Nieto, José Gregorio4c18915879d90fd92b2c223df2274819Giraldo Galeano, Oscar Iván47f2e778ce962c17adeb92ab7c83752d2021-10-11T16:45:38Z2021-10-11T16:45:38Z2021https://repositorio.unal.edu.co/handle/unal/80486Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEl objetivo de este trabajo es probar que las laminaciones invariantes bajo un homeomorfismo final periódico f induce una estructura compleja en la superficie. Y para esto, se pasa de laminaciones medibles a foliaciones con singularidades y con medidas transversales. Luego se usa la estructura Euclidiana inducida por las foliaciones para encontrar una estructura conforme. Por último se prueba que f es una función Pseudo Anosov generalizada en el sentido de [deC-H1]. En particular, se prueba que un diferencial cuadrático asociado a las foliaciones tiene área finita. Además se presentan ejemplos particulares del teorema central. (Texto tomado de la fuente)The main result of this paper is to prove that the minimal invariant laminations of an irreducible generalized Pseudo-Anosov homeomorphism isotopic to an endperiodic homeomorphism induces a conformal structure on the singular surface. To have a better understanding of the given theory, three propositions are presented that are original examples, which will give us an idea of the proof of the main theorem.DoctoradoDoctor en Ciencias - Matemáticas76 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en Ciencias - MatemáticasEscuela de matemáticasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín510 - MatemáticasGeometría EuclidianaEuclidean geometryFoliations (mathematics)Foliaciones (MatemáticasSuperficie final periódicaHomeomorfismo final periódicoHomeomorfismo Pseudo-Anosov GeneralizadoEntropía ceroEnd periodic surfacesEnd periodic homeomorphismsGeneralized Pseudo-Anosov homeomorphismsZero entropyHomeomorfismos finales periódicos y Pseudo-Anosov generalizados.End periodic homeomorphisms and generalized pseudo-Anosov homeomorphismsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[Ahl] Ahlfors L, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co. New York (1973) MR0357743[Be-Ha] Bestvida M, Handel M. 1995. Train-Tracks for surfacenhomeomorphisms. Topology Vol. 34. No. I, pp. 109-MO,1995[deC-H1] de Carvalho A, Hall T. 2004. Unimodal generalized pseudo-Anosov maps. Geom Topol 8:1127-1188.[deC2] de Carvalho A. 2005. Extensions, quotients and genelized pseudo-Anosov maps. AMS Proc. Sympos. Pure Math 75:315-338.[deC-P3] de Carvalho A, Patermain M. 2004. Monotone quotients of surface diffeomorphisms. Math. Res. Lett 10:603-619[deC-H4] de Carvalho A, Hall T. 2010. Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences, arXiv:1010.3448.[Fe1] Fenley S. 1990. Endperiodic surface homeomorphisms and 3-manifolds. Math Z. 224:1-24[Fe2] Fenley S. 1992. Asymptotic properties of depth one foliations in hyperbolic 3-manifolds. Jour. Diff. Geo. 36:269-313.[Forster] O. Forster, Riemann Surfaces, Springer-Verlag, 1981.[Ca-Bl] Casson A, Bleiler S. 1988. Automorphisms of surface after Nielsen and Thurston. London Math. Soc. student Text 9 Cambridge Univ. Press.[Ca-Co1] Cantwell J, Conlon L. 2011. Handel-Miller theory and finite depth foliations, arXiv:1006.4525.[Ca-Co2] Cantwell J, Conlon L. 2010. Examples of endperiodic maps, arXiv:1008.2549[Ca-Co3] Cantwell J, Conlon L. 1999. Foliations cones. Geometry and Topology Monographs, Proceedings of the Kirbyfest. 2: 35-86.[Ca-Co4] Cantwell J, Conlon L. 2000. Foliations I. AMS[Ch-Ga-La] Chamanara R, Gardiner F, Lakic N. 2006. A hyperelliptic realization of the horseshoe and baker maps. Ergod. Th. and Dynam. Sys. 26:1749-1768.Fle] Fleming, W. “Nondegenerate surfaces of finite topological type.” Transactions of the American Mathematical Society 90 (1959): 323-335.[Ghys] E. Ghys, Laminations par surfaces de Riemann, Panorames e Synthesis, SMF, 2000.[Ga-La] Gardiner F, Lakic N. 2000. Quasiconformal Teichmuller Theory. AMS. Math. Sur. and Monog. Vol 76.[Ga-Fre] Gardiner F,Frederick P. Measured foliations and the minimal norm property for quadratic differentials. Acta Math., 152(1-2):57-76, 1984.[Gi-Fi] Gilbert H, Ulrich H. Introduction to the geometry of foliations. Part A. Friedr. Vieweg and Sohn, Braunschweig, second edition, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomyGaspard] Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics (Cambridge Nonlinear Science Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511628856[Hu-Ma] Hubbard J, Masur H. 1979. Quadratic differentials and foliations. Acta Math. 142:221-274.[Mi] Sappala M. Foliations and Quadratic Differentials of Riemann Surface.[St] Strebel K. 1988. On the extremality and unique extremality of certain Teichmuller mappings. Complex Analysis, J. Hersch and A. Huber, eds. Birhhauser, Basel. 225-238.[St] Strebel K, Quadratic Differentials, Springer-Verlag, Berlin, 1984.[Th1] Thurston. W. The geometry and tology of 3-manifolds. Princeton University Notes, 1982.[Th2] Thurston. W. On the geometry and dynamics of diffeomorphisms of surface. Bull. AMS 19. (1988) 417-431[Th3] Thurston. W. Hyperbolic structures on 3-manifolds II. Surface grups and 3-manifolds that fiber over the circle. Preprint.InvestigadoresORIGINAL70953160.2021.pdf70953160.2021.pdfTesis de Doctorado en Matemáticas.application/pdf3878839https://repositorio.unal.edu.co/bitstream/unal/80486/4/70953160.2021.pdf7ce5220abe33c79d827bef700eabeb9aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80486/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL70953160.2021.pdf.jpg70953160.2021.pdf.jpgGenerated Thumbnailimage/jpeg4261https://repositorio.unal.edu.co/bitstream/unal/80486/5/70953160.2021.pdf.jpgc1f5675a46fb9d9593bb900e4bca3438MD55unal/80486oai:repositorio.unal.edu.co:unal/804862023-07-29 23:03:58.611Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==